1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* arnaud: veiller à l'aspect tutorial des commentaires *)
open Pp
open Tok
open Decl_expr
open Names
open Term
open Genarg
open Pcoq
open Pcoq.Constr
open Pcoq.Tactic
open Pcoq.Vernac_
let pr_goal gs =
let (g,sigma) = Goal.V82.nf_evar (Tacmach.project gs) (Evd.sig_it gs) in
let env = Goal.V82.unfiltered_env sigma g in
let preamb,thesis,penv,pc =
(str " *** Declarative Mode ***" ++ fnl ()++fnl ()),
(str "thesis := " ++ fnl ()),
Printer.pr_context_of env,
Printer.pr_goal_concl_style_env env (Goal.V82.concl sigma g)
in
preamb ++
str" " ++ hv 0 (penv ++ fnl () ++
str (Printer.emacs_str "") ++
str "============================" ++ fnl () ++
thesis ++ str " " ++ pc) ++ fnl ()
(* arnaud: rebrancher ça
let pr_open_subgoals () =
let p = Proof_global.give_me_the_proof () in
let { Evd.it = goals ; sigma = sigma } = Proof.V82.subgoals p in
let close_cmd = Decl_mode.get_end_command p in
pr_subgoals close_cmd sigma goals
*)
let pr_proof_instr instr =
Util.anomaly "Cannot print a proof_instr"
(* arnaud: Il nous faut quelque chose de type extr_genarg_printer si on veut aller
dans cette direction
Ppdecl_proof.pr_proof_instr (Global.env()) instr
*)
let pr_raw_proof_instr instr =
Util.anomaly "Cannot print a raw proof_instr"
let pr_glob_proof_instr instr =
Util.anomaly "Cannot print a non-interpreted proof_instr"
let interp_proof_instr _ { Evd.it = gl ; sigma = sigma }=
Decl_interp.interp_proof_instr
(Decl_mode.get_info sigma gl)
(sigma)
(Goal.V82.env sigma gl)
let vernac_decl_proof () =
let pf = Proof_global.give_me_the_proof () in
if Proof.is_done pf then
Util.error "Nothing left to prove here."
else
Proof.transaction pf begin fun () ->
Decl_proof_instr.go_to_proof_mode () ;
Proof_global.set_proof_mode "Declarative" ;
Vernacentries.print_subgoals ()
end
(* spiwack: some bureaucracy is not performed here *)
let vernac_return () =
Proof.transaction (Proof_global.give_me_the_proof ()) begin fun () ->
Decl_proof_instr.return_from_tactic_mode () ;
Proof_global.set_proof_mode "Declarative" ;
Vernacentries.print_subgoals ()
end
let vernac_proof_instr instr =
Proof.transaction (Proof_global.give_me_the_proof ()) begin fun () ->
Decl_proof_instr.proof_instr instr;
Vernacentries.print_subgoals ()
end
(* We create a new parser entry [proof_mode]. The Declarative proof mode
will replace the normal parser entry for tactics with this one. *)
let proof_mode = Gram.entry_create "vernac:proof_command"
(* Auxiliary grammar entry. *)
let proof_instr = Gram.entry_create "proofmode:instr"
(* Before we can write an new toplevel command (see below)
which takes a [proof_instr] as argument, we need to declare
how to parse it, print it, globalise it and interprete it.
