1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Libnames
open Term
open Reduction
open Declarations
open Environ
open Inductive
open Libobject
open Lib
open Nametab
open Pp
open Topconstr
open Termops
open Namegen
(*s Flags governing the computation of implicit arguments *)
type implicits_flags = {
auto : bool; (* automatic or manual only *)
strict : bool; (* true = strict *)
strongly_strict : bool; (* true = strongly strict *)
reversible_pattern : bool;
contextual : bool; (* true = contextual *)
maximal : bool
}
let implicit_args = ref {
auto = false;
strict = true;
strongly_strict = false;
reversible_pattern = false;
contextual = false;
maximal = false;
}
let make_implicit_args flag =
implicit_args := { !implicit_args with auto = flag }
let make_strict_implicit_args flag =
implicit_args := { !implicit_args with strict = flag }
let make_strongly_strict_implicit_args flag =
implicit_args := { !implicit_args with strongly_strict = flag }
let make_reversible_pattern_implicit_args flag =
implicit_args := { !implicit_args with reversible_pattern = flag }
let make_contextual_implicit_args flag =
implicit_args := { !implicit_args with contextual = flag }
let make_maximal_implicit_args flag =
implicit_args := { !implicit_args with maximal = flag }
let is_implicit_args () = !implicit_args.auto
let is_strict_implicit_args () = !implicit_args.strict
let is_strongly_strict_implicit_args () = !implicit_args.strongly_strict
let is_reversible_pattern_implicit_args () = !implicit_args.reversible_pattern
let is_contextual_implicit_args () = !implicit_args.contextual
let is_maximal_implicit_args () = !implicit_args.maximal
let with_implicits flags f x =
let oflags = !implicit_args in
try
implicit_args := flags;
let rslt = f x in
implicit_args := oflags;
rslt
with reraise -> begin
implicit_args := oflags;
raise reraise
end
let set_maximality imps b =
(* Force maximal insertion on ending implicits (compatibility) *)
b || List.for_all ((<>) None) imps
(*s Computation of implicit arguments *)
(* We remember various information about why an argument is
inferable as implicit
- [DepRigid] means that the implicit argument can be found by
unification along a rigid path (we do not print the arguments of
this kind if there is enough arguments to infer them)
- [DepFlex] means that the implicit argument can be found by unification
along a collapsable path only (e.g. as x in (P x) where P is another
argument) (we do (defensively) print the arguments of this kind)
- [DepFlexAndRigid] means that the least argument from which the
implicit argument can be inferred is following a collapsable path
but there is a greater argument from where the implicit argument is
inferable following a rigid path (useful to know how to print a
partial application)
- [Manual] means the argument has been explicitely set as implicit.
We also consider arguments inferable from the conclusion but it is
operational only if [conclusion_matters] is true.
*)
type argument_position =
| Conclusion
| Hyp of int
type implicit_explanation =
| DepRigid of argument_position
| DepFlex of argument_position
| DepFlexAndRigid of (*flex*) argument_position * (*rig*) argument_position
| Manual
let argument_less = function
| Hyp n, Hyp n' -> n<n'
| Hyp _, Conclusion -> true
| Conclusion, _ -> false
let update pos rig (na,st) =
let e =
if rig then
match st with
| None -> DepRigid pos
| Some (DepRigid n as x) ->
if argument_less (pos,n) then DepRigid pos else x
| Some (DepFlexAndRigid (fpos,rpos) as x) ->
if argument_less (pos,fpos) or pos=fpos then DepRigid pos else
if argument_less (pos,rpos) then DepFlexAndRigid (fpos,pos) else x
| Some (DepFlex fpos) ->
if argument_less (pos,fpos) or pos=fpos then DepRigid pos
else DepFlexAndRigid (fpos,pos)
| Some Manual -> assert false
else
match st with
