1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import List.
Require Import Peano_dec.
Require Import LegacyRing.
Require Import LegacyField_Compl.
Record Field_Theory : Type :=
{A : Type;
Aplus : A -> A -> A;
Amult : A -> A -> A;
Aone : A;
Azero : A;
Aopp : A -> A;
Aeq : A -> A -> bool;
Ainv : A -> A;
Aminus : option (A -> A -> A);
Adiv : option (A -> A -> A);
RT : Ring_Theory Aplus Amult Aone Azero Aopp Aeq;
Th_inv_def : forall n:A, n <> Azero -> Amult (Ainv n) n = Aone}.
(* The reflexion structure *)
Inductive ExprA : Set :=
| EAzero : ExprA
| EAone : ExprA
| EAplus : ExprA -> ExprA -> ExprA
| EAmult : ExprA -> ExprA -> ExprA
| EAopp : ExprA -> ExprA
| EAinv : ExprA -> ExprA
| EAvar : nat -> ExprA.
(**** Decidability of equality ****)
Lemma eqExprA_O : forall e1 e2:ExprA, {e1 = e2} + {e1 <> e2}.
Proof.
double induction e1 e2; try intros;
try (left; reflexivity) || (try (right; discriminate)).
elim (H1 e0); intro y; elim (H2 e); intro y0;
try
(left; rewrite y; rewrite y0; auto) ||
(right; red; intro; inversion H3; auto).
elim (H1 e0); intro y; elim (H2 e); intro y0;
try
(left; rewrite y; rewrite y0; auto) ||
(right; red; intro; inversion H3; auto).
elim (H0 e); intro y.
left; rewrite y; auto.
right; red; intro; inversion H1; auto.
elim (H0 e); intro y.
left; rewrite y; auto.
right; red; intro; inversion H1; auto.
elim (eq_nat_dec n n0); intro y.
left; rewrite y; auto.
right; red; intro; inversion H; auto.
Defined.
Definition eq_nat_dec := Eval compute in eq_nat_dec.
Definition eqExprA := Eval compute in eqExprA_O.
(**** Generation of the multiplier ****)
Fixpoint mult_of_list (e:list ExprA) : ExprA :=
match e with
| nil => EAone
| e1 :: l1 => EAmult e1 (mult_of_list l1)
end.
Section Theory_of_fields.
Variable T : Field_Theory.
Let AT := A T.
Let AplusT := Aplus T.
Let AmultT := Amult T.
Let AoneT := Aone T.
Let AzeroT := Azero T.
Let AoppT := Aopp T.
Let AeqT := Aeq T.
Let AinvT := Ainv T.
Let RTT := RT T.
Let Th_inv_defT := Th_inv_def T.
Add Legacy Abstract Ring (A T) (Aplus T) (Amult T) (Aone T) (
Azero T) (Aopp T) (Aeq T) (RT T).
Add Legacy Abstract Ring AT AplusT AmultT AoneT AzeroT AoppT AeqT RTT.
(***************************)
(* Lemmas to be used *)
(***************************)
Lemma AplusT_comm : forall r1 r2:AT, AplusT r1 r2 = AplusT r2 r1.
Proof.
intros; legacy ring.
Qed.
Lemma AplusT_assoc :
forall r1 r2 r3:AT, AplusT (AplusT r1 r2) r3 = AplusT r1 (AplusT r2 r3).
Proof.
intros; legacy ring.
Qed.
Lemma AmultT_comm : forall r1 r2:AT, AmultT r1 r2 = AmultT r2 r1.
Proof.
intros; legacy ring.
Qed.
Lemma AmultT_assoc :
forall r1 r2 r3:AT, AmultT (AmultT r1 r2) r3 = AmultT r1 (AmultT r2 r3).
Proof.
intros; legacy ring.
Qed.
Lemma AplusT_Ol : forall r:AT, AplusT AzeroT r = r.
Proof.
intros; legacy ring.
Qed.
Lemma AmultT_1l : forall r:AT, AmultT AoneT r = r.
Proof.
intros; legacy ring.
Qed.
Lemma AplusT_AoppT_r : forall r:AT, AplusT r (AoppT r) = AzeroT.
Proof.
intros; legacy ring.
Qed.
Lemma AmultT_AplusT_distr :
forall r1 r2 r3:AT,
AmultT r1 (AplusT r2 r3) = AplusT (AmultT r1 r2) (AmultT r1 r3).
Proof.
intros; legacy ring.
Qed.
