1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
open Term
open Namegen
open Environ
open Declarations
open Entries
open Pp
open Names
open Libnames
open Nameops
open Util
open Closure
open RedFlags
open Tacticals
open Typing
open Tacmach
open Tactics
open Nametab
open Decls
open Declare
open Decl_kinds
open Tacred
open Proof_type
open Vernacinterp
open Pfedit
open Topconstr
open Glob_term
open Pretyping
open Pretyping.Default
open Safe_typing
open Constrintern
open Hiddentac
open Equality
open Auto
open Eauto
open Genarg
let compute_renamed_type gls c =
rename_bound_vars_as_displayed (*no avoid*) [] (*no rels*) []
(pf_type_of gls c)
let qed () = Lemmas.save_named true
let defined () = Lemmas.save_named false
let pf_get_new_ids idl g =
let ids = pf_ids_of_hyps g in
List.fold_right
(fun id acc -> next_global_ident_away id (acc@ids)::acc)
idl
[]
let pf_get_new_id id g =
List.hd (pf_get_new_ids [id] g)
let h_intros l =
tclMAP h_intro l
let debug_queue = Stack.create ()
let rec print_debug_queue b e =
if not (Stack.is_empty debug_queue)
then
begin
let lmsg,goal = Stack.pop debug_queue in
if b then
msgnl (lmsg ++ (str " raised exception " ++ Errors.print e) ++ str " on goal " ++ goal)
else
begin
msgnl (str " from " ++ lmsg ++ str " on goal " ++ goal);
end;
print_debug_queue false e;
end
let do_observe_tac s tac g =
let goal = Printer.pr_goal g in
let lmsg = (str "recdef : ") ++ (str s) in
Stack.push (lmsg,goal) debug_queue;
try
let v = tac g in
ignore(Stack.pop debug_queue);
v
with reraise ->
if not (Stack.is_empty debug_queue)
then
print_debug_queue true reraise;
raise reraise
let observe_tac s tac g =
if Tacinterp.get_debug () <> Tactic_debug.DebugOff
then do_observe_tac s tac g
else tac g
let hyp_ids = List.map id_of_string
["x";"v";"k";"def";"p";"h";"n";"h'"; "anonymous"; "teq"; "rec_res";
"hspec";"heq"; "hrec"; "hex"; "teq"; "pmax";"hle"];;
let rec nthtl = function
l, 0 -> l | _::tl, n -> nthtl (tl, n-1) | [], _ -> [];;
let hyp_id n l = List.nth l n;;
let (x_id:identifier) = hyp_id 0 hyp_ids;;
let (v_id:identifier) = hyp_id 1 hyp_ids;;
let (k_id:identifier) = hyp_id 2 hyp_ids;;
let (def_id:identifier) = hyp_id 3 hyp_ids;;
let (p_id:identifier) = hyp_id 4 hyp_ids;;
let (h_id:identifier) = hyp_id 5 hyp_ids;;
let (n_id:identifier) = hyp_id 6 hyp_ids;;
let (h'_id:identifier) = hyp_id 7 hyp_ids;;
let (ano_id:identifier) = hyp_id 8 hyp_ids;;
let (rec_res_id:identifier) = hyp_id 10 hyp_ids;;
let (hspec_id:identifier) = hyp_id 11 hyp_ids;;
let (heq_id:identifier) = hyp_id 12 hyp_ids;;
let (hrec_id:identifier) = hyp_id 13 hyp_ids;;
let (hex_id:identifier) = hyp_id 14 hyp_ids;;
let (teq_id:identifier) = hyp_id 15 hyp_ids;;
let (pmax_id:identifier) = hyp_id 16 hyp_ids;;
let (hle_id:identifier) = hyp_id 17 hyp_ids;;
let message s = if Flags.is_verbose () then msgnl(str s);;
let def_of_const t =
match (kind_of_term t) with
Const sp ->
(try (match body_of_constant (Global.lookup_constant sp) with
| Some c -> Declarations.force c
| _ -> assert false)
with e when Errors.noncritical e ->
anomaly ("Cannot find definition of constant "^
(string_of_id (id_of_label (con_label sp))))
)
|_ -> assert false
let type_of_const t =
match (kind_of_term t) with
Const sp -> Typeops.type_of_constant (Global.env()) sp
|_ -> assert false
let arg_type t =
match kind_of_term (def_of_const t) with
Lambda(a,b,c) -> b
| _ -> assert false;;
let evaluable_of_global_reference r =
match r with
ConstRef sp -> EvalConstRef sp
| VarRef id -> EvalVarRef id
