1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
open Util
open Term
open Names
open Pp
open Topconstr
open Indfun_common
open Indfun
open Genarg
open Pcoq
open Tacticals
open Constr
let pr_binding prc = function
| loc, Glob_term.NamedHyp id, c -> hov 1 (Ppconstr.pr_id id ++ str " := " ++ cut () ++ prc c)
| loc, Glob_term.AnonHyp n, c -> hov 1 (int n ++ str " := " ++ cut () ++ prc c)
let pr_bindings prc prlc = function
| Glob_term.ImplicitBindings l ->
brk (1,1) ++ str "with" ++ brk (1,1) ++
Util.prlist_with_sep spc prc l
| Glob_term.ExplicitBindings l ->
brk (1,1) ++ str "with" ++ brk (1,1) ++
Util.prlist_with_sep spc (fun b -> str"(" ++ pr_binding prlc b ++ str")") l
| Glob_term.NoBindings -> mt ()
let pr_with_bindings prc prlc (c,bl) =
prc c ++ hv 0 (pr_bindings prc prlc bl)
let pr_fun_ind_using prc prlc _ opt_c =
match opt_c with
| None -> mt ()
| Some b -> spc () ++ hov 2 (str "using" ++ spc () ++ pr_with_bindings prc prlc b)
(* Duplication of printing functions because "'a with_bindings" is
(internally) not uniform in 'a: indeed constr_with_bindings at the
"typed" level has type "open_constr with_bindings" instead of
"constr with_bindings"; hence, its printer cannot be polymorphic in
(prc,prlc)... *)
let pr_with_bindings_typed prc prlc (c,bl) =
prc c ++
hv 0 (pr_bindings prc prlc bl)
let pr_fun_ind_using_typed prc prlc _ opt_c =
match opt_c with
| None -> mt ()
| Some b -> spc () ++ hov 2 (str "using" ++ spc () ++ pr_with_bindings_typed prc prlc b.Evd.it)
ARGUMENT EXTEND fun_ind_using
PRINTED BY pr_fun_ind_using_typed
RAW_TYPED AS constr_with_bindings_opt
RAW_PRINTED BY pr_fun_ind_using
GLOB_TYPED AS constr_with_bindings_opt
GLOB_PRINTED BY pr_fun_ind_using
| [ "using" constr_with_bindings(c) ] -> [ Some c ]
| [ ] -> [ None ]
END
TACTIC EXTEND newfuninv
[ "functional" "inversion" quantified_hypothesis(hyp) reference_opt(fname) ] ->
[
Invfun.invfun hyp fname
]
END
let pr_intro_as_pat prc _ _ pat =
match pat with
| Some pat -> spc () ++ str "as" ++ spc () ++ pr_intro_pattern pat
| None -> mt ()
ARGUMENT EXTEND with_names TYPED AS intro_pattern_opt PRINTED BY pr_intro_as_pat
| [ "as" simple_intropattern(ipat) ] -> [ Some ipat ]
| [] ->[ None ]
END
TACTIC EXTEND newfunind
["functional" "induction" ne_constr_list(cl) fun_ind_using(princl) with_names(pat)] ->
[
let c = match cl with
| [] -> assert false
| [c] -> c
| c::cl -> applist(c,cl)
in
Extratactics.onSomeWithHoles (fun x -> functional_induction true c x pat) princl ]
END
(***** debug only ***)
TACTIC EXTEND snewfunind
["soft" "functional" "induction" ne_constr_list(cl) fun_ind_using(princl) with_names(pat)] ->
[
let c = match cl with
| [] -> assert false
| [c] -> c
| c::cl -> applist(c,cl)
in
Extratactics.onSomeWithHoles (fun x -> functional_induction false c x pat) princl ]
END
let pr_constr_coma_sequence prc _ _ = Util.prlist_with_sep Util.pr_comma prc
ARGUMENT EXTEND constr_coma_sequence'
TYPED AS constr_list
PRINTED BY pr_constr_coma_sequence
| [ constr(c) "," constr_coma_sequence'(l) ] -> [ c::l ]
| [ constr(c) ] -> [ [c] ]
END
let pr_auto_using prc _prlc _prt = Pptactic.pr_auto_using prc
ARGUMENT EXTEND auto_using'
TYPED AS constr_list
PRINTED BY pr_auto_using
| [ "using" constr_coma_sequence'(l) ] -> [ l ]
| [ ] -> [ [] ]
END
module Gram = Pcoq.Gram
module Vernac = Pcoq.Vernac_