Lemma r_AplusT_plus : forall r r1 r2:AT, AplusT r r1 = AplusT r r2 -> r1 = r2.
Proof.
intros; transitivity (AplusT (AplusT (AoppT r) r) r1).
legacy ring.
transitivity (AplusT (AplusT (AoppT r) r) r2).
repeat rewrite AplusT_assoc; rewrite <- H; reflexivity.
legacy ring.
Qed.
Lemma r_AmultT_mult :
forall r r1 r2:AT, AmultT r r1 = AmultT r r2 -> r <> AzeroT -> r1 = r2.
Proof.
intros; transitivity (AmultT (AmultT (AinvT r) r) r1).
rewrite Th_inv_defT; [ symmetry ; apply AmultT_1l; auto | auto ].
transitivity (AmultT (AmultT (AinvT r) r) r2).
repeat rewrite AmultT_assoc; rewrite H; trivial.
rewrite Th_inv_defT; [ apply AmultT_1l; auto | auto ].
Qed.
Lemma AmultT_Or : forall r:AT, AmultT r AzeroT = AzeroT.
Proof.
intro; legacy ring.
Qed.
Lemma AmultT_Ol : forall r:AT, AmultT AzeroT r = AzeroT.
Proof.
intro; legacy ring.
Qed.
Lemma AmultT_1r : forall r:AT, AmultT r AoneT = r.
Proof.
intro; legacy ring.
Qed.
Lemma AinvT_r : forall r:AT, r <> AzeroT -> AmultT r (AinvT r) = AoneT.
Proof.
intros; rewrite AmultT_comm; apply Th_inv_defT; auto.
Qed.
Lemma Rmult_neq_0_reg :
forall r1 r2:AT, AmultT r1 r2 <> AzeroT -> r1 <> AzeroT /\ r2 <> AzeroT.
Proof.
intros r1 r2 H; split; red; intro; apply H; rewrite H0; legacy ring.
Qed.
(************************)
(* Interpretation *)
(************************)
(**** ExprA --> A ****)
Fixpoint interp_ExprA (lvar:list (AT * nat)) (e:ExprA) {struct e} :
AT :=
match e with
| EAzero => AzeroT
| EAone => AoneT
| EAplus e1 e2 => AplusT (interp_ExprA lvar e1) (interp_ExprA lvar e2)
| EAmult e1 e2 => AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2)
| EAopp e => Aopp T (interp_ExprA lvar e)
| EAinv e => Ainv T (interp_ExprA lvar e)
| EAvar n => assoc_2nd AT nat eq_nat_dec lvar n AzeroT
end.
(************************)
(* Simplification *)
(************************)
(**** Associativity ****)
Definition merge_mult :=
(fix merge_mult (e1:ExprA) : ExprA -> ExprA :=
fun e2:ExprA =>
match e1 with
| EAmult t1 t2 =>
match t2 with
| EAmult t2 t3 => EAmult t1 (EAmult t2 (merge_mult t3 e2))
| _ => EAmult t1 (EAmult t2 e2)
end
| _ => EAmult e1 e2
end).
Fixpoint assoc_mult (e:ExprA) : ExprA :=
match e with
| EAmult e1 e3 =>
match e1 with
| EAmult e1 e2 =>
merge_mult (merge_mult (assoc_mult e1) (assoc_mult e2))
(assoc_mult e3)
| _ => EAmult e1 (assoc_mult e3)
end
| _ => e
end.
Definition merge_plus :=
(fix merge_plus (e1:ExprA) : ExprA -> ExprA :=
fun e2:ExprA =>
match e1 with
| EAplus t1 t2 =>
match t2 with
| EAplus t2 t3 => EAplus t1 (EAplus t2 (merge_plus t3 e2))
| _ => EAplus t1 (EAplus t2 e2)
end
| _ => EAplus e1 e2
end).
Fixpoint assoc (e:ExprA) : ExprA :=
match e with
| EAplus e1 e3 =>
match e1 with
| EAplus e1 e2 =>
merge_plus (merge_plus (assoc e1) (assoc e2)) (assoc e3)
| _ => EAplus (assoc_mult e1) (assoc e3)
end
| _ => assoc_mult e
end.
Lemma merge_mult_correct1 :
forall (e1 e2 e3:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (merge_mult (EAmult e1 e2) e3) =
interp_ExprA lvar (EAmult e1 (merge_mult e2 e3)).