Normally we could do that easily through ARGUMENT EXTEND,
but as the parsing is fairly complicated we will do it manually to
indirect through the [proof_instr] grammar entry. *)
(* spiwack: proposal: doing that directly from argextend.ml4, maybe ? *)
(* [Genarg.create_arg] creates a new embedding into Genarg. *)
let (wit_proof_instr,globwit_proof_instr,rawwit_proof_instr) =
Genarg.create_arg None "proof_instr"
let _ = Tacinterp.add_interp_genarg "proof_instr"
begin
begin fun e x -> (* declares the globalisation function *)
Genarg.in_gen globwit_proof_instr
(Decl_interp.intern_proof_instr e (Genarg.out_gen rawwit_proof_instr x))
end,
begin fun ist gl x -> (* declares the interpretation function *)
Tacmach.project gl ,
Genarg.in_gen wit_proof_instr
(interp_proof_instr ist gl (Genarg.out_gen globwit_proof_instr x))
end,
begin fun _ x -> x end (* declares the substitution function, irrelevant in our case *)
end
let _ = Pptactic.declare_extra_genarg_pprule
(rawwit_proof_instr, pr_raw_proof_instr)
(globwit_proof_instr, pr_glob_proof_instr)
(wit_proof_instr, pr_proof_instr)
(* We use the VERNAC EXTEND facility with a custom non-terminal
to populate [proof_mode] with a new toplevel interpreter.
The "-" indicates that the rule does not start with a distinguished
string. *)
VERNAC proof_mode EXTEND ProofInstr
[ - proof_instr(instr) ] -> [ vernac_proof_instr instr ]
END
(* It is useful to use GEXTEND directly to call grammar entries that have been
defined previously VERNAC EXTEND. In this case we allow, in proof mode,
the use of commands like Check or Print. VERNAC EXTEND does quite a bit of
bureaucracy for us, but it is not needed in this sort of case, and it would require
to have an ARGUMENT EXTEND version of the "proof_mode" grammar entry. *)
GEXTEND Gram
GLOBAL: proof_mode ;
proof_mode: LAST
[ [ c=G_vernac.subgoal_command -> c (Some 1) ] ]
;
END
(* We register a new proof mode here *)
let _ =
Proof_global.register_proof_mode { Proof_global.
name = "Declarative" ; (* name for identifying and printing *)
(* function [set] goes from No Proof Mode to
Declarative Proof Mode performing side effects *)
set = begin fun () ->
(* We set the command non terminal to
[proof_mode] (which we just defined). *)
G_vernac.set_command_entry proof_mode ;
(* We substitute the goal printer, by the one we built
for the proof mode. *)
Printer.set_printer_pr { Printer.default_printer_pr with
Printer.pr_goal = pr_goal }
end ;
(* function [reset] goes back to No Proof Mode from
Declarative Proof Mode *)
reset = begin fun () ->
(* We restore the command non terminal to
[noedit_mode]. *)
G_vernac.set_command_entry G_vernac.noedit_mode ;
(* We restore the goal printer to default *)
Printer.set_printer_pr Printer.default_printer_pr
end
}
(* Two new vernacular commands *)
VERNAC COMMAND EXTEND DeclProof
[ "proof" ] -> [ vernac_decl_proof () ]
END
VERNAC COMMAND EXTEND DeclReturn
[ "return" ] -> [ vernac_return () ]
END
let none_is_empty = function
None -> []
| Some l -> l
GEXTEND Gram
GLOBAL: proof_instr;