| _ -> assert false;;
let rank_for_arg_list h =
let predicate a b =
try List.for_all2 eq_constr a b with
Invalid_argument _ -> false in
let rec rank_aux i = function
| [] -> None
| x::tl -> if predicate h x then Some i else rank_aux (i+1) tl in
rank_aux 0;;
let rec check_not_nested f t =
match kind_of_term t with
| App(g, _) when eq_constr f g ->
errorlabstrm "recdef" (str "Nested recursive function are not allowed with Function")
| Var(_) when eq_constr t f -> errorlabstrm "recdef" (str "Nested recursive function are not allowed with Function")
| _ -> iter_constr (check_not_nested f) t
let rec (find_call_occs : int -> int -> constr -> constr ->
(constr list -> constr) * constr list list) =
fun nb_arg nb_lam f expr ->
match (kind_of_term expr) with
App (g, args) when eq_constr g f ->
if Array.length args <> nb_arg then errorlabstrm "recdef" (str "Partial application of function " ++ Printer.pr_lconstr expr ++ str " in its body is not allowed while using Function");
Array.iter (check_not_nested f) args;
(fun l -> List.hd l), [Array.to_list args]
| App (g, args) ->
let (largs: constr list) = Array.to_list args in
let rec find_aux = function
[] -> (fun x -> []), []
| a::upper_tl ->
(match find_aux upper_tl with
(cf, ((arg1::args) as args_for_upper_tl)) ->
(match find_call_occs nb_arg nb_lam f a with
cf2, (_ :: _ as other_args) ->
let rec avoid_duplicates args =
match args with
| [] -> (fun _ -> []), []
| h::tl ->
let recomb_tl, args_for_tl =
avoid_duplicates tl in
match rank_for_arg_list h args_for_upper_tl with
| None ->
(fun l -> List.hd l::recomb_tl(List.tl l)),
h::args_for_tl
| Some i ->
(fun l -> List.nth l (i+List.length args_for_tl)::
recomb_tl l),
args_for_tl
in
let recombine, other_args' =
avoid_duplicates other_args in
let len1 = List.length other_args' in
(fun l -> cf2 (recombine l)::cf(nthtl(l,len1))),
other_args'@args_for_upper_tl
| _, [] -> (fun x -> a::cf x), args_for_upper_tl)
| _, [] ->
(match find_call_occs nb_arg nb_lam f a with
cf, (arg1::args) -> (fun l -> cf l::upper_tl), (arg1::args)
| _, [] -> (fun x -> a::upper_tl), [])) in
begin
match (find_aux largs) with
cf, [] -> (fun l -> mkApp(g, args)), []
| cf, args ->
(fun l -> mkApp (g, Array.of_list (cf l))), args
end
| Rel(v) -> if v > nb_lam then error "find_call_occs : Rel" else ((fun l -> expr),[])
| Var(_) when eq_constr expr f -> errorlabstrm "recdef" (str "Partial application of function " ++ Printer.pr_lconstr expr ++ str " in its body is not allowed while using Function")
| Var(id) -> (fun l -> expr), []
| Meta(_) -> error "Found a metavariable. Can not treat such a term"
| Evar(_) -> error "Found an evar. Can not treat such a term"
| Sort(_) -> (fun l -> expr), []
| Cast(b,_,_) -> find_call_occs nb_arg nb_lam f b
| Prod(na,t,b) ->
error "Found a product. Can not treat such a term"
| Lambda(na,t,b) ->
begin
match find_call_occs nb_arg (succ nb_lam) f b with
| _, [] -> (* Lambda are authorized as long as they do not contain
recursives calls *)
(fun l -> expr),[]
| _ -> error "Found a lambda which body contains a recursive call. Such terms are not allowed"
end
| LetIn(na,v,t,b) ->
begin
match find_call_occs nb_arg nb_lam f v, find_call_occs nb_arg (succ nb_lam) f b with
| (_,[]),(_,[]) ->
((fun l -> expr), [])
| (_,[]),(cf,(_::_ as l)) ->
((fun l -> mkLetIn(na,v,t,cf l)),l)
| (cf,(_::_ as l)),(_,[]) ->
((fun l -> mkLetIn(na,cf l,t,b)), l)
| _ -> error "Found a letin with recursive calls in both variable value and body. Such terms are not allowed."
