1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
open Names
open Pp
open Libnames
let mk_prefix pre id = id_of_string (pre^(string_of_id id))
let mk_rel_id = mk_prefix "R_"
let mk_correct_id id = Nameops.add_suffix (mk_rel_id id) "_correct"
let mk_complete_id id = Nameops.add_suffix (mk_rel_id id) "_complete"
let mk_equation_id id = Nameops.add_suffix id "_equation"
let msgnl m =
()
let invalid_argument s = raise (Invalid_argument s)
let fresh_id avoid s = Namegen.next_ident_away_in_goal (id_of_string s) avoid
let fresh_name avoid s = Name (fresh_id avoid s)
let get_name avoid ?(default="H") = function
| Anonymous -> fresh_name avoid default
| Name n -> Name n
let array_get_start a =
try
Array.init
(Array.length a - 1)
(fun i -> a.(i))
with Invalid_argument "index out of bounds" ->
invalid_argument "array_get_start"
let id_of_name = function
Name id -> id
| _ -> raise Not_found
let locate ref =
let (loc,qid) = qualid_of_reference ref in
Nametab.locate qid
let locate_ind ref =
match locate ref with
| IndRef x -> x
| _ -> raise Not_found
let locate_constant ref =
match locate ref with
| ConstRef x -> x
| _ -> raise Not_found
let locate_with_msg msg f x =
try
f x
with
| Not_found -> raise (Util.UserError("", msg))
let filter_map filter f =
let rec it = function
| [] -> []
| e::l ->
if filter e
then
(f e) :: it l
else it l
in
it
let chop_rlambda_n =
let rec chop_lambda_n acc n rt =
if n == 0
then List.rev acc,rt
else
match rt with
| Glob_term.GLambda(_,name,k,t,b) -> chop_lambda_n ((name,t,false)::acc) (n-1) b
| Glob_term.GLetIn(_,name,v,b) -> chop_lambda_n ((name,v,true)::acc) (n-1) b
| _ ->
raise (Util.UserError("chop_rlambda_n",
str "chop_rlambda_n: Not enough Lambdas"))
in
chop_lambda_n []
let chop_rprod_n =
let rec chop_prod_n acc n rt =
if n == 0
then List.rev acc,rt
else
match rt with
| Glob_term.GProd(_,name,k,t,b) -> chop_prod_n ((name,t)::acc) (n-1) b
| _ -> raise (Util.UserError("chop_rprod_n",str "chop_rprod_n: Not enough products"))
in
chop_prod_n []
let list_union_eq eq_fun l1 l2 =
let rec urec = function
| [] -> l2
| a::l -> if List.exists (eq_fun a) l2 then urec l else a::urec l
in
urec l1
let list_add_set_eq eq_fun x l =
if List.exists (eq_fun x) l then l else x::l
let const_of_id id =
let _,princ_ref =
qualid_of_reference (Libnames.Ident (Util.dummy_loc,id))
in
try Nametab.locate_constant princ_ref
with Not_found -> Util.error ("cannot find "^ string_of_id id)
let def_of_const t =
match (Term.kind_of_term t) with
Term.Const sp ->
(try (match Declarations.body_of_constant (Global.lookup_constant sp) with
| Some c -> Declarations.force c
| _ -> assert false)
with e when Errors.noncritical e -> assert false)
|_ -> assert false
let coq_constant s =
Coqlib.gen_constant_in_modules "RecursiveDefinition"
Coqlib.init_modules s;;
let constant sl s =
constr_of_global
(Nametab.locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let find_reference sl s =
(Nametab.locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let eq = lazy(coq_constant "eq")
let refl_equal = lazy(coq_constant "eq_refl")
(*****************************************************************)
(* Copy of the standart save mechanism but without the much too *)
(* slow reduction function *)
(*****************************************************************)
open Declarations
open Entries
open Decl_kinds
open Declare
let definition_message id =
Flags.if_verbose message ((string_of_id id) ^ " is defined")
let save with_clean id const (locality,kind) hook =
let {const_entry_body = pft;
const_entry_secctx = _;
const_entry_type = tpo;
const_entry_opaque = opacity } = const in
let l,r = match locality with
| Local when Lib.sections_are_opened () ->
