1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
open Names
open Term
val generate_functional_principle :
(* do we accept interactive proving *)
bool ->
(* induction principle on rel *)
types ->
(* *)
sorts array option ->
(* Name of the new principle *)
(identifier) option ->
(* the compute functions to use *)
constant array ->
(* We prove the nth- principle *)
int ->
(* The tactic to use to make the proof w.r
the number of params
*)
(constr array -> int -> Tacmach.tactic) ->
unit
val compute_new_princ_type_from_rel : constr array -> sorts array ->
types -> types
exception No_graph_found
val make_scheme : (constant*Glob_term.glob_sort) list -> Entries.definition_entry list
val build_scheme : (identifier*Libnames.reference*Glob_term.glob_sort) list -> unit
val build_case_scheme : (identifier*Libnames.reference*Glob_term.glob_sort) -> unit
|