end
| Const(_) -> (fun l -> expr), []
| Ind(_) -> (fun l -> expr), []
| Construct (_, _) -> (fun l -> expr), []
| Case(i,t,a,r) ->
(match find_call_occs nb_arg nb_lam f a with
cf, (arg1::args) -> (fun l -> mkCase(i, t, (cf l), r)),(arg1::args)
| _ -> (fun l -> expr),[])
| Fix(_) -> error "Found a local fixpoint. Can not treat such a term"
| CoFix(_) -> error "Found a local cofixpoint : CoFix";;
let coq_constant s =
Coqlib.gen_constant_in_modules "RecursiveDefinition"
(Coqlib.init_modules @ Coqlib.arith_modules) s;;
let coq_base_constant s =
Coqlib.gen_constant_in_modules "RecursiveDefinition"
(Coqlib.init_modules @ [["Coq";"Arith";"Le"];["Coq";"Arith";"Lt"]]) s;;
let constant sl s =
constr_of_global
(locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let find_reference sl s =
(locate (make_qualid(Names.make_dirpath
(List.map id_of_string (List.rev sl)))
(id_of_string s)));;
let le_lt_SS = function () -> (constant ["Recdef"] "le_lt_SS")
let le_lt_n_Sm = function () -> (coq_base_constant "le_lt_n_Sm")
let le_trans = function () -> (coq_base_constant "le_trans")
let le_lt_trans = function () -> (coq_base_constant "le_lt_trans")
let lt_S_n = function () -> (coq_base_constant "lt_S_n")
let le_n = function () -> (coq_base_constant "le_n")
let refl_equal = function () -> (coq_base_constant "eq_refl")
let eq = function () -> (coq_base_constant "eq")
let ex = function () -> (coq_base_constant "ex")
let coq_sig_ref = function () -> (find_reference ["Coq";"Init";"Specif"] "sig")
let coq_sig = function () -> (coq_base_constant "sig")
let coq_O = function () -> (coq_base_constant "O")
let coq_S = function () -> (coq_base_constant "S")
let gt_antirefl = function () -> (coq_constant "gt_irrefl")
let lt_n_O = function () -> (coq_base_constant "lt_n_O")
let lt_n_Sn = function () -> (coq_base_constant "lt_n_Sn")
let f_equal = function () -> (coq_constant "f_equal")
let well_founded_induction = function () -> (coq_constant "well_founded_induction")
let well_founded = function () -> (coq_constant "well_founded")
let acc_rel = function () -> (coq_constant "Acc")
let acc_inv_id = function () -> (coq_constant "Acc_inv")
let well_founded_ltof = function () -> (Coqlib.coq_constant "" ["Arith";"Wf_nat"] "well_founded_ltof")
let iter_ref = function () -> (try find_reference ["Recdef"] "iter" with Not_found -> error "module Recdef not loaded")
let max_ref = function () -> (find_reference ["Recdef"] "max")
let iter = function () -> (constr_of_global (delayed_force iter_ref))
let max_constr = function () -> (constr_of_global (delayed_force max_ref))
let ltof_ref = function () -> (find_reference ["Coq";"Arith";"Wf_nat"] "ltof")
let coq_conj = function () -> find_reference ["Coq";"Init";"Logic"] "conj"
(* These are specific to experiments in nat with lt as well_founded_relation, *)
(* but this should be made more general. *)
let nat = function () -> (coq_base_constant "nat")
let lt = function () -> (coq_base_constant "lt")
(* This is simply an implementation of the case_eq tactic. this code
should be replaced with the tactic defined in Ltac in Init/Tactics.v *)
let mkCaseEq a : tactic =
(fun g ->
let type_of_a = pf_type_of g a in
tclTHENLIST
[h_generalize [mkApp(delayed_force refl_equal, [| type_of_a; a|])];
(fun g2 ->
change_in_concl None
(pattern_occs [((false,[1]), a)] (pf_env g2) Evd.empty (pf_concl g2))
g2);
simplest_case a] g);;
(* This is like the previous one except that it also rewrite on all
hypotheses except the ones given in the first argument. All the
modified hypotheses are generalized in the process and should be
introduced back later; the result is the pair of the tactic and the
list of hypotheses that have been generalized and cleared. *)
let mkDestructEq :
identifier list -> constr -> goal sigma -> tactic * identifier list =
fun not_on_hyp expr g ->
let hyps = pf_hyps g in
let to_revert =
Util.map_succeed
(fun (id,_,t) ->
if List.mem id not_on_hyp || not (Termops.occur_term expr t)
then failwith "is_expr_context";
id) hyps in
let to_revert_constr = List.rev_map mkVar to_revert in