thesis :
[[ "thesis" -> Plain
| "thesis"; "for"; i=ident -> (For i)
]];
statement :
[[ i=ident ; ":" ; c=constr -> {st_label=Name i;st_it=c}
| i=ident -> {st_label=Anonymous;
st_it=Topconstr.CRef (Libnames.Ident (loc, i))}
| c=constr -> {st_label=Anonymous;st_it=c}
]];
constr_or_thesis :
[[ t=thesis -> Thesis t ] |
[ c=constr -> This c
]];
statement_or_thesis :
[
[ t=thesis -> {st_label=Anonymous;st_it=Thesis t} ]
|
[ i=ident ; ":" ; cot=constr_or_thesis -> {st_label=Name i;st_it=cot}
| i=ident -> {st_label=Anonymous;
st_it=This (Topconstr.CRef (Libnames.Ident (loc, i)))}
| c=constr -> {st_label=Anonymous;st_it=This c}
]
];
justification_items :
[[ -> Some []
| "by"; l=LIST1 constr SEP "," -> Some l
| "by"; "*" -> None ]]
;
justification_method :
[[ -> None
| "using"; tac = tactic -> Some tac ]]
;
simple_cut_or_thesis :
[[ ls = statement_or_thesis;
j = justification_items;
taco = justification_method
-> {cut_stat=ls;cut_by=j;cut_using=taco} ]]
;
simple_cut :
[[ ls = statement;
j = justification_items;
taco = justification_method
-> {cut_stat=ls;cut_by=j;cut_using=taco} ]]
;
elim_type:
[[ IDENT "induction" -> ET_Induction
| IDENT "cases" -> ET_Case_analysis ]]
;
block_type :
[[ IDENT "claim" -> B_claim
| IDENT "focus" -> B_focus
| IDENT "proof" -> B_proof
| et=elim_type -> B_elim et ]]
;
elim_obj:
[[ IDENT "on"; c=constr -> Real c
| IDENT "of"; c=simple_cut -> Virtual c ]]
;
elim_step:
[[ IDENT "consider" ;
h=consider_vars ; IDENT "from" ; c=constr -> Pconsider (c,h)
| IDENT "per"; et=elim_type; obj=elim_obj -> Pper (et,obj)
| IDENT "suffices"; ls=suff_clause;
j = justification_items;
taco = justification_method
-> Psuffices {cut_stat=ls;cut_by=j;cut_using=taco} ]]
;
rew_step :
[[ "~=" ; c=simple_cut -> (Rhs,c)
| "=~" ; c=simple_cut -> (Lhs,c)]]
;
cut_step:
[[ "then"; tt=elim_step -> Pthen tt
| "then"; c=simple_cut_or_thesis -> Pthen (Pcut c)
| IDENT "thus"; tt=rew_step -> Pthus (let s,c=tt in Prew (s,c))
| IDENT "thus"; c=simple_cut_or_thesis -> Pthus (Pcut c)
| IDENT "hence"; c=simple_cut_or_thesis -> Phence (Pcut c)
| tt=elim_step -> tt
| tt=rew_step -> let s,c=tt in Prew (s,c);
| IDENT "have"; c=simple_cut_or_thesis -> Pcut c;
| IDENT "claim"; c=statement -> Pclaim c;
| IDENT "focus"; IDENT "on"; c=statement -> Pfocus c;
| "end"; bt = block_type -> Pend bt;
| IDENT "escape" -> Pescape ]]
;
(* examiner s'il est possible de faire R _ et _ R pour R une relation qcq*)
loc_id:
[[ id=ident -> fun x -> (loc,(id,x)) ]];
hyp:
[[ id=loc_id -> id None ;
| id=loc_id ; ":" ; c=constr -> id (Some c)]]
;
consider_vars:
[[ name=hyp -> [Hvar name]
| name=hyp; ","; v=consider_vars -> (Hvar name) :: v
| name=hyp;
IDENT "such"; IDENT "that"; h=consider_hyps -> (Hvar name)::h
]]
;
consider_hyps:
[[ st=statement; IDENT "and"; h=consider_hyps -> Hprop st::h
| st=statement; IDENT "and";
IDENT "consider" ; v=consider_vars -> Hprop st::v
| st=statement -> [Hprop st]
]]
;
assume_vars:
[[ name=hyp -> [Hvar name]
| name=hyp; ","; v=assume_vars -> (Hvar name) :: v
| name=hyp;
