1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* This file implements the basic congruence-closure algorithm by *)
(* Downey,Sethi and Tarjan. *)
open Util
open Pp
open Goptions
open Names
open Term
open Tacmach
open Evd
open Proof_type
let init_size=5
let cc_verbose=ref false
let debug f x =
if !cc_verbose then f x
let _=
let gdopt=
{ optsync=true;
optdepr=false;
optname="Congruence Verbose";
optkey=["Congruence";"Verbose"];
optread=(fun ()-> !cc_verbose);
optwrite=(fun b -> cc_verbose := b)}
in
declare_bool_option gdopt
(* Signature table *)
module ST=struct
(* l: sign -> term r: term -> sign *)
type t = {toterm:(int*int,int) Hashtbl.t;
tosign:(int,int*int) Hashtbl.t}
let empty ()=
{toterm=Hashtbl.create init_size;
tosign=Hashtbl.create init_size}
let enter t sign st=
if Hashtbl.mem st.toterm sign then
anomaly "enter: signature already entered"
else
Hashtbl.replace st.toterm sign t;
Hashtbl.replace st.tosign t sign
let query sign st=Hashtbl.find st.toterm sign
let rev_query term st=Hashtbl.find st.tosign term
let delete st t=
try let sign=Hashtbl.find st.tosign t in
Hashtbl.remove st.toterm sign;
Hashtbl.remove st.tosign t
with
Not_found -> ()
let rec delete_set st s = Intset.iter (delete st) s
end
type pa_constructor=
{ cnode : int;
arity : int;
args : int list}
type pa_fun=
{fsym:int;
fnargs:int}
type pa_mark=
Fmark of pa_fun
| Cmark of pa_constructor
module PacMap=Map.Make(struct
type t=pa_constructor
let compare=Pervasives.compare end)
module PafMap=Map.Make(struct
type t=pa_fun
let compare=Pervasives.compare end)
type cinfo=
{ci_constr: constructor; (* inductive type *)
ci_arity: int; (* # args *)
ci_nhyps: int} (* # projectable args *)
type term=
Symb of constr
| Product of sorts_family * sorts_family
| Eps of identifier
| Appli of term*term
| Constructor of cinfo (* constructor arity + nhyps *)
let rec term_equal t1 t2 =
match t1, t2 with
| Symb c1, Symb c2 -> eq_constr c1 c2
| Product (s1, t1), Product (s2, t2) -> s1 = s2 && t1 = t2
| Eps i1, Eps i2 -> id_ord i1 i2 = 0
| Appli (t1, u1), Appli (t2, u2) -> term_equal t1 t2 && term_equal u1 u2
| Constructor {ci_constr=c1; ci_arity=i1; ci_nhyps=j1},
Constructor {ci_constr=c2; ci_arity=i2; ci_nhyps=j2} ->
i1 = i2 && j1 = j2 && eq_constructor c1 c2
| _ -> t1 = t2
open Hashtbl_alt.Combine
let rec hash_term = function
| Symb c -> combine 1 (hash_constr c)
| Product (s1, s2) -> combine3 2 (Hashtbl.hash s1) (Hashtbl.hash s2)
| Eps i -> combine 3 (Hashtbl.hash i)
| Appli (t1, t2) -> combine3 4 (hash_term t1) (hash_term t2)
| Constructor {ci_constr=c; ci_arity=i; ci_nhyps=j} -> combine4 5 (Hashtbl.hash c) i j
type ccpattern =
PApp of term * ccpattern list (* arguments are reversed *)
| PVar of int
type rule=
Congruence
| Axiom of constr * bool
| Injection of int * pa_constructor * int * pa_constructor * int
type from=
Goal
| Hyp of constr
| HeqG of constr
| HeqnH of constr * constr
type 'a eq = {lhs:int;rhs:int;rule:'a}
type equality = rule eq
type disequality = from eq
type patt_kind =
Normal
| Trivial of types
| Creates_variables
type quant_eq =
{qe_hyp_id: identifier;
qe_pol: bool;
qe_nvars:int;
qe_lhs: ccpattern;
qe_lhs_valid:patt_kind;
qe_rhs: ccpattern;
qe_rhs_valid:patt_kind}