let type_of_expr = pf_type_of g expr in
let new_hyps = mkApp(delayed_force refl_equal, [|type_of_expr; expr|])::
to_revert_constr in
tclTHENLIST
[h_generalize new_hyps;
(fun g2 ->
change_in_concl None
(pattern_occs [((false,[1]), expr)] (pf_env g2) Evd.empty (pf_concl g2)) g2);
simplest_case expr], to_revert
let rec mk_intros_and_continue thin_intros (extra_eqn:bool)
cont_function (eqs:constr list) nb_lam (expr:constr) g =
observe_tac "mk_intros_and_continue" (
let finalize () = if extra_eqn then
let teq = pf_get_new_id teq_id g in
tclTHENLIST
[ h_intro teq;
thin thin_intros;
h_intros thin_intros;
tclMAP
(fun eq -> tclTRY (Equality.general_rewrite_in true Termops.all_occurrences true (* deps proofs also: *) true teq eq false))
(List.rev eqs);
(fun g1 ->
let ty_teq = pf_type_of g1 (mkVar teq) in
let teq_lhs,teq_rhs =
let _,args =
try destApp ty_teq
with e when Errors.noncritical e ->
Pp.msgnl (Printer.pr_goal g1 ++ fnl () ++ pr_id teq ++ str ":" ++ Printer.pr_lconstr ty_teq); assert false
in
args.(1),args.(2)
in
cont_function (mkVar teq::eqs) (Termops.replace_term teq_lhs teq_rhs expr) g1
)
]
else
tclTHENSEQ[
thin thin_intros;
h_intros thin_intros;
cont_function eqs expr
]
in
if nb_lam = 0
then finalize ()
else
match kind_of_term expr with
| Lambda (n, _, b) ->
let n1 =
match n with
Name x -> x
| Anonymous -> ano_id
in
let new_n = pf_get_new_id n1 g in
tclTHEN (h_intro new_n)
(mk_intros_and_continue thin_intros extra_eqn cont_function eqs
(pred nb_lam) (subst1 (mkVar new_n) b))
| _ ->
assert false) g
(* finalize () *)
let const_of_ref = function
ConstRef kn -> kn
| _ -> anomaly "ConstRef expected"
let simpl_iter clause =
reduce
(Lazy
{rBeta=true;rIota=true;rZeta= true; rDelta=false;
rConst = [ EvalConstRef (const_of_ref (delayed_force iter_ref))]})
(* (Simpl (Some ([],mkConst (const_of_ref (delayed_force iter_ref))))) *)
clause
(* The boolean value is_mes expresses that the termination is expressed
using a measure function instead of a well-founded relation. *)
let tclUSER tac is_mes l g =
let clear_tac =
match l with
| None -> h_clear true []
| Some l -> tclMAP (fun id -> tclTRY (h_clear false [id])) (List.rev l)
in
tclTHENSEQ
[
clear_tac;
if is_mes
then tclTHEN
(unfold_in_concl [(Termops.all_occurrences, evaluable_of_global_reference
(delayed_force ltof_ref))])
tac
else tac
]
g
let list_rewrite (rev:bool) (eqs: constr list) =
tclREPEAT
(List.fold_right
(fun eq i -> tclORELSE (rewriteLR eq) i)
(if rev then (List.rev eqs) else eqs) (tclFAIL 0 (mt())));;
let base_leaf_terminate (func:global_reference) eqs expr =
(* let _ = msgnl (str "entering base_leaf") in *)
(fun g ->
let k',h =
match pf_get_new_ids [k_id;h_id] g with
[k';h] -> k',h
| _ -> assert false
in
tclTHENLIST
[observe_tac "first split" (split (ImplicitBindings [expr]));
observe_tac "second split"
(split (ImplicitBindings [delayed_force coq_O]));
observe_tac "intro k" (h_intro k');
observe_tac "case on k"
(tclTHENS (simplest_case (mkVar k'))
[(tclTHEN (h_intro h)
(tclTHEN (simplest_elim (mkApp (delayed_force gt_antirefl,
[| delayed_force coq_O |])))
default_auto)); tclIDTAC ]);
intros;
simpl_iter onConcl;
unfold_constr func;
list_rewrite true eqs;
default_auto] g);;
(* La fonction est donnee en premier argument a la
fonctionnelle suivie d'autres Lambdas et de Case ...
Pour recuperer la fonction f a partir de la
fonctionnelle *)
let get_f foncl =
match (kind_of_term (def_of_const foncl)) with
Lambda (Name f, _, _) -> f
|_ -> error "la fonctionnelle est mal definie";;
let rec compute_le_proofs = function
[] -> assumption
| a::tl ->
tclORELSE assumption
(tclTHENS
(fun g ->
let le_trans = delayed_force le_trans in
let t_le_trans = compute_renamed_type g le_trans in
let m_id =
let _,_,t = destProd t_le_trans in
let na,_,_ = destProd t in
Nameops.out_name na
in
apply_with_bindings
(le_trans,
ExplicitBindings[dummy_loc,NamedHyp m_id,a])
g)
[compute_le_proofs tl;
tclORELSE (apply (delayed_force le_n)) assumption])
let make_lt_proof pmax le_proof =
tclTHENS
(fun g ->
let le_lt_trans = delayed_force le_lt_trans in
let t_le_lt_trans = compute_renamed_type g le_lt_trans in
