1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Names
open Term
open Evd
open Tacmach
val set_daimon_flag : unit -> unit
val clear_daimon_flag : unit -> unit
val get_daimon_flag : unit -> bool
type command_mode =
Mode_tactic
| Mode_proof
| Mode_none
val mode_of_pftreestate : Proof.proof -> command_mode
val get_current_mode : unit -> command_mode
val check_not_proof_mode : string -> unit
type split_tree=
Skip_patt of Idset.t * split_tree
| Split_patt of Idset.t * inductive *
(bool array * (Idset.t * split_tree) option) array
| Close_patt of split_tree
| End_patt of (identifier * (int * int))
type elim_kind =
EK_dep of split_tree
| EK_nodep
| EK_unknown
type recpath = int option*Declarations.wf_paths
type per_info =
{per_casee:constr;
per_ctype:types;
per_ind:inductive;
per_pred:constr;
per_args:constr list;
per_params:constr list;
per_nparams:int;
per_wf:recpath}
type stack_info =
Per of Decl_expr.elim_type * per_info * elim_kind * Names.identifier list
| Suppose_case
| Claim
| Focus_claim
type pm_info =
{pm_stack : stack_info list }
val info : pm_info Store.Field.t
val get_info : Evd.evar_map -> Proof_type.goal -> pm_info
val try_get_info : Evd.evar_map -> Proof_type.goal -> pm_info option
val get_stack : Proof.proof -> stack_info list
val get_top_stack : Proof.proof -> stack_info list
val get_last: Environ.env -> identifier
val focus : Proof.proof -> unit
val unfocus : Proof.proof -> unit
val maximal_unfocus : Proof.proof -> unit
|