let swap eq : equality =
let swap_rule=match eq.rule with
Congruence -> Congruence
| Injection (i,pi,j,pj,k) -> Injection (j,pj,i,pi,k)
| Axiom (id,reversed) -> Axiom (id,not reversed)
in {lhs=eq.rhs;rhs=eq.lhs;rule=swap_rule}
type inductive_status =
Unknown
| Partial of pa_constructor
| Partial_applied
| Total of (int * pa_constructor)
type representative=
{mutable weight:int;
mutable lfathers:Intset.t;
mutable fathers:Intset.t;
mutable inductive_status: inductive_status;
class_type : Term.types;
mutable functions: Intset.t PafMap.t;
mutable constructors: int PacMap.t} (*pac -> term = app(constr,t) *)
type cl = Rep of representative| Eqto of int*equality
type vertex = Leaf| Node of (int*int)
type node =
{mutable clas:cl;
mutable cpath: int;
vertex:vertex;
term:term}
module Constrhash = Hashtbl.Make
(struct type t = constr
let equal = eq_constr
let hash = hash_constr
end)
module Typehash = Constrhash
module Termhash = Hashtbl.Make
(struct type t = term
let equal = term_equal
let hash = hash_term
end)
module Identhash = Hashtbl.Make
(struct type t = identifier
let equal = Pervasives.(=)
let hash = Hashtbl.hash
end)
type forest=
{mutable max_size:int;
mutable size:int;
mutable map: node array;
axioms: (term*term) Constrhash.t;
mutable epsilons: pa_constructor list;
syms: int Termhash.t}
type state =
{uf: forest;
sigtable:ST.t;
mutable terms: Intset.t;
combine: equality Queue.t;
marks: (int * pa_mark) Queue.t;
mutable diseq: disequality list;
mutable quant: quant_eq list;
mutable pa_classes: Intset.t;
q_history: (int array) Identhash.t;
mutable rew_depth:int;
mutable changed:bool;
by_type: Intset.t Typehash.t;
mutable gls:Proof_type.goal Tacmach.sigma}
let dummy_node =
{clas=Eqto(min_int,{lhs=min_int;rhs=min_int;rule=Congruence});
cpath=min_int;
vertex=Leaf;
term=Symb (mkRel min_int)}
let empty depth gls:state =
{uf=
{max_size=init_size;
size=0;
map=Array.create init_size dummy_node;
epsilons=[];
axioms=Constrhash.create init_size;
syms=Termhash.create init_size};
terms=Intset.empty;
combine=Queue.create ();
marks=Queue.create ();
sigtable=ST.empty ();
diseq=[];
quant=[];
pa_classes=Intset.empty;
q_history=Identhash.create init_size;
rew_depth=depth;
by_type=Constrhash.create init_size;
changed=false;
gls=gls}
let forest state = state.uf
let compress_path uf i j = uf.map.(j).cpath<-i
let rec find_aux uf visited i=
let j = uf.map.(i).cpath in
if j<0 then let _ = List.iter (compress_path uf i) visited in i else
find_aux uf (i::visited) j
let find uf i= find_aux uf [] i
let get_representative uf i=
match uf.map.(i).clas with
Rep r -> r
| _ -> anomaly "get_representative: not a representative"
let find_pac uf i pac =
PacMap.find pac (get_representative uf i).constructors
let get_constructor_info uf i=
match uf.map.(i).term with
Constructor cinfo->cinfo
| _ -> anomaly "get_constructor: not a constructor"
let size uf i=
(get_representative uf i).weight
let axioms uf = uf.axioms
let epsilons uf = uf.epsilons
let add_lfather uf i t=
let r=get_representative uf i in
r.weight<-r.weight+1;
r.lfathers<-Intset.add t r.lfathers;
r.fathers <-Intset.add t r.fathers
let add_rfather uf i t=
let r=get_representative uf i in
r.weight<-r.weight+1;
r.fathers <-Intset.add t r.fathers
