1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Term
open Declarations
open Names
open Libnames
open Pp
open Util
open Miniml
open Table
open Extraction
open Modutil
open Common
open Mod_subst
(***************************************)
(*S Part I: computing Coq environment. *)
(***************************************)
let toplevel_env () =
let seg = Lib.contents_after None in
let get_reference = function
| (_,kn), Lib.Leaf o ->
let mp,_,l = repr_kn kn in
let seb = match Libobject.object_tag o with
| "CONSTANT" -> SFBconst (Global.lookup_constant (constant_of_kn kn))
| "INDUCTIVE" -> SFBmind (Global.lookup_mind (mind_of_kn kn))
| "MODULE" -> SFBmodule (Global.lookup_module (MPdot (mp,l)))
| "MODULE TYPE" ->
SFBmodtype (Global.lookup_modtype (MPdot (mp,l)))
| _ -> failwith "caught"
in l,seb
| _ -> failwith "caught"
in
SEBstruct (List.rev (map_succeed get_reference seg))
let environment_until dir_opt =
let rec parse = function
| [] when dir_opt = None -> [current_toplevel (), toplevel_env ()]
| [] -> []
| d :: l ->
match (Global.lookup_module (MPfile d)).mod_expr with
| Some meb ->
if dir_opt = Some d then [MPfile d, meb]
else (MPfile d, meb) :: (parse l)
| _ -> assert false
in parse (Library.loaded_libraries ())
(*s Visit:
a structure recording the needed dependencies for the current extraction *)
module type VISIT = sig
(* Reset the dependencies by emptying the visit lists *)
val reset : unit -> unit
(* Add the module_path and all its prefixes to the mp visit list *)
val add_mp : module_path -> unit
(* Same, but we'll keep all fields of these modules *)
val add_mp_all : module_path -> unit
(* Add kernel_name / constant / reference / ... in the visit lists.
These functions silently add the mp of their arg in the mp list *)
val add_ind : mutual_inductive -> unit
val add_con : constant -> unit
val add_ref : global_reference -> unit
val add_decl_deps : ml_decl -> unit
val add_spec_deps : ml_spec -> unit
(* Test functions:
is a particular object a needed dependency for the current extraction ? *)
val needed_ind : mutual_inductive -> bool
val needed_con : constant -> bool
val needed_mp : module_path -> bool
val needed_mp_all : module_path -> bool
end
module Visit : VISIT = struct
(* What used to be in a single KNset should now be split into a KNset
(for inductives and modules names) and a Cset_env for constants
(and still the remaining MPset) *)
type must_visit =
{ mutable ind : KNset.t; mutable con : KNset.t;
mutable mp : MPset.t; mutable mp_all : MPset.t }
(* the imperative internal visit lists *)
let v = { ind = KNset.empty ; con = KNset.empty ;
mp = MPset.empty; mp_all = MPset.empty }
(* the accessor functions *)
let reset () =
v.ind <- KNset.empty;
v.con <- KNset.empty;
v.mp <- MPset.empty;
v.mp_all <- MPset.empty
let needed_ind i = KNset.mem (user_mind i) v.ind
let needed_con c = KNset.mem (user_con c) v.con
let needed_mp mp = MPset.mem mp v.mp || MPset.mem mp v.mp_all
let needed_mp_all mp = MPset.mem mp v.mp_all
let add_mp mp =
check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp
let add_mp_all mp =
check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp;
v.mp_all <- MPset.add mp v.mp_all
let add_ind i =
let kn = user_mind i in
v.ind <- KNset.add kn v.ind; add_mp (modpath kn)
let add_con c =
let kn = user_con c in
v.con <- KNset.add kn v.con; add_mp (modpath kn)
let add_ref = function
| ConstRef c -> add_con c
| IndRef (ind,_) | ConstructRef ((ind,_),_) -> add_ind ind
| VarRef _ -> assert false
let add_decl_deps = decl_iter_references add_ref add_ref add_ref
let add_spec_deps = spec_iter_references add_ref add_ref add_ref
end
exception Impossible
let check_arity env cb =