module Tactic = Pcoq.Tactic
module FunctionGram =
struct
let gec s = Gram.entry_create ("Function."^s)
(* types *)
let function_rec_definition_loc : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) located Gram.entry = gec "function_rec_definition_loc"
end
open FunctionGram
GEXTEND Gram
GLOBAL: function_rec_definition_loc ;
function_rec_definition_loc:
[ [ g = Vernac.rec_definition -> loc, g ]]
;
END
type 'a function_rec_definition_loc_argtype = ((Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) located, 'a) Genarg.abstract_argument_type
let (wit_function_rec_definition_loc : Genarg.tlevel function_rec_definition_loc_argtype),
(globwit_function_rec_definition_loc : Genarg.glevel function_rec_definition_loc_argtype),
(rawwit_function_rec_definition_loc : Genarg.rlevel function_rec_definition_loc_argtype) =
Genarg.create_arg None "function_rec_definition_loc"
VERNAC COMMAND EXTEND Function
["Function" ne_function_rec_definition_loc_list_sep(recsl,"with")] ->
[
do_generate_principle false (List.map snd recsl);
]
END
let pr_fun_scheme_arg (princ_name,fun_name,s) =
Nameops.pr_id princ_name ++ str " :=" ++ spc() ++ str "Induction for " ++
Libnames.pr_reference fun_name ++ spc() ++ str "Sort " ++
Ppconstr.pr_glob_sort s
VERNAC ARGUMENT EXTEND fun_scheme_arg
PRINTED BY pr_fun_scheme_arg
| [ ident(princ_name) ":=" "Induction" "for" reference(fun_name) "Sort" sort(s) ] -> [ (princ_name,fun_name,s) ]
END
let warning_error names e =
let e = Cerrors.process_vernac_interp_error e in
match e with
| Building_graph e ->
Pp.msg_warning
(str "Cannot define graph(s) for " ++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Libnames.pr_reference names) ++
if do_observe () then (spc () ++ Errors.print e) else mt ())
| Defining_principle e ->
Pp.msg_warning
(str "Cannot define principle(s) for "++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Libnames.pr_reference names) ++
if do_observe () then Errors.print e else mt ())
| _ -> raise e
VERNAC COMMAND EXTEND NewFunctionalScheme
["Functional" "Scheme" ne_fun_scheme_arg_list_sep(fas,"with") ] ->
[
begin
try
Functional_principles_types.build_scheme fas
with Functional_principles_types.No_graph_found ->
begin
match fas with
| (_,fun_name,_)::_ ->
begin
begin
make_graph (Nametab.global fun_name)
end
;
try Functional_principles_types.build_scheme fas
with Functional_principles_types.No_graph_found ->
Util.error ("Cannot generate induction principle(s)")
| e when Errors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
| _ -> assert false (* we can only have non empty list *)
end
| e when Errors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
]
END
(***** debug only ***)
VERNAC COMMAND EXTEND NewFunctionalCase
["Functional" "Case" fun_scheme_arg(fas) ] ->
[
Functional_principles_types.build_case_scheme fas
]
END
(***** debug only ***)
VERNAC COMMAND EXTEND GenerateGraph
["Generate" "graph" "for" reference(c)] -> [ make_graph (Nametab.global c) ]
END
(* FINDUCTION *)
(* comment this line to see debug msgs *)
let msg x = () ;; let pr_lconstr c = str ""
(* uncomment this to see debugging *)
let prconstr c = msg (str" " ++ Printer.pr_lconstr c ++ str"\n")
let prlistconstr lc = List.iter prconstr lc
let prstr s = msg(str s)
let prNamedConstr s c =
begin
msg(str "");