exception Discriminable of int * pa_constructor * int * pa_constructor
let append_pac t p =
{p with arity=pred p.arity;args=t::p.args}
let tail_pac p=
{p with arity=succ p.arity;args=List.tl p.args}
let fsucc paf =
{paf with fnargs=succ paf.fnargs}
let add_pac rep pac t =
if not (PacMap.mem pac rep.constructors) then
rep.constructors<-PacMap.add pac t rep.constructors
let add_paf rep paf t =
let already =
try PafMap.find paf rep.functions with Not_found -> Intset.empty in
rep.functions<- PafMap.add paf (Intset.add t already) rep.functions
let term uf i=uf.map.(i).term
let subterms uf i=
match uf.map.(i).vertex with
Node(j,k) -> (j,k)
| _ -> anomaly "subterms: not a node"
let signature uf i=
let j,k=subterms uf i in (find uf j,find uf k)
let next uf=
let size=uf.size in
let nsize= succ size in
if nsize=uf.max_size then
let newmax=uf.max_size * 3 / 2 + 1 in
let newmap=Array.create newmax dummy_node in
begin
uf.max_size<-newmax;
Array.blit uf.map 0 newmap 0 size;
uf.map<-newmap
end
else ();
uf.size<-nsize;
size
let new_representative typ =
{weight=0;
lfathers=Intset.empty;
fathers=Intset.empty;
inductive_status=Unknown;
class_type=typ;
functions=PafMap.empty;
constructors=PacMap.empty}
(* rebuild a constr from an applicative term *)
let _A_ = Name (id_of_string "A")
let _B_ = Name (id_of_string "A")
let _body_ = mkProd(Anonymous,mkRel 2,mkRel 2)
let cc_product s1 s2 =
mkLambda(_A_,mkSort(Termops.new_sort_in_family s1),
mkLambda(_B_,mkSort(Termops.new_sort_in_family s2),_body_))
let rec constr_of_term = function
Symb s->s
| Product(s1,s2) -> cc_product s1 s2
| Eps id -> mkVar id
| Constructor cinfo -> mkConstruct cinfo.ci_constr
| Appli (s1,s2)->
make_app [(constr_of_term s2)] s1
and make_app l=function
Appli (s1,s2)->make_app ((constr_of_term s2)::l) s1
| other -> applistc (constr_of_term other) l
let rec canonize_name c =
let func = canonize_name in
match kind_of_term c with
| Const kn ->
let canon_const = constant_of_kn (canonical_con kn) in
(mkConst canon_const)
| Ind (kn,i) ->
let canon_mind = mind_of_kn (canonical_mind kn) in
(mkInd (canon_mind,i))
| Construct ((kn,i),j) ->
let canon_mind = mind_of_kn (canonical_mind kn) in
mkConstruct ((canon_mind,i),j)
| Prod (na,t,ct) ->
mkProd (na,func t, func ct)
| Lambda (na,t,ct) ->
mkLambda (na, func t,func ct)
| LetIn (na,b,t,ct) ->
mkLetIn (na, func b,func t,func ct)
| App (ct,l) ->
mkApp (func ct,array_smartmap func l)
| _ -> c
(* rebuild a term from a pattern and a substitution *)
let build_subst uf subst =
Array.map (fun i ->
try term uf i
with e when Errors.noncritical e ->
anomaly "incomplete matching") subst
let rec inst_pattern subst = function
PVar i ->
subst.(pred i)
| PApp (t, args) ->
List.fold_right
(fun spat f -> Appli (f,inst_pattern subst spat))
args t
let pr_idx_term state i = str "[" ++ int i ++ str ":=" ++
Termops.print_constr (constr_of_term (term state.uf i)) ++ str "]"
let pr_term t = str "[" ++
Termops.print_constr (constr_of_term t) ++ str "]"
let rec add_term state t=
let uf=state.uf in
try Termhash.find uf.syms t with
Not_found ->
let b=next uf in
let typ = pf_type_of state.gls (constr_of_term t) in
let typ = canonize_name typ in
let new_node=
match t with