| None -> DepFlex pos
| Some (DepRigid rpos as x) ->
if argument_less (pos,rpos) then DepFlexAndRigid (pos,rpos) else x
| Some (DepFlexAndRigid (fpos,rpos) as x) ->
if argument_less (pos,fpos) then DepFlexAndRigid (pos,rpos) else x
| Some (DepFlex fpos as x) ->
if argument_less (pos,fpos) then DepFlex pos else x
| Some Manual -> assert false
in na, Some e
(* modified is_rigid_reference with a truncated env *)
let is_flexible_reference env bound depth f =
match kind_of_term f with
| Rel n when n >= bound+depth -> (* inductive type *) false
| Rel n when n >= depth -> (* previous argument *) true
| Rel n -> (* since local definitions have been expanded *) false
| Const kn ->
let cb = Environ.lookup_constant kn env in
(match cb.const_body with Def _ -> true | _ -> false)
| Var id ->
let (_,value,_) = Environ.lookup_named id env in value <> None
| Ind _ | Construct _ -> false
| _ -> true
let push_lift d (e,n) = (push_rel d e,n+1)
let is_reversible_pattern bound depth f l =
isRel f & let n = destRel f in (n < bound+depth) & (n >= depth) &
array_for_all (fun c -> isRel c & destRel c < depth) l &
array_distinct l
(* Precondition: rels in env are for inductive types only *)
let add_free_rels_until strict strongly_strict revpat bound env m pos acc =
let rec frec rig (env,depth as ed) c =
let hd = if strict then whd_betadeltaiota env c else c in
let c = if strongly_strict then hd else c in
match kind_of_term hd with
| Rel n when (n < bound+depth) & (n >= depth) ->
let i = bound + depth - n - 1 in
acc.(i) <- update pos rig acc.(i)
| App (f,l) when revpat & is_reversible_pattern bound depth f l ->
let i = bound + depth - destRel f - 1 in
acc.(i) <- update pos rig acc.(i)
| App (f,_) when rig & is_flexible_reference env bound depth f ->
if strict then () else
iter_constr_with_full_binders push_lift (frec false) ed c
| Case _ when rig ->
if strict then () else
iter_constr_with_full_binders push_lift (frec false) ed c
| Evar _ -> ()
| _ ->
iter_constr_with_full_binders push_lift (frec rig) ed c
in
frec true (env,1) m; acc
let rec is_rigid_head t = match kind_of_term t with
| Rel _ | Evar _ -> false
| Ind _ | Const _ | Var _ | Sort _ -> true
| Case (_,_,f,_) -> is_rigid_head f
| App (f,args) ->
(match kind_of_term f with
| Fix ((fi,i),_) -> is_rigid_head (args.(fi.(i)))
| _ -> is_rigid_head f)
| Lambda _ | LetIn _ | Construct _ | CoFix _ | Fix _
| Prod _ | Meta _ | Cast _ -> assert false
(* calcule la liste des arguments implicites *)
let find_displayed_name_in all avoid na (_,b as envnames_b) =
let flag = RenamingElsewhereFor envnames_b in
if all then compute_and_force_displayed_name_in flag avoid na b
else compute_displayed_name_in flag avoid na b
let compute_implicits_gen strict strongly_strict revpat contextual all env t =
let rigid = ref true in
let rec aux env avoid n names t =
let t = whd_betadeltaiota env t in
match kind_of_term t with
| Prod (na,a,b) ->
let na',avoid' = find_displayed_name_in all avoid na (names,b) in
add_free_rels_until strict strongly_strict revpat n env a (Hyp (n+1))
(aux (push_rel (na',None,a) env) avoid' (n+1) (na'::names) b)
| _ ->
rigid := is_rigid_head t;
let names = List.rev names in
let v = Array.map (fun na -> na,None) (Array.of_list names) in
if contextual then
add_free_rels_until strict strongly_strict revpat n env t Conclusion v
else v
in
match kind_of_term (whd_betadeltaiota env t) with
| Prod (na,a,b) ->
let na',avoid = find_displayed_name_in all [] na ([],b) in
let v = aux (push_rel (na',None,a) env) avoid 1 [na'] b in
!rigid, Array.to_list v
| _ -> true, []
let compute_implicits_flags env f all t =
compute_implicits_gen
(f.strict or f.strongly_strict) f.strongly_strict
f.reversible_pattern f.contextual all env t
let compute_auto_implicits env flags enriching t =
if enriching then compute_implicits_flags env flags true t
