1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(** Extraction of [positive], [N] and [Z] into Ocaml's [int] *)
Require Import ZArith NArith.
Require Import ExtrOcamlBasic.
(** Disclaimer: trying to obtain efficient certified programs
by extracting [Z] into [int] is definitively *not* a good idea.
See the Disclaimer in [ExtrOcamlNatInt]. *)
(** Mapping of [positive], [Z], [N] into [int]. The last strings
emulate the matching, see documentation of [Extract Inductive]. *)
Extract Inductive positive => int
[ "(fun p->1+2*p)" "(fun p->2*p)" "1" ]
"(fun f2p1 f2p f1 p ->
if p<=1 then f1 () else if p mod 2 = 0 then f2p (p/2) else f2p1 (p/2))".
Extract Inductive Z => int [ "0" "" "(~-)" ]
"(fun f0 fp fn z -> if z=0 then f0 () else if z>0 then fp z else fn (-z))".
Extract Inductive N => int [ "0" "" ]
"(fun f0 fp n -> if n=0 then f0 () else fp n)".
(** Nota: the "" above is used as an identity function "(fun p->p)" *)
(** Efficient (but uncertified) versions for usual functions *)
Extract Constant Pos.add => "(+)".
Extract Constant Pos.succ => "Pervasives.succ".
Extract Constant Pos.pred => "fun n -> Pervasives.max 1 (n-1)".
Extract Constant Pos.sub => "fun n m -> Pervasives.max 1 (n-m)".
Extract Constant Pos.mul => "( * )".
Extract Constant Pos.min => "Pervasives.min".
Extract Constant Pos.max => "Pervasives.max".
Extract Constant Pos.compare =>
"fun x y -> if x=y then Eq else if x<y then Lt else Gt".
Extract Constant Pos.compare_cont =>
"fun x y c -> if x=y then c else if x<y then Lt else Gt".
Extract Constant N.add => "(+)".
Extract Constant N.succ => "Pervasives.succ".
Extract Constant N.pred => "fun n -> Pervasives.max 0 (n-1)".
Extract Constant N.sub => "fun n m -> Pervasives.max 0 (n-m)".
Extract Constant N.mul => "( * )".
Extract Constant N.min => "Pervasives.min".
Extract Constant N.max => "Pervasives.max".
Extract Constant N.div => "fun a b -> if b=0 then 0 else a/b".
Extract Constant N.modulo => "fun a b -> if b=0 then a else a mod b".
Extract Constant N.compare =>
"fun x y -> if x=y then Eq else if x<y then Lt else Gt".
Extract Constant Z.add => "(+)".
Extract Constant Z.succ => "Pervasives.succ".
Extract Constant Z.pred => "Pervasives.pred".
Extract Constant Z.sub => "(-)".
Extract Constant Z.mul => "( * )".
Extract Constant Z.opp => "(~-)".
Extract Constant Z.abs => "Pervasives.abs".
Extract Constant Z.min => "Pervasives.min".
Extract Constant Z.max => "Pervasives.max".
Extract Constant Z.compare =>
"fun x y -> if x=y then Eq else if x<y then Lt else Gt".
Extract Constant Z.of_N => "fun p -> p".
Extract Constant Z.abs_N => "Pervasives.abs".
(** Z.div and Z.modulo are quite complex to define in terms of (/) and (mod).
For the moment we don't even try *)
|