Proof.
intros e1 e2; generalize e1; generalize e2; clear e1 e2.
simple induction e2; auto; intros.
unfold merge_mult at 1; fold merge_mult;
unfold interp_ExprA at 2; fold interp_ExprA;
rewrite (H0 e e3 lvar); unfold interp_ExprA at 1;
fold interp_ExprA; unfold interp_ExprA at 5;
fold interp_ExprA; auto.
Qed.
Lemma merge_mult_correct :
forall (e1 e2:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (merge_mult e1 e2) = interp_ExprA lvar (EAmult e1 e2).
Proof.
simple induction e1; auto; intros.
elim e0; try (intros; simpl; legacy ring).
unfold interp_ExprA in H2; fold interp_ExprA in H2;
cut
(AmultT (interp_ExprA lvar e2)
(AmultT (interp_ExprA lvar e4)
(AmultT (interp_ExprA lvar e) (interp_ExprA lvar e3))) =
AmultT
(AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
(interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
intro H3; rewrite H3; rewrite <- H2; rewrite merge_mult_correct1;
simpl; legacy ring.
legacy ring.
Qed.
Lemma assoc_mult_correct1 :
forall (e1 e2:ExprA) (lvar:list (AT * nat)),
AmultT (interp_ExprA lvar (assoc_mult e1))
(interp_ExprA lvar (assoc_mult e2)) =
interp_ExprA lvar (assoc_mult (EAmult e1 e2)).
Proof.
simple induction e1; auto; intros.
rewrite <- (H e0 lvar); simpl; rewrite merge_mult_correct;
simpl; rewrite merge_mult_correct; simpl;
auto.
Qed.
Lemma assoc_mult_correct :
forall (e:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (assoc_mult e) = interp_ExprA lvar e.
Proof.
simple induction e; auto; intros.
elim e0; intros.
intros; simpl; legacy ring.
simpl; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
rewrite (AmultT_1l (interp_ExprA lvar e1)); apply H0.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite merge_mult_correct; simpl;
rewrite merge_mult_correct; simpl; rewrite AmultT_assoc;
rewrite assoc_mult_correct1; rewrite H2; simpl;
rewrite <- assoc_mult_correct1 in H1; unfold interp_ExprA at 3 in H1;
fold interp_ExprA in H1; rewrite (H0 lvar) in H1;
rewrite (AmultT_comm (interp_ExprA lvar e3) (interp_ExprA lvar e1));
rewrite <- AmultT_assoc; rewrite H1; rewrite AmultT_assoc;
legacy ring.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
Qed.
Lemma merge_plus_correct1 :
forall (e1 e2 e3:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (merge_plus (EAplus e1 e2) e3) =
interp_ExprA lvar (EAplus e1 (merge_plus e2 e3)).
Proof.
intros e1 e2; generalize e1; generalize e2; clear e1 e2.
simple induction e2; auto; intros.
unfold merge_plus at 1; fold merge_plus;
unfold interp_ExprA at 2; fold interp_ExprA;
rewrite (H0 e e3 lvar); unfold interp_ExprA at 1;
fold interp_ExprA; unfold interp_ExprA at 5;
fold interp_ExprA; auto.
Qed.
Lemma merge_plus_correct :
forall (e1 e2:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (merge_plus e1 e2) = interp_ExprA lvar (EAplus e1 e2).
Proof.
simple induction e1; auto; intros.
elim e0; try intros; try (simpl; legacy ring).
unfold interp_ExprA in H2; fold interp_ExprA in H2;
cut
(AplusT (interp_ExprA lvar e2)
(AplusT (interp_ExprA lvar e4)
(AplusT (interp_ExprA lvar e) (interp_ExprA lvar e3))) =
AplusT
(AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
(interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
intro H3; rewrite H3; rewrite <- H2; rewrite merge_plus_correct1;
simpl; legacy ring.
legacy ring.
Qed.
Lemma assoc_plus_correct :
forall (e1 e2:ExprA) (lvar:list (AT * nat)),
AplusT (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)) =
interp_ExprA lvar (assoc (EAplus e1 e2)).
Proof.
simple induction e1; auto; intros.
rewrite <- (H e0 lvar); simpl; rewrite merge_plus_correct;
simpl; rewrite merge_plus_correct; simpl;
auto.
Qed.
Lemma assoc_correct :
forall (e:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (assoc e) = interp_ExprA lvar e.