else compute_implicits_gen false false false true true env t
let compute_implicits_names env t =
let _, impls = compute_implicits_gen false false false false true env t in
List.map fst impls
(* Extra information about implicit arguments *)
type maximal_insertion = bool (* true = maximal contextual insertion *)
type force_inference = bool (* true = always infer, never turn into evar/subgoal *)
type implicit_status =
(* None = Not implicit *)
(identifier * implicit_explanation * (maximal_insertion * force_inference)) option
type implicit_side_condition = DefaultImpArgs | LessArgsThan of int
type implicits_list = implicit_side_condition * implicit_status list
let is_status_implicit = function
| None -> false
| _ -> true
let name_of_implicit = function
| None -> anomaly "Not an implicit argument"
| Some (id,_,_) -> id
let maximal_insertion_of = function
| Some (_,_,(b,_)) -> b
| None -> anomaly "Not an implicit argument"
let force_inference_of = function
| Some (_, _, (_, b)) -> b
| None -> anomaly "Not an implicit argument"
(* [in_ctx] means we know the expected type, [n] is the index of the argument *)
let is_inferable_implicit in_ctx n = function
| None -> false
| Some (_,DepRigid (Hyp p),_) -> in_ctx or n >= p
| Some (_,DepFlex (Hyp p),_) -> false
| Some (_,DepFlexAndRigid (_,Hyp q),_) -> in_ctx or n >= q
| Some (_,DepRigid Conclusion,_) -> in_ctx
| Some (_,DepFlex Conclusion,_) -> false
| Some (_,DepFlexAndRigid (_,Conclusion),_) -> in_ctx
| Some (_,Manual,_) -> true
let positions_of_implicits (_,impls) =
let rec aux n = function
[] -> []
| Some _ :: l -> n :: aux (n+1) l
| None :: l -> aux (n+1) l
in aux 1 impls
(* Manage user-given implicit arguments *)
let rec prepare_implicits f = function
| [] -> []
| (Anonymous, Some _)::_ -> anomaly "Unnamed implicit"
| (Name id, Some imp)::imps ->
let imps' = prepare_implicits f imps in
Some (id,imp,(set_maximality imps' f.maximal,true)) :: imps'
| _::imps -> None :: prepare_implicits f imps
let set_implicit id imp insmax =
(id,(match imp with None -> Manual | Some imp -> imp),insmax)
let rec assoc_by_pos k = function
(ExplByPos (k', x), b) :: tl when k = k' -> (x,b), tl
| hd :: tl -> let (x, tl) = assoc_by_pos k tl in x, hd :: tl
| [] -> raise Not_found
let check_correct_manual_implicits autoimps l =
List.iter (function
| ExplByName id,(b,fi,forced) ->
if not forced then
error ("Wrong or non-dependent implicit argument name: "^(string_of_id id)^".")
| ExplByPos (i,_id),_t ->
if i<1 or i>List.length autoimps then
error ("Bad implicit argument number: "^(string_of_int i)^".")
else
errorlabstrm ""
(str "Cannot set implicit argument number " ++ int i ++
str ": it has no name.")) l
let set_manual_implicits env flags enriching autoimps l =
let try_forced k l =
try
let (id, (b, fi, fo)), l' = assoc_by_pos k l in
if fo then
let id = match id with Some id -> id | None -> id_of_string ("arg_" ^ string_of_int k) in
l', Some (id,Manual,(b,fi))
else l, None
with Not_found -> l, None
in
if not (list_distinct l) then
error ("Some parameters are referred more than once.");
(* Compare with automatic implicits to recover printing data and names *)
let rec merge k l = function
| (Name id,imp)::imps ->
let l',imp,m =
try
let (b, fi, fo) = List.assoc (ExplByName id) l in
List.remove_assoc (ExplByName id) l, (Some Manual), (Some (b, fi))
with Not_found ->
try
let (id, (b, fi, fo)), l' = assoc_by_pos k l in
l', (Some Manual), (Some (b,fi))
with Not_found ->
l,imp, if enriching && imp <> None then Some (flags.maximal,true) else None
in
let imps' = merge (k+1) l' imps in
let m = Option.map (fun (b,f) -> set_maximality imps' b, f) m in
Option.map (set_implicit id imp) m :: imps'
| (Anonymous,imp)::imps ->
let l', forced = try_forced k l in
forced :: merge (k+1) l' imps
| [] when l = [] -> []
| [] ->