Symb _ | Product (_,_) ->
let paf =
{fsym=b;
fnargs=0} in
Queue.add (b,Fmark paf) state.marks;
{clas= Rep (new_representative typ);
cpath= -1;
vertex= Leaf;
term= t}
| Eps id ->
{clas= Rep (new_representative typ);
cpath= -1;
vertex= Leaf;
term= t}
| Appli (t1,t2) ->
let i1=add_term state t1 and i2=add_term state t2 in
add_lfather uf (find uf i1) b;
add_rfather uf (find uf i2) b;
state.terms<-Intset.add b state.terms;
{clas= Rep (new_representative typ);
cpath= -1;
vertex= Node(i1,i2);
term= t}
| Constructor cinfo ->
let paf =
{fsym=b;
fnargs=0} in
Queue.add (b,Fmark paf) state.marks;
let pac =
{cnode= b;
arity= cinfo.ci_arity;
args=[]} in
Queue.add (b,Cmark pac) state.marks;
{clas=Rep (new_representative typ);
cpath= -1;
vertex=Leaf;
term=t}
in
uf.map.(b)<-new_node;
Termhash.add uf.syms t b;
Typehash.replace state.by_type typ
(Intset.add b
(try Typehash.find state.by_type typ with
Not_found -> Intset.empty));
b
let add_equality state c s t=
let i = add_term state s in
let j = add_term state t in
Queue.add {lhs=i;rhs=j;rule=Axiom(c,false)} state.combine;
Constrhash.add state.uf.axioms c (s,t)
let add_disequality state from s t =
let i = add_term state s in
let j = add_term state t in
state.diseq<-{lhs=i;rhs=j;rule=from}::state.diseq
let add_quant state id pol (nvars,valid1,patt1,valid2,patt2) =
state.quant<-
{qe_hyp_id= id;
qe_pol= pol;
qe_nvars=nvars;
qe_lhs= patt1;
qe_lhs_valid=valid1;
qe_rhs= patt2;
qe_rhs_valid=valid2}::state.quant
let is_redundant state id args =
try
let norm_args = Array.map (find state.uf) args in
let prev_args = Identhash.find_all state.q_history id in
List.exists
(fun old_args ->
Util.array_for_all2 (fun i j -> i = find state.uf j)
norm_args old_args)
prev_args
with Not_found -> false
let add_inst state (inst,int_subst) =
check_for_interrupt ();
if state.rew_depth > 0 then
if is_redundant state inst.qe_hyp_id int_subst then
debug msgnl (str "discarding redundant (dis)equality")
else
begin
Identhash.add state.q_history inst.qe_hyp_id int_subst;
let subst = build_subst (forest state) int_subst in
let prfhead= mkVar inst.qe_hyp_id in
let args = Array.map constr_of_term subst in
let _ = array_rev args in (* highest deBruijn index first *)
let prf= mkApp(prfhead,args) in
let s = inst_pattern subst inst.qe_lhs
and t = inst_pattern subst inst.qe_rhs in
state.changed<-true;
state.rew_depth<-pred state.rew_depth;
if inst.qe_pol then
begin
debug (fun () ->
msgnl
(str "Adding new equality, depth="++ int state.rew_depth);
msgnl (str " [" ++ Termops.print_constr prf ++ str " : " ++
pr_term s ++ str " == " ++ pr_term t ++ str "]")) ();
add_equality state prf s t
end
else
begin
debug (fun () ->
msgnl
(str "Adding new disequality, depth="++ int state.rew_depth);
msgnl (str " [" ++ Termops.print_constr prf ++ str " : " ++
pr_term s ++ str " <> " ++ pr_term t ++ str "]")) ();
add_disequality state (Hyp prf) s t
end
end
let link uf i j eq = (* links i -> j *)
let node=uf.map.(i) in
node.clas<-Eqto (j,eq);
node.cpath<-j
let rec down_path uf i l=
match uf.map.(i).clas with
Eqto(j,t)->down_path uf j (((i,j),t)::l)
| Rep _ ->l
let rec min_path=function
([],l2)->([],l2)
| (l1,[])->(l1,[])
| (((c1,t1)::q1),((c2,t2)::q2)) when c1=c2 -> min_path (q1,q2)