let k = logical_kind_of_goal_kind kind in
let c = SectionLocalDef (pft, tpo, opacity) in
let _ = declare_variable id (Lib.cwd(), c, k) in
(Local, VarRef id)
| Local ->
let k = logical_kind_of_goal_kind kind in
let kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn)
| Global ->
let k = logical_kind_of_goal_kind kind in
let kn = declare_constant id (DefinitionEntry const, k) in
(Global, ConstRef kn) in
if with_clean then Pfedit.delete_current_proof ();
hook l r;
definition_message id
let cook_proof _ =
let (id,(entry,_,strength,hook)) = Pfedit.cook_proof (fun _ -> ()) in
(id,(entry,strength,hook))
let new_save_named opacity =
let id,(const,persistence,hook) = cook_proof true in
let const = { const with const_entry_opaque = opacity } in
save true id const persistence hook
let get_proof_clean do_reduce =
let result = cook_proof do_reduce in
Pfedit.delete_current_proof ();
result
let with_full_print f a =
let old_implicit_args = Impargs.is_implicit_args ()
and old_strict_implicit_args = Impargs.is_strict_implicit_args ()
and old_contextual_implicit_args = Impargs.is_contextual_implicit_args () in
let old_rawprint = !Flags.raw_print in
Flags.raw_print := true;
Impargs.make_implicit_args false;
Impargs.make_strict_implicit_args false;
Impargs.make_contextual_implicit_args false;
Impargs.make_contextual_implicit_args false;
Dumpglob.pause ();
try
let res = f a in
Impargs.make_implicit_args old_implicit_args;
Impargs.make_strict_implicit_args old_strict_implicit_args;
Impargs.make_contextual_implicit_args old_contextual_implicit_args;
Flags.raw_print := old_rawprint;
Dumpglob.continue ();
res
with
| reraise ->
Impargs.make_implicit_args old_implicit_args;
Impargs.make_strict_implicit_args old_strict_implicit_args;
Impargs.make_contextual_implicit_args old_contextual_implicit_args;
Flags.raw_print := old_rawprint;
Dumpglob.continue ();
raise reraise
(**********************)
type function_info =
{
function_constant : constant;
graph_ind : inductive;
equation_lemma : constant option;
correctness_lemma : constant option;
completeness_lemma : constant option;
rect_lemma : constant option;
rec_lemma : constant option;
prop_lemma : constant option;
is_general : bool; (* Has this function been defined using general recursive definition *)
}
(* type function_db = function_info list *)
(* let function_table = ref ([] : function_db) *)
let from_function = ref Cmap.empty
let from_graph = ref Indmap.empty
(*
let rec do_cache_info finfo = function
| [] -> raise Not_found
| (finfo'::finfos as l) ->
if finfo' == finfo then l
else if finfo'.function_constant = finfo.function_constant
then finfo::finfos
else
let res = do_cache_info finfo finfos in
if res == finfos then l else finfo'::l
let cache_Function (_,(finfos)) =
let new_tbl =
try do_cache_info finfos !function_table
with Not_found -> finfos::!function_table
in
if new_tbl != !function_table
then function_table := new_tbl
*)
let cache_Function (_,finfos) =
from_function := Cmap.add finfos.function_constant finfos !from_function;
from_graph := Indmap.add finfos.graph_ind finfos !from_graph
let load_Function _ = cache_Function
let open_Function _ = cache_Function
let subst_Function (subst,finfos) =
let do_subst_con c = fst (Mod_subst.subst_con subst c)
and do_subst_ind (kn,i) = (Mod_subst.subst_ind subst kn,i)
in
let function_constant' = do_subst_con finfos.function_constant in
let graph_ind' = do_subst_ind finfos.graph_ind in
let equation_lemma' = Option.smartmap do_subst_con finfos.equation_lemma in
let correctness_lemma' = Option.smartmap do_subst_con finfos.correctness_lemma in
let completeness_lemma' = Option.smartmap do_subst_con finfos.completeness_lemma in
let rect_lemma' = Option.smartmap do_subst_con finfos.rect_lemma in