let t = Typeops.type_of_constant_type env cb.const_type in
if Reduction.is_arity env t then raise Impossible
let check_fix env cb i =
match cb.const_body with
| Def lbody ->
(match kind_of_term (Declarations.force lbody) with
| Fix ((_,j),recd) when i=j -> check_arity env cb; (true,recd)
| CoFix (j,recd) when i=j -> check_arity env cb; (false,recd)
| _ -> raise Impossible)
| Undef _ | OpaqueDef _ -> raise Impossible
let prec_declaration_equal (na1, ca1, ta1) (na2, ca2, ta2) =
na1 = na2 &&
array_equal eq_constr ca1 ca2 &&
array_equal eq_constr ta1 ta2
let factor_fix env l cb msb =
let _,recd as check = check_fix env cb 0 in
let n = Array.length (let fi,_,_ = recd in fi) in
if n = 1 then [|l|], recd, msb
else begin
if List.length msb < n-1 then raise Impossible;
let msb', msb'' = list_chop (n-1) msb in
let labels = Array.make n l in
list_iter_i
(fun j ->
function
| (l,SFBconst cb') ->
let check' = check_fix env cb' (j+1) in
if not (fst check = fst check' &&
prec_declaration_equal (snd check) (snd check'))
then raise Impossible;
labels.(j+1) <- l;
| _ -> raise Impossible) msb';
labels, recd, msb''
end
(** Expanding a [struct_expr_body] into a version without abbreviations
or functor applications. This is done via a detour to entries
(hack proposed by Elie)
*)
let rec seb2mse = function
| SEBapply (s,s',_) -> Entries.MSEapply(seb2mse s, seb2mse s')
| SEBident mp -> Entries.MSEident mp
| _ -> failwith "seb2mse: received a non-atomic seb"
let expand_seb env mp seb =
let seb,_,_,_ =
let inl = Some (Flags.get_inline_level()) in
Mod_typing.translate_struct_module_entry env mp inl (seb2mse seb)
in seb
(** When possible, we use the nicer, shorter, algebraic type structures
instead of the expanded ones. *)
let my_type_of_mb mb =
let m0 = mb.mod_type in
match mb.mod_type_alg with Some m -> m0,m | None -> m0,m0
let my_type_of_mtb mtb =
let m0 = mtb.typ_expr in
match mtb.typ_expr_alg with Some m -> m0,m | None -> m0,m0
(** Ad-hoc update of environment, inspired by [Mod_type.check_with_aux_def].
To check with Elie. *)
let rec msid_of_seb = function
| SEBident mp -> mp
| SEBwith (seb,_) -> msid_of_seb seb
| _ -> assert false
let env_for_mtb_with_def env mp seb idl =
let sig_b = match seb with
| SEBstruct(sig_b) -> sig_b
| _ -> assert false
in
let l = label_of_id (List.hd idl) in
let spot = function (l',SFBconst _) -> l = l' | _ -> false in
let before = fst (list_split_when spot sig_b) in
Modops.add_signature mp before empty_delta_resolver env
(* From a [structure_body] (i.e. a list of [structure_field_body])
to specifications. *)
let rec extract_sfb_spec env mp = function
| [] -> []
| (l,SFBconst cb) :: msig ->
let kn = make_con mp empty_dirpath l in
let s = extract_constant_spec env kn cb in
let specs = extract_sfb_spec env mp msig in
if logical_spec s then specs
else begin Visit.add_spec_deps s; (l,Spec s) :: specs end
| (l,SFBmind _) :: msig ->
let mind = make_mind mp empty_dirpath l in
let s = Sind (mind, extract_inductive env mind) in
let specs = extract_sfb_spec env mp msig in
if logical_spec s then specs
else begin Visit.add_spec_deps s; (l,Spec s) :: specs end
| (l,SFBmodule mb) :: msig ->
let specs = extract_sfb_spec env mp msig in
let spec = extract_seb_spec env mb.mod_mp (my_type_of_mb mb) in
(l,Smodule spec) :: specs
| (l,SFBmodtype mtb) :: msig ->
let specs = extract_sfb_spec env mp msig in
let spec = extract_seb_spec env mtb.typ_mp (my_type_of_mtb mtb) in
(l,Smodtype spec) :: specs
(* From [struct_expr_body] to specifications *)
(* Invariant: the [seb] given to [extract_seb_spec] should either come
from a [mod_type] or [type_expr] field, or their [_alg] counterparts.
This way, any encountered [SEBident] should be a true module type.