check_correct_manual_implicits autoimps l;
[]
in
merge 1 l autoimps
let compute_semi_auto_implicits env f manual t =
match manual with
| [] ->
if not f.auto then [DefaultImpArgs, []]
else let _,l = compute_implicits_flags env f false t in
[DefaultImpArgs, prepare_implicits f l]
| _ ->
let _,autoimpls = compute_auto_implicits env f f.auto t in
[DefaultImpArgs, set_manual_implicits env f f.auto autoimpls manual]
let compute_implicits env t = compute_semi_auto_implicits env !implicit_args [] t
(*s Constants. *)
let compute_constant_implicits flags manual cst =
let env = Global.env () in
compute_semi_auto_implicits env flags manual (Typeops.type_of_constant env cst)
(*s Inductives and constructors. Their implicit arguments are stored
in an array, indexed by the inductive number, of pairs $(i,v)$ where
$i$ are the implicit arguments of the inductive and $v$ the array of
implicit arguments of the constructors. *)
let compute_mib_implicits flags manual kn =
let env = Global.env () in
let mib = lookup_mind kn env in
let ar =
Array.to_list
(Array.map (* No need to lift, arities contain no de Bruijn *)
(fun mip ->
(Name mip.mind_typename, None, type_of_inductive env (mib,mip)))
mib.mind_packets) in
let env_ar = push_rel_context ar env in
let imps_one_inductive i mip =
let ind = (kn,i) in
let ar = type_of_inductive env (mib,mip) in
((IndRef ind,compute_semi_auto_implicits env flags manual ar),
Array.mapi (fun j c ->
(ConstructRef (ind,j+1),compute_semi_auto_implicits env_ar flags manual c))
mip.mind_nf_lc)
in
Array.mapi imps_one_inductive mib.mind_packets
let compute_all_mib_implicits flags manual kn =
let imps = compute_mib_implicits flags manual kn in
List.flatten
(array_map_to_list (fun (ind,cstrs) -> ind::Array.to_list cstrs) imps)
(*s Variables. *)
let compute_var_implicits flags manual id =
let env = Global.env () in
let (_,_,ty) = lookup_named id env in
compute_semi_auto_implicits env flags manual ty
(* Implicits of a global reference. *)
let compute_global_implicits flags manual = function
| VarRef id -> compute_var_implicits flags manual id
| ConstRef kn -> compute_constant_implicits flags manual kn
| IndRef (kn,i) ->
let ((_,imps),_) = (compute_mib_implicits flags manual kn).(i) in imps
| ConstructRef ((kn,i),j) ->
let (_,cimps) = (compute_mib_implicits flags manual kn).(i) in snd cimps.(j-1)
(* Merge a manual explicitation with an implicit_status list *)
let merge_impls (cond,oldimpls) (_,newimpls) =
let oldimpls,usersuffiximpls = list_chop (List.length newimpls) oldimpls in
cond, (List.map2 (fun orig ni ->
match orig with
| Some (_, Manual, _) -> orig
| _ -> ni) oldimpls newimpls)@usersuffiximpls
(* Caching implicits *)
type implicit_interactive_request =
| ImplAuto
| ImplManual of int
type implicit_discharge_request =
| ImplLocal
| ImplConstant of constant * implicits_flags
| ImplMutualInductive of mutual_inductive * implicits_flags
| ImplInteractive of global_reference * implicits_flags *
implicit_interactive_request
let implicits_table = ref Refmap.empty
let implicits_of_global ref =
try
let l = Refmap.find ref !implicits_table in
try
let rename_l = Arguments_renaming.arguments_names ref in
let rename imp name = match imp, name with
| Some (_, x,y), Name id -> Some (id, x,y)
| _ -> imp in
List.map2 (fun (t, il) rl -> t, List.map2 rename il rl) l rename_l
with Not_found -> l
| Invalid_argument _ ->
anomaly "renamings list and implicits list have different lenghts"
with Not_found -> [DefaultImpArgs,[]]
let cache_implicits_decl (ref,imps) =
implicits_table := Refmap.add ref imps !implicits_table
let load_implicits _ (_,(_,l)) = List.iter cache_implicits_decl l
let cache_implicits o =
load_implicits 1 o
let subst_implicits_decl subst (r,imps as o) =
let r' = fst (subst_global subst r) in if r==r' then o else (r',imps)
let subst_implicits (subst,(req,l)) =
