1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export Rbase.
Comments "Lemmas used by the tactic Fourier".
Open Scope R_scope.
Lemma Rfourier_lt : forall x1 y1 a:R, x1 < y1 -> 0 < a -> a * x1 < a * y1.
intros; apply Rmult_lt_compat_l; assumption.
Qed.
Lemma Rfourier_le : forall x1 y1 a:R, x1 <= y1 -> 0 < a -> a * x1 <= a * y1.
red.
intros.
case H; auto with real.
Qed.
Lemma Rfourier_lt_lt :
forall x1 y1 x2 y2 a:R,
x1 < y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
intros x1 y1 x2 y2 a H H0 H1; try assumption.
apply Rplus_lt_compat.
try exact H.
apply Rfourier_lt.
try exact H0.
try exact H1.
Qed.
Lemma Rfourier_lt_le :
forall x1 y1 x2 y2 a:R,
x1 < y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
intros x1 y1 x2 y2 a H H0 H1; try assumption.
case H0; intros.
apply Rplus_lt_compat.
try exact H.
apply Rfourier_lt; auto with real.
rewrite H2.
rewrite (Rplus_comm y1 (a * y2)).
rewrite (Rplus_comm x1 (a * y2)).
apply Rplus_lt_compat_l.
try exact H.
Qed.
Lemma Rfourier_le_lt :
forall x1 y1 x2 y2 a:R,
x1 <= y1 -> x2 < y2 -> 0 < a -> x1 + a * x2 < y1 + a * y2.
intros x1 y1 x2 y2 a H H0 H1; try assumption.
case H; intros.
apply Rfourier_lt_le; auto with real.
rewrite H2.
apply Rplus_lt_compat_l.
apply Rfourier_lt; auto with real.
Qed.
Lemma Rfourier_le_le :
forall x1 y1 x2 y2 a:R,
x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2.
intros x1 y1 x2 y2 a H H0 H1; try assumption.
case H0; intros.
red.
left; try assumption.
apply Rfourier_le_lt; auto with real.
rewrite H2.
case H; intros.
red.
left; try assumption.
rewrite (Rplus_comm x1 (a * y2)).
rewrite (Rplus_comm y1 (a * y2)).
apply Rplus_lt_compat_l.
try exact H3.
rewrite H3.
red.
right; try assumption.
auto with real.
Qed.
Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
intros x H; try assumption.
rewrite Rplus_comm.
apply Rle_lt_0_plus_1.
red; auto with real.
Qed.
Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
intros x y H H0; try assumption.
replace 0 with (x * 0).
apply Rmult_lt_compat_l; auto with real.
ring.
Qed.
Lemma Rlt_zero_1 : 0 < 1.
exact Rlt_0_1.
Qed.
Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
intros x H; try assumption.
case H; intros.
red.
left; try assumption.
apply Rlt_zero_pos_plus1; auto with real.
rewrite <- H0.
replace (1 + 0) with 1.
red; left.
exact Rlt_zero_1.
ring.
Qed.
Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
intros x y H H0; try assumption.
case H; intros.
red; left.
apply Rlt_mult_inv_pos; auto with real.
rewrite <- H1.
red; right; ring.
Qed.
Lemma Rle_zero_1 : 0 <= 1.
red; left.
exact Rlt_zero_1.
Qed.
Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d.
intros n d H; red; intros H0; try exact H0.
generalize (Rgt_not_le 0 (n * / d)).
intros H1; elim H1; try assumption.
replace (n * / d) with (- - (n * / d)).
replace 0 with (- -0).
replace (- (n * / d)) with (- n * / d).
replace (-0) with 0.
red.
apply Ropp_gt_lt_contravar.
red.
exact H0.
ring.
ring.
ring.
ring.
Qed.
Lemma Rnot_lt0 : forall x:R, ~ 0 < 0 * x.
intros x; try assumption.
replace (0 * x) with 0.
apply Rlt_irrefl.
ring.
Qed.
Lemma Rlt_not_le_frac_opp : forall n d:R, 0 < n * / d -> ~ 0 <= - n * / d.
intros n d H; try assumption.
apply Rgt_not_le.
replace 0 with (-0).
replace (- n * / d) with (- (n * / d)).
apply Ropp_lt_gt_contravar.
try exact H.
ring.
ring.
Qed.
Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y.
unfold not; intros.
apply H.
apply Rplus_lt_reg_r with x.
replace (x + 0) with x.
replace (x + (y - x)) with y.
try exact H0.
ring.
ring.
Qed.
Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y.
unfold not; intros.
apply H.
case H0; intros.
left.
apply Rplus_lt_reg_r with x.
replace (x + 0) with x.
replace (x + (y - x)) with y.
try exact H1.
ring.
ring.
right.
rewrite H1; ring.
Qed.
Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y.
unfold Rgt; intros; assumption.
Qed.
Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y.
intros x y; exact (Rge_le y x).
Qed.
Lemma Rfourier_eqLR_to_le : forall x y:R, x = y -> x <= y.
exact Req_le.
Qed.
Lemma Rfourier_eqRL_to_le : forall x y:R, y = x -> x <= y.
exact Req_le_sym.
Qed.
Lemma Rfourier_not_ge_lt : forall x y:R, (x >= y -> False) -> x < y.
exact Rnot_ge_lt.
Qed.
Lemma Rfourier_not_gt_le : forall x y:R, (x > y -> False) -> x <= y.
exact Rnot_gt_le.
Qed.
Lemma Rfourier_not_le_gt : forall x y:R, (x <= y -> False) -> x > y.
exact Rnot_le_lt.
Qed.
Lemma Rfourier_not_lt_ge : forall x y:R, (x < y -> False) -> x >= y.
exact Rnot_lt_ge.
Qed.
|