*)
and extract_seb_spec env mp1 (seb,seb_alg) = match seb_alg with
| SEBident mp -> Visit.add_mp_all mp; MTident mp
| SEBwith(seb',With_definition_body(idl,cb))->
let env' = env_for_mtb_with_def env (msid_of_seb seb') seb idl in
let mt = extract_seb_spec env mp1 (seb,seb') in
(match extract_with_type env' cb with (* cb peut contenir des kn *)
| None -> mt
| Some (vl,typ) -> MTwith(mt,ML_With_type(idl,vl,typ)))
| SEBwith(seb',With_module_body(idl,mp))->
Visit.add_mp_all mp;
MTwith(extract_seb_spec env mp1 (seb,seb'),
ML_With_module(idl,mp))
| SEBfunctor (mbid, mtb, seb_alg') ->
let seb' = match seb with
| SEBfunctor (mbid',_,seb') when mbid' = mbid -> seb'
| _ -> assert false
in
let mp = MPbound mbid in
let env' = Modops.add_module (Modops.module_body_of_type mp mtb) env in
MTfunsig (mbid, extract_seb_spec env mp (my_type_of_mtb mtb),
extract_seb_spec env' mp1 (seb',seb_alg'))
| SEBstruct (msig) ->
let env' = Modops.add_signature mp1 msig empty_delta_resolver env in
MTsig (mp1, extract_sfb_spec env' mp1 msig)
| SEBapply _ ->
if seb <> seb_alg then extract_seb_spec env mp1 (seb,seb)
else assert false
(* From a [structure_body] (i.e. a list of [structure_field_body])
to implementations.
NB: when [all=false], the evaluation order of the list is
important: last to first ensures correct dependencies.
*)
let rec extract_sfb env mp all = function
| [] -> []
| (l,SFBconst cb) :: msb ->
(try
let vl,recd,msb = factor_fix env l cb msb in
let vc = Array.map (make_con mp empty_dirpath) vl in
let ms = extract_sfb env mp all msb in
let b = array_exists Visit.needed_con vc in
if all || b then
let d = extract_fixpoint env vc recd in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms
with Impossible ->
let ms = extract_sfb env mp all msb in
let c = make_con mp empty_dirpath l in
let b = Visit.needed_con c in
if all || b then
let d = extract_constant env c cb in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms)
| (l,SFBmind mib) :: msb ->
let ms = extract_sfb env mp all msb in
let mind = make_mind mp empty_dirpath l in
let b = Visit.needed_ind mind in
if all || b then
let d = Dind (mind, extract_inductive env mind) in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms
| (l,SFBmodule mb) :: msb ->
let ms = extract_sfb env mp all msb in
let mp = MPdot (mp,l) in
if all || Visit.needed_mp mp then
(l,SEmodule (extract_module env mp true mb)) :: ms
else ms
| (l,SFBmodtype mtb) :: msb ->
let ms = extract_sfb env mp all msb in
let mp = MPdot (mp,l) in
if all || Visit.needed_mp mp then
(l,SEmodtype (extract_seb_spec env mp (my_type_of_mtb mtb))) :: ms
else ms
(* From [struct_expr_body] to implementations *)
and extract_seb env mp all = function
| (SEBident _ | SEBapply _) as seb when lang () <> Ocaml ->
(* in Haskell/Scheme, we expand everything *)
extract_seb env mp all (expand_seb env mp seb)
| SEBident mp ->
if is_modfile mp && not (modular ()) then error_MPfile_as_mod mp false;
Visit.add_mp_all mp; MEident mp
| SEBapply (meb, meb',_) ->
MEapply (extract_seb env mp true meb,
extract_seb env mp true meb')
| SEBfunctor (mbid, mtb, meb) ->
let mp1 = MPbound mbid in
let env' = Modops.add_module (Modops.module_body_of_type mp1 mtb)
env in
MEfunctor (mbid, extract_seb_spec env mp1 (my_type_of_mtb mtb),
extract_seb env' mp true meb)
| SEBstruct (msb) ->
let env' = Modops.add_signature mp msb empty_delta_resolver env in
MEstruct (mp,extract_sfb env' mp all msb)
| SEBwith (_,_) -> anomaly "Not available yet"
and extract_module env mp all mb =
(* A module has an empty [mod_expr] when :
- it is a module variable (for instance X inside a Module F [X:SIG])
- it is a module assumption (Declare Module).