(ImplLocal,list_smartmap (subst_implicits_decl subst) l)
let impls_of_context ctx =
List.rev_map (fun (id,impl,_,_) -> if impl = Lib.Implicit then Some (id, Manual, (true,true)) else None)
(List.filter (fun (_,_,b,_) -> b = None) ctx)
let section_segment_of_reference = function
| ConstRef con -> section_segment_of_constant con
| IndRef (kn,_) | ConstructRef ((kn,_),_) ->
section_segment_of_mutual_inductive kn
| _ -> []
let adjust_side_condition p = function
| LessArgsThan n -> LessArgsThan (n+p)
| DefaultImpArgs -> DefaultImpArgs
let add_section_impls vars extra_impls (cond,impls) =
let p = List.length vars - List.length extra_impls in
adjust_side_condition p cond, extra_impls @ impls
let discharge_implicits (_,(req,l)) =
match req with
| ImplLocal -> None
| ImplInteractive (ref,flags,exp) ->
(try
let vars = section_segment_of_reference ref in
let ref' = if isVarRef ref then ref else pop_global_reference ref in
let extra_impls = impls_of_context vars in
let l' = [ref', List.map (add_section_impls vars extra_impls) (snd (List.hd l))] in
Some (ImplInteractive (ref',flags,exp),l')
with Not_found -> (* ref not defined in this section *) Some (req,l))
| ImplConstant (con,flags) ->
(try
let con' = pop_con con in
let vars = section_segment_of_constant con in
let extra_impls = impls_of_context vars in
let l' = [ConstRef con',List.map (add_section_impls vars extra_impls) (snd (List.hd l))] in
Some (ImplConstant (con',flags),l')
with Not_found -> (* con not defined in this section *) Some (req,l))
| ImplMutualInductive (kn,flags) ->
(try
let l' = List.map (fun (gr, l) ->
let vars = section_segment_of_reference gr in
let extra_impls = impls_of_context vars in
((if isVarRef gr then gr else pop_global_reference gr),
List.map (add_section_impls vars extra_impls) l)) l
in
Some (ImplMutualInductive (pop_kn kn,flags),l')
with Not_found -> (* ref not defined in this section *) Some (req,l))
let rebuild_implicits (req,l) =
match req with
| ImplLocal -> assert false
| ImplConstant (con,flags) ->
let oldimpls = snd (List.hd l) in
let newimpls = compute_constant_implicits flags [] con in
req, [ConstRef con, List.map2 merge_impls oldimpls newimpls]
| ImplMutualInductive (kn,flags) ->
let newimpls = compute_all_mib_implicits flags [] kn in
let rec aux olds news =
match olds, news with
| (_, oldimpls) :: old, (gr, newimpls) :: tl ->
(gr, List.map2 merge_impls oldimpls newimpls) :: aux old tl
| [], [] -> []
| _, _ -> assert false
in req, aux l newimpls
| ImplInteractive (ref,flags,o) ->
(if isVarRef ref && is_in_section ref then ImplLocal else req),
match o with
| ImplAuto ->
let oldimpls = snd (List.hd l) in
let newimpls = compute_global_implicits flags [] ref in
[ref,List.map2 merge_impls oldimpls newimpls]
| ImplManual userimplsize ->
let oldimpls = snd (List.hd l) in
if flags.auto then
let newimpls = List.hd (compute_global_implicits flags [] ref) in
let p = List.length (snd newimpls) - userimplsize in
let newimpls = on_snd (list_firstn p) newimpls in
[ref,List.map (fun o -> merge_impls o newimpls) oldimpls]
else
[ref,oldimpls]
let classify_implicits (req,_ as obj) =
if req = ImplLocal then Dispose else Substitute obj
type implicits_obj =
implicit_discharge_request *
(global_reference * implicits_list list) list
let inImplicits : implicits_obj -> obj =
declare_object {(default_object "IMPLICITS") with
cache_function = cache_implicits;
load_function = load_implicits;
subst_function = subst_implicits;
classify_function = classify_implicits;
discharge_function = discharge_implicits;
rebuild_function = rebuild_implicits }
let is_local local ref = local || isVarRef ref && is_in_section ref
let declare_implicits_gen req flags ref =
let imps = compute_global_implicits flags [] ref in
add_anonymous_leaf (inImplicits (req,[ref,imps]))