let rec_lemma' = Option.smartmap do_subst_con finfos.rec_lemma in
let prop_lemma' = Option.smartmap do_subst_con finfos.prop_lemma in
if function_constant' == finfos.function_constant &&
graph_ind' == finfos.graph_ind &&
equation_lemma' == finfos.equation_lemma &&
correctness_lemma' == finfos.correctness_lemma &&
completeness_lemma' == finfos.completeness_lemma &&
rect_lemma' == finfos.rect_lemma &&
rec_lemma' == finfos.rec_lemma &&
prop_lemma' == finfos.prop_lemma
then finfos
else
{ function_constant = function_constant';
graph_ind = graph_ind';
equation_lemma = equation_lemma' ;
correctness_lemma = correctness_lemma' ;
completeness_lemma = completeness_lemma' ;
rect_lemma = rect_lemma' ;
rec_lemma = rec_lemma';
prop_lemma = prop_lemma';
is_general = finfos.is_general
}
let classify_Function infos = Libobject.Substitute infos
let discharge_Function (_,finfos) =
let function_constant' = Lib.discharge_con finfos.function_constant
and graph_ind' = Lib.discharge_inductive finfos.graph_ind
and equation_lemma' = Option.smartmap Lib.discharge_con finfos.equation_lemma
and correctness_lemma' = Option.smartmap Lib.discharge_con finfos.correctness_lemma
and completeness_lemma' = Option.smartmap Lib.discharge_con finfos.completeness_lemma
and rect_lemma' = Option.smartmap Lib.discharge_con finfos.rect_lemma
and rec_lemma' = Option.smartmap Lib.discharge_con finfos.rec_lemma
and prop_lemma' = Option.smartmap Lib.discharge_con finfos.prop_lemma
in
if function_constant' == finfos.function_constant &&
graph_ind' == finfos.graph_ind &&
equation_lemma' == finfos.equation_lemma &&
correctness_lemma' == finfos.correctness_lemma &&
completeness_lemma' == finfos.completeness_lemma &&
rect_lemma' == finfos.rect_lemma &&
rec_lemma' == finfos.rec_lemma &&
prop_lemma' == finfos.prop_lemma
then Some finfos
else
Some { function_constant = function_constant' ;
graph_ind = graph_ind' ;
equation_lemma = equation_lemma' ;
correctness_lemma = correctness_lemma' ;
completeness_lemma = completeness_lemma';
rect_lemma = rect_lemma';
rec_lemma = rec_lemma';
prop_lemma = prop_lemma' ;
is_general = finfos.is_general
}
open Term
let pr_info f_info =
str "function_constant := " ++ Printer.pr_lconstr (mkConst f_info.function_constant)++ fnl () ++
str "function_constant_type := " ++
(try Printer.pr_lconstr (Global.type_of_global (ConstRef f_info.function_constant))
with e when Errors.noncritical e -> mt ()) ++ fnl () ++
str "equation_lemma := " ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.equation_lemma (mt ()) ) ++ fnl () ++
str "completeness_lemma :=" ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.completeness_lemma (mt ()) ) ++ fnl () ++
str "correctness_lemma := " ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.correctness_lemma (mt ()) ) ++ fnl () ++
str "rect_lemma := " ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.rect_lemma (mt ()) ) ++ fnl () ++
str "rec_lemma := " ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.rec_lemma (mt ()) ) ++ fnl () ++
str "prop_lemma := " ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.prop_lemma (mt ()) ) ++ fnl () ++
str "graph_ind := " ++ Printer.pr_lconstr (mkInd f_info.graph_ind) ++ fnl ()
let pr_table tb =
let l = Cmap.fold (fun k v acc -> v::acc) tb [] in
Util.prlist_with_sep fnl pr_info l
let in_Function : function_info -> Libobject.obj =
Libobject.declare_object
{(Libobject.default_object "FUNCTIONS_DB") with
Libobject.cache_function = cache_Function;
Libobject.load_function = load_Function;
Libobject.classify_function = classify_Function;
Libobject.subst_function = subst_Function;
Libobject.discharge_function = discharge_Function
(* Libobject.open_function = open_Function; *)
}