msg(str(s^"==>\n ") ++ Printer.pr_lconstr c ++ str "\n<==\n");
msg(str "");
end
(** Information about an occurrence of a function call (application)
inside a term. *)
type fapp_info = {
fname: constr; (** The function applied *)
largs: constr list; (** List of arguments *)
free: bool; (** [true] if all arguments are debruijn free *)
max_rel: int; (** max debruijn index in the funcall *)
onlyvars: bool (** [true] if all arguments are variables (and not debruijn) *)
}
(** [constr_head_match(a b c) a] returns true, false otherwise. *)
let constr_head_match u t=
if isApp u
then
let uhd,args= destApp u in
uhd=t
else false
(** [hdMatchSub inu t] returns the list of occurrences of [t] in
[inu]. DeBruijn are not pushed, so some of them may be unbound in
the result. *)
let rec hdMatchSub inu (test: constr -> bool) : fapp_info list =
let subres =
match kind_of_term inu with
| Lambda (nm,tp,cstr) | Prod (nm,tp,cstr) ->
hdMatchSub tp test @ hdMatchSub (lift 1 cstr) test
| Fix (_,(lna,tl,bl)) -> (* not sure Fix is correct *)
Array.fold_left
(fun acc cstr -> acc @ hdMatchSub (lift (Array.length tl) cstr) test)
[] bl
| _ -> (* Cofix will be wrong *)
fold_constr
(fun l cstr ->
l @ hdMatchSub cstr test) [] inu in
if not (test inu) then subres
else
let f,args = decompose_app inu in
let freeset = Termops.free_rels inu in
let max_rel = try Util.Intset.max_elt freeset with Not_found -> -1 in
{fname = f; largs = args; free = Util.Intset.is_empty freeset;
max_rel = max_rel; onlyvars = List.for_all isVar args }
::subres
let mkEq typ c1 c2 =
mkApp (Coqlib.build_coq_eq(),[| typ; c1; c2|])
let poseq_unsafe idunsafe cstr gl =
let typ = Tacmach.pf_type_of gl cstr in
tclTHEN
(Tactics.letin_tac None (Name idunsafe) cstr None allHypsAndConcl)
(tclTHENFIRST
(Tactics.assert_tac Anonymous (mkEq typ (mkVar idunsafe) cstr))
Tactics.reflexivity)
gl
let poseq id cstr gl =
let x = Tactics.fresh_id [] id gl in
poseq_unsafe x cstr gl
(* dirty? *)
let list_constr_largs = ref []
let rec poseq_list_ids_rec lcstr gl =
match lcstr with
| [] -> tclIDTAC gl
| c::lcstr' ->
match kind_of_term c with
| Var _ ->
(list_constr_largs:=c::!list_constr_largs ; poseq_list_ids_rec lcstr' gl)
| _ ->
let _ = prstr "c = " in
let _ = prconstr c in
let _ = prstr "\n" in
let typ = Tacmach.pf_type_of gl c in
let cname = Namegen.id_of_name_using_hdchar (Global.env()) typ Anonymous in
let x = Tactics.fresh_id [] cname gl in
let _ = list_constr_largs:=mkVar x :: !list_constr_largs in
let _ = prstr " list_constr_largs = " in
let _ = prlistconstr !list_constr_largs in
let _ = prstr "\n" in
tclTHEN
(poseq_unsafe x c)
(poseq_list_ids_rec lcstr')
gl
let poseq_list_ids lcstr gl =
let _ = list_constr_largs := [] in
poseq_list_ids_rec lcstr gl
(** [find_fapp test g] returns the list of [app_info] of all calls to
functions that satisfy [test] in the conclusion of goal g. Trivial
repetition (not modulo conversion) are deleted. *)
let find_fapp (test:constr -> bool) g : fapp_info list =
let pre_res = hdMatchSub (Tacmach.pf_concl g) test in
let res =
List.fold_right (fun x acc -> if List.mem x acc then acc else x::acc) pre_res [] in
(prlistconstr (List.map (fun x -> applist (x.fname,x.largs)) res);
res)
(** [finduction id filter g] tries to apply functional induction on
an occurence of function [id] in the conclusion of goal [g]. If