Proof.
simple induction e; auto; intros.
elim e0; intros.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite merge_plus_correct; simpl;
rewrite merge_plus_correct; simpl; rewrite AplusT_assoc;
rewrite assoc_plus_correct; rewrite H2; simpl;
apply
(r_AplusT_plus (interp_ExprA lvar (assoc e1))
(AplusT (interp_ExprA lvar (assoc e2))
(AplusT (interp_ExprA lvar e3) (interp_ExprA lvar e1)))
(AplusT (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e3))
(interp_ExprA lvar e1))); rewrite <- AplusT_assoc;
rewrite
(AplusT_comm (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))
; rewrite assoc_plus_correct; rewrite H1; simpl;
rewrite (H0 lvar);
rewrite <-
(AplusT_assoc (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e1))
(interp_ExprA lvar e3) (interp_ExprA lvar e1))
;
rewrite
(AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e1)
(interp_ExprA lvar e3));
rewrite (AplusT_comm (interp_ExprA lvar e1) (interp_ExprA lvar e3));
rewrite <-
(AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
(interp_ExprA lvar e1)); apply AplusT_comm.
unfold assoc; fold assoc; unfold interp_ExprA;
fold interp_ExprA; rewrite assoc_mult_correct;
rewrite (H0 lvar); simpl; auto.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
simpl; rewrite (H0 lvar); auto.
unfold assoc; fold assoc; unfold interp_ExprA;
fold interp_ExprA; rewrite assoc_mult_correct;
simpl; auto.
Qed.
(**** Distribution *****)
Fixpoint distrib_EAopp (e:ExprA) : ExprA :=
match e with
| EAplus e1 e2 => EAplus (distrib_EAopp e1) (distrib_EAopp e2)
| EAmult e1 e2 => EAmult (distrib_EAopp e1) (distrib_EAopp e2)
| EAopp e => EAmult (EAopp EAone) (distrib_EAopp e)
| e => e
end.
Definition distrib_mult_right :=
(fix distrib_mult_right (e1:ExprA) : ExprA -> ExprA :=
fun e2:ExprA =>
match e1 with
| EAplus t1 t2 =>
EAplus (distrib_mult_right t1 e2) (distrib_mult_right t2 e2)
| _ => EAmult e1 e2
end).
Fixpoint distrib_mult_left (e1 e2:ExprA) {struct e1} : ExprA :=
match e1 with
| EAplus t1 t2 =>
EAplus (distrib_mult_left t1 e2) (distrib_mult_left t2 e2)
| _ => distrib_mult_right e2 e1
end.
Fixpoint distrib_main (e:ExprA) : ExprA :=
match e with
| EAmult e1 e2 => distrib_mult_left (distrib_main e1) (distrib_main e2)
| EAplus e1 e2 => EAplus (distrib_main e1) (distrib_main e2)
| EAopp e => EAopp (distrib_main e)
| _ => e
end.
Definition distrib (e:ExprA) : ExprA := distrib_main (distrib_EAopp e).
Lemma distrib_mult_right_correct :
forall (e1 e2:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (distrib_mult_right e1 e2) =
AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
Proof.
simple induction e1; try intros; simpl; auto.
rewrite AmultT_comm; rewrite AmultT_AplusT_distr; rewrite (H e2 lvar);
rewrite (H0 e2 lvar); legacy ring.
Qed.
Lemma distrib_mult_left_correct :
forall (e1 e2:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (distrib_mult_left e1 e2) =
AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
Proof.
simple induction e1; try intros; simpl.
rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl;
apply AmultT_Or.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite AmultT_comm;
rewrite
(AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
(interp_ExprA lvar e0));
rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e));
rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e0));
rewrite (H e2 lvar); rewrite (H0 e2 lvar); auto.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
Qed.
Lemma distrib_correct :
forall (e:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (distrib e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
simpl; rewrite <- (H lvar); rewrite <- (H0 lvar);
unfold distrib; simpl; auto.
simpl; rewrite <- (H lvar); rewrite <- (H0 lvar);
unfold distrib; simpl; apply distrib_mult_left_correct.
simpl; fold AoppT; rewrite <- (H lvar);
unfold distrib; simpl; rewrite distrib_mult_right_correct;
simpl; fold AoppT; legacy ring.
Qed.
(**** Multiplication by the inverse product ****)
Lemma mult_eq :
forall (e1 e2 a:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar a <> AzeroT ->
interp_ExprA lvar (EAmult a e1) = interp_ExprA lvar (EAmult a e2) ->
interp_ExprA lvar e1 = interp_ExprA lvar e2.
Proof.
simpl; intros;
apply
(r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
(interp_ExprA lvar e2)); assumption.
Qed.