| cpl -> cpl
let join_path uf i j=
assert (find uf i=find uf j);
min_path (down_path uf i [],down_path uf j [])
let union state i1 i2 eq=
debug (fun () -> msgnl (str "Linking " ++ pr_idx_term state i1 ++
str " and " ++ pr_idx_term state i2 ++ str ".")) ();
let r1= get_representative state.uf i1
and r2= get_representative state.uf i2 in
link state.uf i1 i2 eq;
Constrhash.replace state.by_type r1.class_type
(Intset.remove i1
(try Constrhash.find state.by_type r1.class_type with
Not_found -> Intset.empty));
let f= Intset.union r1.fathers r2.fathers in
r2.weight<-Intset.cardinal f;
r2.fathers<-f;
r2.lfathers<-Intset.union r1.lfathers r2.lfathers;
ST.delete_set state.sigtable r1.fathers;
state.terms<-Intset.union state.terms r1.fathers;
PacMap.iter
(fun pac b -> Queue.add (b,Cmark pac) state.marks)
r1.constructors;
PafMap.iter
(fun paf -> Intset.iter
(fun b -> Queue.add (b,Fmark paf) state.marks))
r1.functions;
match r1.inductive_status,r2.inductive_status with
Unknown,_ -> ()
| Partial pac,Unknown ->
r2.inductive_status<-Partial pac;
state.pa_classes<-Intset.remove i1 state.pa_classes;
state.pa_classes<-Intset.add i2 state.pa_classes
| Partial _ ,(Partial _ |Partial_applied) ->
state.pa_classes<-Intset.remove i1 state.pa_classes
| Partial_applied,Unknown ->
r2.inductive_status<-Partial_applied
| Partial_applied,Partial _ ->
state.pa_classes<-Intset.remove i2 state.pa_classes;
r2.inductive_status<-Partial_applied
| Total cpl,Unknown -> r2.inductive_status<-Total cpl;
| Total (i,pac),Total _ -> Queue.add (i,Cmark pac) state.marks
| _,_ -> ()
let merge eq state = (* merge and no-merge *)
debug (fun () -> msgnl
(str "Merging " ++ pr_idx_term state eq.lhs ++
str " and " ++ pr_idx_term state eq.rhs ++ str ".")) ();
let uf=state.uf in
let i=find uf eq.lhs
and j=find uf eq.rhs in
if i<>j then
if (size uf i)<(size uf j) then
union state i j eq
else
union state j i (swap eq)
let update t state = (* update 1 and 2 *)
debug (fun () -> msgnl
(str "Updating term " ++ pr_idx_term state t ++ str ".")) ();
let (i,j) as sign = signature state.uf t in
let (u,v) = subterms state.uf t in
let rep = get_representative state.uf i in
begin
match rep.inductive_status with
Partial _ ->
rep.inductive_status <- Partial_applied;
state.pa_classes <- Intset.remove i state.pa_classes
| _ -> ()
end;
PacMap.iter
(fun pac _ -> Queue.add (t,Cmark (append_pac v pac)) state.marks)
rep.constructors;
PafMap.iter
(fun paf _ -> Queue.add (t,Fmark (fsucc paf)) state.marks)
rep.functions;
try
let s = ST.query sign state.sigtable in
Queue.add {lhs=t;rhs=s;rule=Congruence} state.combine
with
Not_found -> ST.enter t sign state.sigtable
let process_function_mark t rep paf state =
add_paf rep paf t;
state.terms<-Intset.union rep.lfathers state.terms
let process_constructor_mark t i rep pac state =
match rep.inductive_status with
Total (s,opac) ->
if pac.cnode <> opac.cnode then (* Conflict *)
raise (Discriminable (s,opac,t,pac))
else (* Match *)
let cinfo = get_constructor_info state.uf pac.cnode in
let rec f n oargs args=
if n > 0 then
match (oargs,args) with
s1::q1,s2::q2->
Queue.add
{lhs=s1;rhs=s2;rule=Injection(s,opac,t,pac,n)}
state.combine;
f (n-1) q1 q2
| _-> anomaly