let m_id =
let _,_,t = destProd t_le_lt_trans in
let na,_,_ = destProd t in
Nameops.out_name na
in
apply_with_bindings
(le_lt_trans,
ExplicitBindings[dummy_loc,NamedHyp m_id, pmax]) g)
[observe_tac "compute_le_proofs" (compute_le_proofs le_proof);
tclTHENLIST[observe_tac "lt_S_n" (apply (delayed_force lt_S_n)); default_full_auto]];;
let rec list_cond_rewrite k def pmax cond_eqs le_proofs =
match cond_eqs with
[] -> tclIDTAC
| eq::eqs ->
(fun g ->
let t_eq = compute_renamed_type g (mkVar eq) in
let k_id,def_id =
let k_na,_,t = destProd t_eq in
let _,_,t = destProd t in
let def_na,_,_ = destProd t in
Nameops.out_name k_na,Nameops.out_name def_na
in
tclTHENS
(general_rewrite_bindings false Termops.all_occurrences
(* dep proofs also: *) true true
(mkVar eq,
ExplicitBindings[dummy_loc, NamedHyp k_id, mkVar k;
dummy_loc, NamedHyp def_id, mkVar def]) false)
[list_cond_rewrite k def pmax eqs le_proofs;
observe_tac "make_lt_proof" (make_lt_proof pmax le_proofs)] g
)
let rec introduce_all_equalities func eqs values specs bound le_proofs
cond_eqs =
match specs with
[] ->
fun g ->
let ids = pf_ids_of_hyps g in
let s_max = mkApp(delayed_force coq_S, [|bound|]) in
let k = next_ident_away_in_goal k_id ids in
let ids = k::ids in
let h' = next_ident_away_in_goal (h'_id) ids in
let ids = h'::ids in
let def = next_ident_away_in_goal def_id ids in
tclTHENLIST
[observe_tac "introduce_all_equalities_final split" (split (ImplicitBindings [s_max]));
observe_tac "introduce_all_equalities_final intro k" (h_intro k);
tclTHENS
(observe_tac "introduce_all_equalities_final case k" (simplest_case (mkVar k)))
[
tclTHENLIST[h_intro h';
simplest_elim(mkApp(delayed_force lt_n_O,[|s_max|]));
default_full_auto];
tclIDTAC
];
observe_tac "clearing k " (clear [k]);
observe_tac "intros k h' def" (h_intros [k;h';def]);
observe_tac "simple_iter" (simpl_iter onConcl);
observe_tac "unfold functional"
(unfold_in_concl[((true,[1]),evaluable_of_global_reference func)]);
observe_tac "rewriting equations"
(list_rewrite true eqs);
observe_tac ("cond rewrite "^(string_of_id k)) (list_cond_rewrite k def bound cond_eqs le_proofs);
observe_tac "refl equal" (apply (delayed_force refl_equal))] g
| spec1::specs ->
fun g ->
let ids = Termops.ids_of_named_context (pf_hyps g) in
let p = next_ident_away_in_goal p_id ids in
let ids = p::ids in
let pmax = next_ident_away_in_goal pmax_id ids in
let ids = pmax::ids in
let hle1 = next_ident_away_in_goal hle_id ids in
let ids = hle1::ids in
let hle2 = next_ident_away_in_goal hle_id ids in
let ids = hle2::ids in
let heq = next_ident_away_in_goal heq_id ids in
tclTHENLIST
[simplest_elim (mkVar spec1);
list_rewrite true eqs;
h_intros [p; heq];
simplest_elim (mkApp(delayed_force max_constr, [| bound; mkVar p|]));
h_intros [pmax; hle1; hle2];
introduce_all_equalities func eqs values specs
(mkVar pmax) ((mkVar pmax)::le_proofs)
(heq::cond_eqs)] g;;
let string_match s =
if String.length s < 3 then failwith "string_match";
try
for i = 0 to 3 do
if String.get s i <> String.get "Acc_" i then failwith "string_match"
done;
with Invalid_argument _ -> failwith "string_match"
let retrieve_acc_var g =
(* Julien: I don't like this version .... *)
let hyps = pf_ids_of_hyps g in
map_succeed
(fun id -> string_match (string_of_id id);id)
hyps
let rec introduce_all_values concl_tac is_mes acc_inv func context_fn
eqs hrec args values specs =
(match args with
[] ->
tclTHENLIST
[observe_tac "split" (split(ImplicitBindings
[context_fn (List.map mkVar (List.rev values))]));
observe_tac "introduce_all_equalities" (introduce_all_equalities func eqs
(List.rev values) (List.rev specs) (delayed_force coq_O) [] [])]
| arg::args ->
(fun g ->
let ids = Termops.ids_of_named_context (pf_hyps g) in
let rec_res = next_ident_away_in_goal rec_res_id ids in
let ids = rec_res::ids in
let hspec = next_ident_away_in_goal hspec_id ids in
let tac =
observe_tac "introduce_all_values" (
introduce_all_values concl_tac is_mes acc_inv func context_fn eqs
hrec args
(rec_res::values)(hspec::specs)) in
(tclTHENS
(observe_tac "elim h_rec"