Since we look at modules from outside, we shouldn't have variables.
But a Declare Module at toplevel seems legal (cf #2525). For the
moment we don't support this situation. *)
match mb.mod_expr with
| None -> error_no_module_expr mp
| Some me ->
{ ml_mod_expr = extract_seb env mp all me;
ml_mod_type = extract_seb_spec env mp (my_type_of_mb mb) }
let unpack = function MEstruct (_,sel) -> sel | _ -> assert false
let mono_environment refs mpl =
Visit.reset ();
List.iter Visit.add_ref refs;
List.iter Visit.add_mp_all mpl;
let env = Global.env () in
let l = List.rev (environment_until None) in
List.rev_map
(fun (mp,m) -> mp, unpack (extract_seb env mp (Visit.needed_mp_all mp) m))
l
(**************************************)
(*S Part II : Input/Output primitives *)
(**************************************)
let descr () = match lang () with
| Ocaml -> Ocaml.ocaml_descr
| Haskell -> Haskell.haskell_descr
| Scheme -> Scheme.scheme_descr
(* From a filename string "foo.ml" or "foo", builds "foo.ml" and "foo.mli"
Works similarly for the other languages. *)
let default_id = id_of_string "Main"
let mono_filename f =
let d = descr () in
match f with
| None -> None, None, default_id
| Some f ->
let f =
if Filename.check_suffix f d.file_suffix then
Filename.chop_suffix f d.file_suffix
else f
in
let id =
if lang () <> Haskell then default_id
else
try id_of_string (Filename.basename f)
with e when Errors.noncritical e ->
error "Extraction: provided filename is not a valid identifier"
in
Some (f^d.file_suffix), Option.map ((^) f) d.sig_suffix, id
(* Builds a suitable filename from a module id *)
let module_filename mp =
let f = file_of_modfile mp in
let d = descr () in
Some (f^d.file_suffix), Option.map ((^) f) d.sig_suffix, id_of_string f
(*s Extraction of one decl to stdout. *)
let print_one_decl struc mp decl =
let d = descr () in
reset_renaming_tables AllButExternal;
set_phase Pre;
ignore (d.pp_struct struc);
set_phase Impl;
push_visible mp [];
msgnl (d.pp_decl decl);
pop_visible ()
(*s Extraction of a ml struct to a file. *)
(** For Recursive Extraction, writing directly on stdout
won't work with coqide, we use a buffer instead *)
let buf = Buffer.create 1000
let formatter dry file =
let ft =
if dry then Format.make_formatter (fun _ _ _ -> ()) (fun _ -> ())
else
match file with
| Some f -> Pp_control.with_output_to f
| None -> Format.formatter_of_buffer buf
in
(* We never want to see ellipsis ... in extracted code *)
Format.pp_set_max_boxes ft max_int;
(* We reuse the width information given via "Set Printing Width" *)
(match Pp_control.get_margin () with
| None -> ()
| Some i ->
Format.pp_set_margin ft i;
Format.pp_set_max_indent ft (i-10));
(* note: max_indent should be < margin above, otherwise it's ignored *)
ft
let print_structure_to_file (fn,si,mo) dry struc =
Buffer.clear buf;
let d = descr () in
reset_renaming_tables AllButExternal;
let unsafe_needs = {
mldummy = struct_ast_search ((=) MLdummy) struc;
tdummy = struct_type_search Mlutil.isDummy struc;
tunknown = struct_type_search ((=) Tunknown) struc;
magic =
if lang () <> Haskell then false
else struct_ast_search (function MLmagic _ -> true | _ -> false) struc }
in
(* First, a dry run, for computing objects to rename or duplicate *)
set_phase Pre;
let devnull = formatter true None in
msg_with devnull (d.pp_struct struc);
let opened = opened_libraries () in
(* Print the implementation *)
let cout = if dry then None else Option.map open_out fn in
let ft = formatter dry cout in
begin try
(* The real printing of the implementation *)
set_phase Impl;
msg_with ft (d.preamble mo opened unsafe_needs);
msg_with ft (d.pp_struct struc);
Option.iter close_out cout;
with reraise ->
Option.iter close_out cout; raise reraise
end;
if not dry then Option.iter info_file fn;
(* Now, let's print the signature *)
Option.iter
(fun si ->
let cout = open_out si in
let ft = formatter false (Some cout) in
begin try