"add_pacs : weird error in injection subterms merge"
in f cinfo.ci_nhyps opac.args pac.args
| Partial_applied | Partial _ ->
add_pac rep pac t;
state.terms<-Intset.union rep.lfathers state.terms
| Unknown ->
if pac.arity = 0 then
rep.inductive_status <- Total (t,pac)
else
begin
add_pac rep pac t;
state.terms<-Intset.union rep.lfathers state.terms;
rep.inductive_status <- Partial pac;
state.pa_classes<- Intset.add i state.pa_classes
end
let process_mark t m state =
debug (fun () -> msgnl
(str "Processing mark for term " ++ pr_idx_term state t ++ str ".")) ();
let i=find state.uf t in
let rep=get_representative state.uf i in
match m with
Fmark paf -> process_function_mark t rep paf state
| Cmark pac -> process_constructor_mark t i rep pac state
type explanation =
Discrimination of (int*pa_constructor*int*pa_constructor)
| Contradiction of disequality
| Incomplete
let check_disequalities state =
let uf=state.uf in
let rec check_aux = function
dis::q ->
debug (fun () -> msg
(str "Checking if " ++ pr_idx_term state dis.lhs ++ str " = " ++
pr_idx_term state dis.rhs ++ str " ... ")) ();
if find uf dis.lhs=find uf dis.rhs then
begin debug msgnl (str "Yes");Some dis end
else
begin debug msgnl (str "No");check_aux q end
| [] -> None
in
check_aux state.diseq
let one_step state =
try
let eq = Queue.take state.combine in
merge eq state;
true
with Queue.Empty ->
try
let (t,m) = Queue.take state.marks in
process_mark t m state;
true
with Queue.Empty ->
try
let t = Intset.choose state.terms in
state.terms<-Intset.remove t state.terms;
update t state;
true
with Not_found -> false
let __eps__ = id_of_string "_eps_"
let new_state_var typ state =
let id = pf_get_new_id __eps__ state.gls in
let {it=gl ; sigma=sigma} = state.gls in
let gls = Goal.V82.new_goal_with sigma gl [id,None,typ] in
state.gls<- gls;
id
let complete_one_class state i=
match (get_representative state.uf i).inductive_status with
Partial pac ->
let rec app t typ n =
if n<=0 then t else
let _,etyp,rest= destProd typ in
let id = new_state_var etyp state in
app (Appli(t,Eps id)) (substl [mkVar id] rest) (n-1) in
let _c = pf_type_of state.gls
(constr_of_term (term state.uf pac.cnode)) in
let _args =
List.map (fun i -> constr_of_term (term state.uf i))
pac.args in
let typ = prod_applist _c (List.rev _args) in
let ct = app (term state.uf i) typ pac.arity in
state.uf.epsilons <- pac :: state.uf.epsilons;
ignore (add_term state ct)
| _ -> anomaly "wrong incomplete class"
let complete state =
Intset.iter (complete_one_class state) state.pa_classes
type matching_problem =
{mp_subst : int array;
mp_inst : quant_eq;
mp_stack : (ccpattern*int) list }
let make_fun_table state =
let uf= state.uf in
let funtab=ref PafMap.empty in
Array.iteri
(fun i inode -> if i < uf.size then
match inode.clas with
Rep rep ->
PafMap.iter
(fun paf _ ->
let elem =
try PafMap.find paf !funtab
with Not_found -> Intset.empty in
funtab:= PafMap.add paf (Intset.add i elem) !funtab)
rep.functions
| _ -> ()) state.uf.map;
!funtab
let rec do_match state res pb_stack =
let mp=Stack.pop pb_stack in
match mp.mp_stack with
[] ->
res:= (mp.mp_inst,mp.mp_subst) :: !res
| (patt,cl)::remains ->
let uf=state.uf in
match patt with
PVar i ->