(simplest_elim (mkApp(mkVar hrec, Array.of_list arg)))
)
[tclTHENLIST [h_intros [rec_res; hspec];
tac];
(tclTHENS
(observe_tac "acc_inv" (apply (Lazy.force acc_inv)))
[(* tclTHEN (tclTRY(list_rewrite true eqs)) *)
(observe_tac "h_assumption" h_assumption)
;
tclTHENLIST
[
tclTRY(list_rewrite true eqs);
observe_tac "user proof"
(fun g ->
tclUSER
concl_tac
is_mes
(Some (hrec::hspec::(retrieve_acc_var g)@specs))
g
)
]
]
)
]) g)
)
let rec_leaf_terminate nb_arg f_constr concl_tac is_mes acc_inv hrec (func:global_reference) eqs expr =
match find_call_occs nb_arg 0 f_constr expr with
| context_fn, args ->
observe_tac "introduce_all_values"
(introduce_all_values concl_tac is_mes acc_inv func context_fn eqs hrec args [] [])
let proveterminate nb_arg rec_arg_id is_mes acc_inv (hrec:identifier)
(f_constr:constr) (func:global_reference) base_leaf rec_leaf =
let rec proveterminate (eqs:constr list) (expr:constr) =
try
(* let _ = msgnl (str "entering proveterminate") in *)
let v =
match (kind_of_term expr) with
Case (ci, t, a, l) ->
(match find_call_occs nb_arg 0 f_constr a with
_,[] ->
(fun g ->
let destruct_tac, rev_to_thin_intro =
mkDestructEq rec_arg_id a g in
tclTHENS destruct_tac
(list_map_i
(fun i -> mk_intros_and_continue
(List.rev rev_to_thin_intro)
true
proveterminate
eqs
ci.ci_cstr_ndecls.(i))
0 (Array.to_list l)) g)
| _, _::_ ->
(match find_call_occs nb_arg 0 f_constr expr with
_,[] -> observe_tac "base_leaf" (base_leaf func eqs expr)
| _, _:: _ ->
observe_tac "rec_leaf"
(rec_leaf is_mes acc_inv hrec func eqs expr)))
| _ ->
(match find_call_occs nb_arg 0 f_constr expr with
_,[] ->
(try observe_tac "base_leaf" (base_leaf func eqs expr)
with reraise ->
(msgerrnl (str "failure in base case");raise reraise ))
| _, _::_ ->
observe_tac "rec_leaf"
(rec_leaf is_mes acc_inv hrec func eqs expr)) in
v
with reraise ->
begin
msgerrnl(str "failure in proveterminate");
raise reraise
end
in
proveterminate
let hyp_terminates nb_args func =
let a_arrow_b = arg_type (constr_of_global func) in
let rev_args,b = decompose_prod_n nb_args a_arrow_b in
let left =
mkApp(delayed_force iter,
Array.of_list
(lift 5 a_arrow_b:: mkRel 3::
constr_of_global func::mkRel 1::
List.rev (list_map_i (fun i _ -> mkRel (6+i)) 0 rev_args)
)
)
in
let right = mkRel 5 in
let equality = mkApp(delayed_force eq, [|lift 5 b; left; right|]) in
let result = (mkProd ((Name def_id) , lift 4 a_arrow_b, equality)) in
let cond = mkApp(delayed_force lt, [|(mkRel 2); (mkRel 1)|]) in
let nb_iter =
mkApp(delayed_force ex,
[|delayed_force nat;
(mkLambda
(Name
p_id,
delayed_force nat,
(mkProd (Name k_id, delayed_force nat,
mkArrow cond result))))|])in
let value = mkApp(delayed_force coq_sig,
[|b;
(mkLambda (Name v_id, b, nb_iter))|]) in
compose_prod rev_args value
let tclUSER_if_not_mes concl_tac is_mes names_to_suppress =
if is_mes
then tclCOMPLETE (h_simplest_apply (delayed_force well_founded_ltof))
else tclUSER concl_tac is_mes names_to_suppress
let termination_proof_header is_mes input_type ids args_id relation
rec_arg_num rec_arg_id tac wf_tac : tactic =
begin
fun g ->
let nargs = List.length args_id in
let pre_rec_args =
List.rev_map
mkVar (fst (list_chop (rec_arg_num - 1) args_id))
in
let relation = substl pre_rec_args relation in
let input_type = substl pre_rec_args input_type in
let wf_thm = next_ident_away_in_goal (id_of_string ("wf_R")) ids in
let wf_rec_arg =
next_ident_away_in_goal
(id_of_string ("Acc_"^(string_of_id rec_arg_id)))
(wf_thm::ids)
in
let hrec = next_ident_away_in_goal hrec_id
(wf_rec_arg::wf_thm::ids) in
let acc_inv =
lazy (
mkApp (
delayed_force acc_inv_id,
[|input_type;relation;mkVar rec_arg_id|]
)
)
in
tclTHEN
(h_intros args_id)
(tclTHENS
(observe_tac
"first assert"
(assert_tac
(Name wf_rec_arg)
(mkApp (delayed_force acc_rel,
[|input_type;relation;mkVar rec_arg_id|])
)
)
)
[
(* accesibility proof *)
tclTHENS
(observe_tac
"second assert"
(assert_tac
(Name wf_thm)
(mkApp (delayed_force well_founded,[|input_type;relation|]))
)
)
[
(* interactive proof that the relation is well_founded *)
observe_tac "wf_tac" (wf_tac is_mes (Some args_id));