IDENT "such"; IDENT "that"; h=assume_hyps -> (Hvar name)::h
]]
;
assume_hyps:
[[ st=statement; IDENT "and"; h=assume_hyps -> Hprop st::h
| st=statement; IDENT "and";
IDENT "we"; IDENT "have" ; v=assume_vars -> Hprop st::v
| st=statement -> [Hprop st]
]]
;
assume_clause:
[[ IDENT "we" ; IDENT "have" ; v=assume_vars -> v
| h=assume_hyps -> h ]]
;
suff_vars:
[[ name=hyp; IDENT "to"; IDENT "show" ; c = constr_or_thesis ->
[Hvar name],c
| name=hyp; ","; v=suff_vars ->
let (q,c) = v in ((Hvar name) :: q),c
| name=hyp;
IDENT "such"; IDENT "that"; h=suff_hyps ->
let (q,c) = h in ((Hvar name) :: q),c
]];
suff_hyps:
[[ st=statement; IDENT "and"; h=suff_hyps ->
let (q,c) = h in (Hprop st::q),c
| st=statement; IDENT "and";
IDENT "to" ; IDENT "have" ; v=suff_vars ->
let (q,c) = v in (Hprop st::q),c
| st=statement; IDENT "to"; IDENT "show" ; c = constr_or_thesis ->
[Hprop st],c
]]
;
suff_clause:
[[ IDENT "to" ; IDENT "have" ; v=suff_vars -> v
| h=suff_hyps -> h ]]
;
let_vars:
[[ name=hyp -> [Hvar name]
| name=hyp; ","; v=let_vars -> (Hvar name) :: v
| name=hyp; IDENT "be";
IDENT "such"; IDENT "that"; h=let_hyps -> (Hvar name)::h
]]
;
let_hyps:
[[ st=statement; IDENT "and"; h=let_hyps -> Hprop st::h
| st=statement; IDENT "and"; "let"; v=let_vars -> Hprop st::v
| st=statement -> [Hprop st]
]];
given_vars:
[[ name=hyp -> [Hvar name]
| name=hyp; ","; v=given_vars -> (Hvar name) :: v
| name=hyp; IDENT "such"; IDENT "that"; h=given_hyps -> (Hvar name)::h
]]
;
given_hyps:
[[ st=statement; IDENT "and"; h=given_hyps -> Hprop st::h
| st=statement; IDENT "and"; IDENT "given"; v=given_vars -> Hprop st::v
| st=statement -> [Hprop st]
]];
suppose_vars:
[[name=hyp -> [Hvar name]
|name=hyp; ","; v=suppose_vars -> (Hvar name) :: v
|name=hyp; OPT[IDENT "be"];
IDENT "such"; IDENT "that"; h=suppose_hyps -> (Hvar name)::h
]]
;
suppose_hyps:
[[ st=statement_or_thesis; IDENT "and"; h=suppose_hyps -> Hprop st::h
| st=statement_or_thesis; IDENT "and"; IDENT "we"; IDENT "have";
v=suppose_vars -> Hprop st::v
| st=statement_or_thesis -> [Hprop st]
]]
;
suppose_clause:
[[ IDENT "we"; IDENT "have"; v=suppose_vars -> v;
| h=suppose_hyps -> h ]]
;
intro_step:
[[ IDENT "suppose" ; h=assume_clause -> Psuppose h
| IDENT "suppose" ; IDENT "it"; IDENT "is" ; c=pattern LEVEL "0" ;
po=OPT[ "with"; p=LIST1 hyp SEP ","-> p ] ;
ho=OPT[ IDENT "and" ; h=suppose_clause -> h ] ->
Pcase (none_is_empty po,c,none_is_empty ho)
| "let" ; v=let_vars -> Plet v
| IDENT "take"; witnesses = LIST1 constr SEP "," -> Ptake witnesses
| IDENT "assume"; h=assume_clause -> Passume h
| IDENT "given"; h=given_vars -> Pgiven h
| IDENT "define"; id=ident; args=LIST0 hyp;
"as"; body=constr -> Pdefine(id,args,body)
| IDENT "reconsider"; id=ident; "as" ; typ=constr -> Pcast (This id,typ)
| IDENT "reconsider"; t=thesis; "as" ; typ=constr -> Pcast (Thesis t ,typ)
]]
;
emphasis :
[[ -> 0
| "*" -> 1
| "**" -> 2
| "***" -> 3
]]
;
bare_proof_instr:
[[ c = cut_step -> c ;
| i = intro_step -> i ]]
;
proof_instr :
[[ e=emphasis;i=bare_proof_instr;"." -> {emph=e;instr=i}]]
;
END;;
|