set_phase Intf;
msg_with ft (d.sig_preamble mo opened unsafe_needs);
msg_with ft (d.pp_sig (signature_of_structure struc));
close_out cout;
with reraise ->
close_out cout; raise reraise
end;
info_file si)
(if dry then None else si);
(* Print the buffer content via Coq standard formatter (ok with coqide). *)
if Buffer.length buf <> 0 then begin
Pp.message (Buffer.contents buf);
Buffer.reset buf
end
(*********************************************)
(*s Part III: the actual extraction commands *)
(*********************************************)
let reset () =
Visit.reset (); reset_tables (); reset_renaming_tables Everything
let init modular library =
check_inside_section (); check_inside_module ();
set_keywords (descr ()).keywords;
set_modular modular;
set_library library;
reset ();
if modular && lang () = Scheme then error_scheme ()
let warns () =
warning_opaques (access_opaque ());
warning_axioms ()
(* From a list of [reference], let's retrieve whether they correspond
to modules or [global_reference]. Warn the user if both is possible. *)
let rec locate_ref = function
| [] -> [],[]
| r::l ->
let q = snd (qualid_of_reference r) in
let mpo = try Some (Nametab.locate_module q) with Not_found -> None
and ro =
try Some (Smartlocate.global_with_alias r)
with e when Errors.noncritical e -> None
in
match mpo, ro with
| None, None -> Nametab.error_global_not_found q
| None, Some r -> let refs,mps = locate_ref l in r::refs,mps
| Some mp, None -> let refs,mps = locate_ref l in refs,mp::mps
| Some mp, Some r ->
warning_both_mod_and_cst q mp r;
let refs,mps = locate_ref l in refs,mp::mps
(*s Recursive extraction in the Coq toplevel. The vernacular command is
\verb!Recursive Extraction! [qualid1] ... [qualidn]. Also used when
extracting to a file with the command:
\verb!Extraction "file"! [qualid1] ... [qualidn]. *)
let full_extr f (refs,mps) =
init false false;
List.iter (fun mp -> if is_modfile mp then error_MPfile_as_mod mp true) mps;
let struc = optimize_struct (refs,mps) (mono_environment refs mps) in
warns ();
print_structure_to_file (mono_filename f) false struc;
reset ()
let full_extraction f lr = full_extr f (locate_ref lr)
(*s Separate extraction is similar to recursive extraction, with the output
decomposed in many files, one per Coq .v file *)
let separate_extraction lr =
init true false;
let refs,mps = locate_ref lr in
let struc = optimize_struct (refs,mps) (mono_environment refs mps) in
warns ();
let print = function
| (MPfile dir as mp, sel) as e ->
print_structure_to_file (module_filename mp) false [e]
| _ -> assert false
in
List.iter print struc;
reset ()
(*s Simple extraction in the Coq toplevel. The vernacular command
is \verb!Extraction! [qualid]. *)
let simple_extraction r =
Vernacentries.dump_global (Genarg.AN r);
match locate_ref [r] with
| ([], [mp]) as p -> full_extr None p
| [r],[] ->
init false false;
let struc = optimize_struct ([r],[]) (mono_environment [r] []) in
let d = get_decl_in_structure r struc in
warns ();
if is_custom r then msgnl (str "(** User defined extraction *)");
print_one_decl struc (modpath_of_r r) d;
reset ()
| _ -> assert false
(*s (Recursive) Extraction of a library. The vernacular command is
\verb!(Recursive) Extraction Library! [M]. *)
let extraction_library is_rec m =
init true true;
let dir_m =
let q = qualid_of_ident m in
try Nametab.full_name_module q with Not_found -> error_unknown_module q
in
Visit.add_mp_all (MPfile dir_m);
let env = Global.env () in
let l = List.rev (environment_until (Some dir_m)) in
let select l (mp,meb) =
if Visit.needed_mp mp
then (mp, unpack (extract_seb env mp true meb)) :: l
else l
in
let struc = List.fold_left select [] l in
let struc = optimize_struct ([],[]) struc in
warns ();
let print = function
| (MPfile dir as mp, sel) as e ->
let dry = not is_rec && dir <> dir_m in
print_structure_to_file (module_filename mp) dry [e]
| _ -> assert false
in
List.iter print struc;
reset ()
|