Fixpoint multiply_aux (a e:ExprA) {struct e} : ExprA :=
match e with
| EAplus e1 e2 => EAplus (EAmult a e1) (multiply_aux a e2)
| _ => EAmult a e
end.
Definition multiply (e:ExprA) : ExprA :=
match e with
| EAmult a e1 => multiply_aux a e1
| _ => e
end.
Lemma multiply_aux_correct :
forall (a e:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (multiply_aux a e) =
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
simple induction e; simpl; intros; try rewrite merge_mult_correct;
auto.
simpl; rewrite (H0 lvar); legacy ring.
Qed.
Lemma multiply_correct :
forall (e:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (multiply e) = interp_ExprA lvar e.
Proof.
simple induction e; simpl; auto.
intros; apply multiply_aux_correct.
Qed.
(**** Permutations and simplification ****)
Fixpoint monom_remove (a m:ExprA) {struct m} : ExprA :=
match m with
| EAmult m0 m1 =>
match eqExprA m0 (EAinv a) with
| left _ => m1
| right _ => EAmult m0 (monom_remove a m1)
end
| _ =>
match eqExprA m (EAinv a) with
| left _ => EAone
| right _ => EAmult a m
end
end.
Definition monom_simplif_rem :=
(fix monom_simplif_rem (a:ExprA) : ExprA -> ExprA :=
fun m:ExprA =>
match a with
| EAmult a0 a1 => monom_simplif_rem a1 (monom_remove a0 m)
| _ => monom_remove a m
end).
Definition monom_simplif (a m:ExprA) : ExprA :=
match m with
| EAmult a' m' =>
match eqExprA a a' with
| left _ => monom_simplif_rem a m'
| right _ => m
end
| _ => m
end.
Fixpoint inverse_simplif (a e:ExprA) {struct e} : ExprA :=
match e with
| EAplus e1 e2 => EAplus (monom_simplif a e1) (inverse_simplif a e2)
| _ => monom_simplif a e
end.
Lemma monom_remove_correct :
forall (e a:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar a <> AzeroT ->
interp_ExprA lvar (monom_remove a e) =
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
simple induction e; intros.
simpl; case (eqExprA EAzero (EAinv a)); intros;
[ inversion e0 | simpl; trivial ].
simpl; case (eqExprA EAone (EAinv a)); intros;
[ inversion e0 | simpl; trivial ].
simpl; case (eqExprA (EAplus e0 e1) (EAinv a)); intros;
[ inversion e2 | simpl; trivial ].
simpl; case (eqExprA e0 (EAinv a)); intros.
rewrite e2; simpl; fold AinvT.
rewrite <-
(AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
(interp_ExprA lvar e1)); rewrite AinvT_r; [ legacy ring | assumption ].
simpl; rewrite H0; auto; legacy ring.
simpl; fold AoppT; case (eqExprA (EAopp e0) (EAinv a));
intros; [ inversion e1 | simpl; trivial ].
unfold monom_remove; case (eqExprA (EAinv e0) (EAinv a)); intros.
case (eqExprA e0 a); intros.
rewrite e2; simpl; fold AinvT; rewrite AinvT_r; auto.
inversion e1; simpl; exfalso; auto.
simpl; trivial.
unfold monom_remove; case (eqExprA (EAvar n) (EAinv a)); intros;
[ inversion e0 | simpl; trivial ].
Qed.
Lemma monom_simplif_rem_correct :
forall (a e:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar a <> AzeroT ->
interp_ExprA lvar (monom_simplif_rem a e) =
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
simple induction a; simpl; intros; try rewrite monom_remove_correct;
auto.
elim (Rmult_neq_0_reg (interp_ExprA lvar e) (interp_ExprA lvar e0) H1);
intros.
rewrite (H0 (monom_remove e e1) lvar H3); rewrite monom_remove_correct; auto.
legacy ring.
Qed.
Lemma monom_simplif_correct :
forall (e a:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar a <> AzeroT ->
interp_ExprA lvar (monom_simplif a e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
simpl; case (eqExprA a e0); intros.
rewrite <- e2; apply monom_simplif_rem_correct; auto.
simpl; trivial.
Qed.
Lemma inverse_correct :
forall (e a:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar a <> AzeroT ->
interp_ExprA lvar (inverse_simplif a e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
simpl; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto.
unfold inverse_simplif; rewrite monom_simplif_correct; auto.
Qed.
End Theory_of_fields.
(* Compatibility *)
Notation AplusT_sym := AplusT_comm (only parsing).
Notation AmultT_sym := AmultT_comm (only parsing).
|