(* this gives the accessibility argument *)
observe_tac
"apply wf_thm"
(h_simplest_apply (mkApp(mkVar wf_thm,[|mkVar rec_arg_id|]))
)
]
;
(* rest of the proof *)
tclTHENSEQ
[observe_tac "generalize"
(onNLastHypsId (nargs+1)
(tclMAP (fun id ->
tclTHEN (h_generalize [mkVar id]) (h_clear false [id]))
))
;
observe_tac "h_fix" (h_fix (Some hrec) (nargs+1));
h_intros args_id;
h_intro wf_rec_arg;
observe_tac "tac" (tac wf_rec_arg hrec acc_inv)
]
]
) g
end
let rec instantiate_lambda t l =
match l with
| [] -> t
| a::l ->
let (bound_name, _, body) = destLambda t in
instantiate_lambda (subst1 a body) l
;;
let whole_start (concl_tac:tactic) nb_args is_mes func input_type relation rec_arg_num : tactic =
begin
fun g ->
let ids = Termops.ids_of_named_context (pf_hyps g) in
let func_body = (def_of_const (constr_of_global func)) in
let (f_name, _, body1) = destLambda func_body in
let f_id =
match f_name with
| Name f_id -> next_ident_away_in_goal f_id ids
| Anonymous -> anomaly "Anonymous function"
in
let n_names_types,_ = decompose_lam_n nb_args body1 in
let n_ids,ids =
List.fold_left
(fun (n_ids,ids) (n_name,_) ->
match n_name with
| Name id ->
let n_id = next_ident_away_in_goal id ids in
n_id::n_ids,n_id::ids
| _ -> anomaly "anonymous argument"
)
([],(f_id::ids))
n_names_types
in
let rec_arg_id = List.nth n_ids (rec_arg_num - 1) in
let expr = instantiate_lambda func_body (mkVar f_id::(List.map mkVar n_ids)) in
termination_proof_header
is_mes
input_type
ids
n_ids
relation
rec_arg_num
rec_arg_id
(fun rec_arg_id hrec acc_inv g ->
(proveterminate
nb_args
[rec_arg_id]
is_mes
acc_inv
hrec
(mkVar f_id)
func
base_leaf_terminate
(rec_leaf_terminate nb_args (mkVar f_id) concl_tac)
[]
expr
)
g
)
(tclUSER_if_not_mes concl_tac)
g
end
let get_current_subgoals_types () =
let p = Proof_global.give_me_the_proof () in
let { Evd.it=sgs ; sigma=sigma } = Proof.V82.subgoals p in
List.map (Goal.V82.abstract_type sigma) sgs
let build_and_l l =
let and_constr = Coqlib.build_coq_and () in
let conj_constr = coq_conj () in
let mk_and p1 p2 =
Term.mkApp(and_constr,[|p1;p2|]) in
let rec is_well_founded t =
match kind_of_term t with
| Prod(_,_,t') -> is_well_founded t'
| App(_,_) ->
let (f,_) = decompose_app t in
eq_constr f (well_founded ())
| _ -> false
in
let compare t1 t2 =
let b1,b2= is_well_founded t1,is_well_founded t2 in
if (b1&&b2) || not (b1 || b2) then 0
else if b1 && not b2 then 1 else -1
in
let l = List.sort compare l in
let rec f = function
| [] -> failwith "empty list of subgoals!"
| [p] -> p,tclIDTAC,1
| p1::pl ->
let c,tac,nb = f pl in
mk_and p1 c,
tclTHENS
(apply (constr_of_global conj_constr))
[tclIDTAC;
tac
],nb+1
in f l
let is_rec_res id =
let rec_res_name = string_of_id rec_res_id in
let id_name = string_of_id id in
try
String.sub id_name 0 (String.length rec_res_name) = rec_res_name
with e when Errors.noncritical e -> false
let clear_goals =
let rec clear_goal t =
match kind_of_term t with
| Prod(Name id as na,t',b) ->
let b' = clear_goal b in
if noccurn 1 b' && (is_rec_res id)
then Termops.pop b'
else if b' == b then t
else mkProd(na,t',b')
| _ -> map_constr clear_goal t
in
List.map clear_goal
let build_new_goal_type () =
let sub_gls_types = get_current_subgoals_types () in
(* Pp.msgnl (str "sub_gls_types1 := " ++ Util.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *)
let sub_gls_types = clear_goals sub_gls_types in
(* Pp.msgnl (str "sub_gls_types2 := " ++ Util.prlist_with_sep (fun () -> Pp.fnl () ++ Pp.fnl ()) Printer.pr_lconstr sub_gls_types); *)
let res = build_and_l sub_gls_types in
res
let is_opaque_constant c =
let cb = Global.lookup_constant c in
match cb.Declarations.const_body with
| Declarations.OpaqueDef _ -> true
| Declarations.Undef _ -> true
| Declarations.Def _ -> false
let open_new_goal (build_proof:tactic -> tactic -> unit) using_lemmas ref_ goal_name (gls_type,decompose_and_tac,nb_goal) =
(* Pp.msgnl (str "gls_type := " ++ Printer.pr_lconstr gls_type); *)
let current_proof_name = get_current_proof_name () in
let name = match goal_name with
| Some s -> s
| None ->