(* Synchronisation with reset *)
let freeze () =
!from_function,!from_graph
let unfreeze (functions,graphs) =
(* Pp.msgnl (str "unfreezing function_table : " ++ pr_table l); *)
from_function := functions;
from_graph := graphs
let init () =
(* Pp.msgnl (str "reseting function_table"); *)
from_function := Cmap.empty;
from_graph := Indmap.empty
let _ =
Summary.declare_summary "functions_db_sum"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
let find_or_none id =
try Some
(match Nametab.locate (qualid_of_ident id) with ConstRef c -> c | _ -> Util.anomaly "Not a constant"
)
with Not_found -> None
let find_Function_infos f =
Cmap.find f !from_function
let find_Function_of_graph ind =
Indmap.find ind !from_graph
let update_Function finfo =
(* Pp.msgnl (pr_info finfo); *)
Lib.add_anonymous_leaf (in_Function finfo)
let add_Function is_general f =
let f_id = id_of_label (con_label f) in
let equation_lemma = find_or_none (mk_equation_id f_id)
and correctness_lemma = find_or_none (mk_correct_id f_id)
and completeness_lemma = find_or_none (mk_complete_id f_id)
and rect_lemma = find_or_none (Nameops.add_suffix f_id "_rect")
and rec_lemma = find_or_none (Nameops.add_suffix f_id "_rec")
and prop_lemma = find_or_none (Nameops.add_suffix f_id "_ind")
and graph_ind =
match Nametab.locate (qualid_of_ident (mk_rel_id f_id))
with | IndRef ind -> ind | _ -> Util.anomaly "Not an inductive"
in
let finfos =
{ function_constant = f;
equation_lemma = equation_lemma;
completeness_lemma = completeness_lemma;
correctness_lemma = correctness_lemma;
rect_lemma = rect_lemma;
rec_lemma = rec_lemma;
prop_lemma = prop_lemma;
graph_ind = graph_ind;
is_general = is_general
}
in
update_Function finfos
let pr_table () = pr_table !from_function
(*********************************)
(* Debuging *)
let functional_induction_rewrite_dependent_proofs = ref true
let function_debug = ref false
open Goptions
let functional_induction_rewrite_dependent_proofs_sig =
{
optsync = false;
optdepr = false;
optname = "Functional Induction Rewrite Dependent";
optkey = ["Functional";"Induction";"Rewrite";"Dependent"];
optread = (fun () -> !functional_induction_rewrite_dependent_proofs);
optwrite = (fun b -> functional_induction_rewrite_dependent_proofs := b)
}
let _ = declare_bool_option functional_induction_rewrite_dependent_proofs_sig
let do_rewrite_dependent () = !functional_induction_rewrite_dependent_proofs = true
let function_debug_sig =
{
optsync = false;
optdepr = false;
optname = "Function debug";
optkey = ["Function_debug"];
optread = (fun () -> !function_debug);
optwrite = (fun b -> function_debug := b)
}
let _ = declare_bool_option function_debug_sig
let do_observe () =
!function_debug = true
let strict_tcc = ref false
let is_strict_tcc () = !strict_tcc
let strict_tcc_sig =
{
optsync = false;
optdepr = false;
optname = "Raw Function Tcc";
optkey = ["Function_raw_tcc"];
optread = (fun () -> !strict_tcc);
optwrite = (fun b -> strict_tcc := b)
}
let _ = declare_bool_option strict_tcc_sig
exception Building_graph of exn
exception Defining_principle of exn
exception ToShow of exn
let init_constant dir s =
try
Coqlib.gen_constant "Function" dir s
with e when Errors.noncritical e -> raise (ToShow e)
let jmeq () =
try
(Coqlib.check_required_library ["Coq";"Logic";"JMeq"];
init_constant ["Logic";"JMeq"] "JMeq")
with e when Errors.noncritical e -> raise (ToShow e)
let jmeq_rec () =
try
Coqlib.check_required_library ["Coq";"Logic";"JMeq"];
init_constant ["Logic";"JMeq"] "JMeq_rec"
with e when Errors.noncritical e -> raise (ToShow e)
let jmeq_refl () =
try
Coqlib.check_required_library ["Coq";"Logic";"JMeq"];
init_constant ["Logic";"JMeq"] "JMeq_refl"
with e when Errors.noncritical e -> raise (ToShow e)
|