if mp.mp_subst.(pred i)<0 then
begin
mp.mp_subst.(pred i)<- cl; (* no aliasing problem here *)
Stack.push {mp with mp_stack=remains} pb_stack
end
else
if mp.mp_subst.(pred i) = cl then
Stack.push {mp with mp_stack=remains} pb_stack
else (* mismatch for non-linear variable in pattern *) ()
| PApp (f,[]) ->
begin
try let j=Termhash.find uf.syms f in
if find uf j =cl then
Stack.push {mp with mp_stack=remains} pb_stack
with Not_found -> ()
end
| PApp(f, ((last_arg::rem_args) as args)) ->
try
let j=Termhash.find uf.syms f in
let paf={fsym=j;fnargs=List.length args} in
let rep=get_representative uf cl in
let good_terms = PafMap.find paf rep.functions in
let aux i =
let (s,t) = signature state.uf i in
Stack.push
{mp with
mp_subst=Array.copy mp.mp_subst;
mp_stack=
(PApp(f,rem_args),s) ::
(last_arg,t) :: remains} pb_stack in
Intset.iter aux good_terms
with Not_found -> ()
let paf_of_patt syms = function
PVar _ -> invalid_arg "paf_of_patt: pattern is trivial"
| PApp (f,args) ->
{fsym=Termhash.find syms f;
fnargs=List.length args}
let init_pb_stack state =
let syms= state.uf.syms in
let pb_stack = Stack.create () in
let funtab = make_fun_table state in
let aux inst =
begin
let good_classes =
match inst.qe_lhs_valid with
Creates_variables -> Intset.empty
| Normal ->
begin
try
let paf= paf_of_patt syms inst.qe_lhs in
PafMap.find paf funtab
with Not_found -> Intset.empty
end
| Trivial typ ->
begin
try
Typehash.find state.by_type typ
with Not_found -> Intset.empty
end in
Intset.iter (fun i ->
Stack.push
{mp_subst = Array.make inst.qe_nvars (-1);
mp_inst=inst;
mp_stack=[inst.qe_lhs,i]} pb_stack) good_classes
end;
begin
let good_classes =
match inst.qe_rhs_valid with
Creates_variables -> Intset.empty
| Normal ->
begin
try
let paf= paf_of_patt syms inst.qe_rhs in
PafMap.find paf funtab
with Not_found -> Intset.empty
end
| Trivial typ ->
begin
try
Typehash.find state.by_type typ
with Not_found -> Intset.empty
end in
Intset.iter (fun i ->
Stack.push
{mp_subst = Array.make inst.qe_nvars (-1);
mp_inst=inst;
mp_stack=[inst.qe_rhs,i]} pb_stack) good_classes
end in
List.iter aux state.quant;
pb_stack
let find_instances state =
let pb_stack= init_pb_stack state in
let res =ref [] in
let _ =
debug msgnl (str "Running E-matching algorithm ... ");
try
while true do
check_for_interrupt ();
do_match state res pb_stack
done;
anomaly "get out of here !"
with Stack.Empty -> () in
!res
let rec execute first_run state =
debug msgnl (str "Executing ... ");
try
while
check_for_interrupt ();
one_step state do ()
done;
match check_disequalities state with
None ->
if not(Intset.is_empty state.pa_classes) then
begin
debug msgnl (str "First run was incomplete, completing ... ");
complete state;
execute false state
end
else
if state.rew_depth>0 then
let l=find_instances state in
List.iter (add_inst state) l;
if state.changed then
begin
state.changed <- false;
execute true state
end
else
begin
debug msgnl (str "Out of instances ... ");
None
end
else
begin
debug msgnl (str "Out of depth ... ");
None
end
| Some dis -> Some
begin
if first_run then Contradiction dis
else Incomplete
end
with Discriminable(s,spac,t,tpac) -> Some
begin
if first_run then Discrimination (s,spac,t,tpac)
else Incomplete
end
|