let declare_implicits local ref =
let flags = { !implicit_args with auto = true } in
let req =
if is_local local ref then ImplLocal else ImplInteractive(ref,flags,ImplAuto) in
declare_implicits_gen req flags ref
let declare_var_implicits id =
let flags = !implicit_args in
declare_implicits_gen ImplLocal flags (VarRef id)
let declare_constant_implicits con =
let flags = !implicit_args in
declare_implicits_gen (ImplConstant (con,flags)) flags (ConstRef con)
let declare_mib_implicits kn =
let flags = !implicit_args in
let imps = array_map_to_list
(fun (ind,cstrs) -> ind::(Array.to_list cstrs))
(compute_mib_implicits flags [] kn) in
add_anonymous_leaf
(inImplicits (ImplMutualInductive (kn,flags),List.flatten imps))
(* Declare manual implicits *)
type manual_explicitation = Topconstr.explicitation * (bool * bool * bool)
type manual_implicits = manual_explicitation list
let compute_implicits_with_manual env typ enriching l =
let _,autoimpls = compute_auto_implicits env !implicit_args enriching typ in
set_manual_implicits env !implicit_args enriching autoimpls l
let check_inclusion l =
(* Check strict inclusion *)
let rec aux = function
| n1::(n2::_ as nl) ->
if n1 <= n2 then
error "Sequences of implicit arguments must be of different lengths";
aux nl
| _ -> () in
aux (List.map (fun (imps,_) -> List.length imps) l)
let check_rigidity isrigid =
if not isrigid then
errorlabstrm "" (strbrk "Multiple sequences of implicit arguments available only for references that cannot be applied to an arbitrarily large number of arguments.")
let declare_manual_implicits local ref ?enriching l =
let flags = !implicit_args in
let env = Global.env () in
let t = Global.type_of_global ref in
let enriching = Option.default flags.auto enriching in
let isrigid,autoimpls = compute_auto_implicits env flags enriching t in
let l' = match l with
| [] -> assert false
| [l] ->
[DefaultImpArgs, set_manual_implicits env flags enriching autoimpls l]
| _ ->
check_rigidity isrigid;
let l = List.map (fun imps -> (imps,List.length imps)) l in
let l = Sort.list (fun (_,n1) (_,n2) -> n1 > n2) l in
check_inclusion l;
let nargs = List.length autoimpls in
List.map (fun (imps,n) ->
(LessArgsThan (nargs-n),
set_manual_implicits env flags enriching autoimpls imps)) l in
let req =
if is_local local ref then ImplLocal
else ImplInteractive(ref,flags,ImplManual (List.length autoimpls))
in
add_anonymous_leaf (inImplicits (req,[ref,l']))
let maybe_declare_manual_implicits local ref ?enriching l =
if l = [] then ()
else declare_manual_implicits local ref ?enriching [l]
let extract_impargs_data impls =
let rec aux p = function
| (DefaultImpArgs, imps)::_ -> [None,imps]
| (LessArgsThan n, imps)::l -> (Some (p,n),imps) :: aux (n+1) l
| [] -> [] in
aux 0 impls
let lift_implicits n =
List.map (fun x ->
match fst x with
ExplByPos (k, id) -> ExplByPos (k + n, id), snd x
| _ -> x)
let make_implicits_list l = [DefaultImpArgs, l]
let rec drop_first_implicits p l =
if p = 0 then l else match l with
| _,[] as x -> x
| DefaultImpArgs,imp::impls ->
drop_first_implicits (p-1) (DefaultImpArgs,impls)
| LessArgsThan n,imp::impls ->
let n = if is_status_implicit imp then n-1 else n in
drop_first_implicits (p-1) (LessArgsThan n,impls)
let rec select_impargs_size n = function
| [] -> [] (* Tolerance for (DefaultImpArgs,[]) *)
| [_, impls] | (DefaultImpArgs, impls)::_ -> impls
| (LessArgsThan p, impls)::l ->
if n <= p then impls else select_impargs_size n l
let rec select_stronger_impargs = function
| [] -> [] (* Tolerance for (DefaultImpArgs,[]) *)
| (_,impls)::_ -> impls
(*s Registration as global tables *)
let init () = implicits_table := Refmap.empty
let freeze () = !implicits_table
let unfreeze t = implicits_table := t
let _ =
Summary.declare_summary "implicits"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
|