[id]=[None] then calls to any function are selected. In any case
[heuristic] is used to select the most pertinent occurrence. *)
let finduction (oid:identifier option) (heuristic: fapp_info list -> fapp_info list)
(nexttac:Proof_type.tactic) g =
let test = match oid with
| Some id ->
let idconstr = mkConst (const_of_id id) in
(fun u -> constr_head_match u idconstr) (* select only id *)
| None -> (fun u -> isApp u) in (* select calls to any function *)
let info_list = find_fapp test g in
let ordered_info_list = heuristic info_list in
prlistconstr (List.map (fun x -> applist (x.fname,x.largs)) ordered_info_list);
if List.length ordered_info_list = 0 then Util.error "function not found in goal\n";
let taclist: Proof_type.tactic list =
List.map
(fun info ->
(tclTHEN
(tclTHEN (poseq_list_ids info.largs)
(
fun gl ->
(functional_induction
true (applist (info.fname, List.rev !list_constr_largs))
None None) gl))
nexttac)) ordered_info_list in
(* we try each (f t u v) until one does not fail *)
(* TODO: try also to mix functional schemes *)
tclFIRST taclist g
(** [chose_heuristic oi x] returns the heuristic for reordering
(and/or forgetting some elts of) a list of occurrences of
function calls infos to chose first with functional induction. *)
let chose_heuristic (oi:int option) : fapp_info list -> fapp_info list =
match oi with
| Some i -> (fun l -> [ List.nth l (i-1) ]) (* occurrence was given by the user *)
| None ->
(* Default heuristic: put first occurrences where all arguments
are *bound* (meaning already introduced) variables *)
let ordering x y =
if x.free && x.onlyvars && y.free && y.onlyvars then 0 (* both pertinent *)
else if x.free && x.onlyvars then -1
else if y.free && y.onlyvars then 1
else 0 (* both not pertinent *)
in
List.sort ordering
TACTIC EXTEND finduction
["finduction" ident(id) natural_opt(oi)] ->
[
match oi with
| Some(n) when n<=0 -> Util.error "numerical argument must be > 0"
| _ ->
let heuristic = chose_heuristic oi in
finduction (Some id) heuristic tclIDTAC
]
END
TACTIC EXTEND fauto
[ "fauto" tactic(tac)] ->
[
let heuristic = chose_heuristic None in
finduction None heuristic (Tacinterp.eval_tactic tac)
]
|
[ "fauto" ] ->
[
let heuristic = chose_heuristic None in
finduction None heuristic tclIDTAC
]
END
TACTIC EXTEND poseq
[ "poseq" ident(x) constr(c) ] ->
[ poseq x c ]
END
VERNAC COMMAND EXTEND Showindinfo
[ "showindinfo" ident(x) ] -> [ Merge.showind x ]
END
VERNAC COMMAND EXTEND MergeFunind
[ "Mergeschemes" "(" ident(id1) ne_ident_list(cl1) ")"
"with" "(" ident(id2) ne_ident_list(cl2) ")" "using" ident(id) ] ->
[
let f1 = Constrintern.interp_constr Evd.empty (Global.env())
(CRef (Libnames.Ident (Util.dummy_loc,id1))) in
let f2 = Constrintern.interp_constr Evd.empty (Global.env())
(CRef (Libnames.Ident (Util.dummy_loc,id2))) in
let f1type = Typing.type_of (Global.env()) Evd.empty f1 in
let f2type = Typing.type_of (Global.env()) Evd.empty f2 in
let ar1 = List.length (fst (decompose_prod f1type)) in
let ar2 = List.length (fst (decompose_prod f2type)) in
let _ =
if ar1 <> List.length cl1 then
Util.error ("not the right number of arguments for " ^ string_of_id id1) in
let _ =
if ar2 <> List.length cl2 then
Util.error ("not the right number of arguments for " ^ string_of_id id2) in
Merge.merge id1 id2 (Array.of_list cl1) (Array.of_list cl2) id
]
END
|