try (add_suffix current_proof_name "_subproof")
with e when Errors.noncritical e ->
anomaly "open_new_goal with an unamed theorem"
in
let sign = initialize_named_context_for_proof () in
let na = next_global_ident_away name [] in
if Termops.occur_existential gls_type then
Util.error "\"abstract\" cannot handle existentials";
let hook _ _ =
let opacity =
let na_ref = Libnames.Ident (dummy_loc,na) in
let na_global = Nametab.global na_ref in
match na_global with
ConstRef c -> is_opaque_constant c
| _ -> anomaly "equation_lemma: not a constant"
in
let lemma = mkConst (Lib.make_con na) in
ref_ := Some lemma ;
let lid = ref [] in
let h_num = ref (-1) in
Flags.silently Vernacentries.interp (Vernacexpr.VernacAbort None);
build_proof
( fun gls ->
let hid = next_ident_away_in_goal h_id (pf_ids_of_hyps gls) in
tclTHENSEQ
[
h_generalize [lemma];
h_intro hid;
(fun g ->
let ids = pf_ids_of_hyps g in
tclTHEN
(Elim.h_decompose_and (mkVar hid))
(fun g ->
let ids' = pf_ids_of_hyps g in
lid := List.rev (list_subtract ids' ids);
if !lid = [] then lid := [hid];
tclIDTAC g
)
g
);
] gls)
(fun g ->
match kind_of_term (pf_concl g) with
| App(f,_) when eq_constr f (well_founded ()) ->
Auto.h_auto None [] (Some []) g
| _ ->
incr h_num;
(observe_tac "finishing using"
(
tclCOMPLETE(
tclFIRST[
tclTHEN
(eapply_with_bindings (mkVar (List.nth !lid !h_num), NoBindings))
e_assumption;
Eauto.eauto_with_bases
(true,5)
[Evd.empty,delayed_force refl_equal]
[Auto.Hint_db.empty empty_transparent_state false]
]
)
)
)
g)
;
Lemmas.save_named opacity;
in
start_proof
na
(Decl_kinds.Global, Decl_kinds.Proof Decl_kinds.Lemma)
sign
gls_type
hook ;
if Indfun_common.is_strict_tcc ()
then
by (tclIDTAC)
else
begin
by (
fun g ->
tclTHEN
(decompose_and_tac)
(tclORELSE
(tclFIRST
(List.map
(fun c ->
tclTHENSEQ
[intros;
h_simplest_apply (interp_constr Evd.empty (Global.env()) c);
tclCOMPLETE Auto.default_auto
]
)
using_lemmas)
) tclIDTAC)
g)
end;
try
by tclIDTAC; (* raises UserError _ if the proof is complete *)
if Flags.is_verbose () then (pp (Printer.pr_open_subgoals()))
with UserError _ ->
defined ()
;;
let com_terminate
tcc_lemma_name
tcc_lemma_ref
is_mes
fonctional_ref
input_type
relation
rec_arg_num
thm_name using_lemmas
nb_args
hook =
let start_proof (tac_start:tactic) (tac_end:tactic) =
let (evmap, env) = Lemmas.get_current_context() in
start_proof thm_name
(Global, Proof Lemma) (Environ.named_context_val env)
(hyp_terminates nb_args fonctional_ref) hook;
by (observe_tac "starting_tac" tac_start);
by (observe_tac "whole_start" (whole_start tac_end nb_args is_mes fonctional_ref
input_type relation rec_arg_num ))
in
start_proof tclIDTAC tclIDTAC;
try
let new_goal_type = build_new_goal_type () in
open_new_goal start_proof using_lemmas tcc_lemma_ref
(Some tcc_lemma_name)
(new_goal_type);
with Failure "empty list of subgoals!" ->
(* a non recursive function declared with measure ! *)
defined ()
let ind_of_ref = function
| IndRef (ind,i) -> (ind,i)
| _ -> anomaly "IndRef expected"
let (value_f:constr list -> global_reference -> constr) =
fun al fterm ->
let d0 = dummy_loc in
let rev_x_id_l =
(
List.fold_left
(fun x_id_l _ ->
let x_id = next_ident_away_in_goal x_id x_id_l in
x_id::x_id_l
)
[]
al
)
in
let context = List.map
(fun (x, c) -> Name x, None, c) (List.combine rev_x_id_l (List.rev al))
in
let env = Environ.push_rel_context context (Global.env ()) in
let glob_body =
GCases
(d0,RegularStyle,None,
[GApp(d0, GRef(d0,fterm), List.rev_map (fun x_id -> GVar(d0, x_id)) rev_x_id_l),
(Anonymous,None)],
[d0, [v_id], [PatCstr(d0,(ind_of_ref
(delayed_force coq_sig_ref),1),
[PatVar(d0, Name v_id);
PatVar(d0, Anonymous)],
Anonymous)],
GVar(d0,v_id)])
in
let body = understand Evd.empty env glob_body in
it_mkLambda_or_LetIn body context
let (declare_fun : identifier -> logical_kind -> constr -> global_reference) =
fun f_id kind value ->
let ce = {const_entry_body = value;
const_entry_secctx = None;
const_entry_type = None;
const_entry_opaque = false } in
ConstRef(declare_constant f_id (DefinitionEntry ce, kind));;
let (declare_f : identifier -> logical_kind -> constr list -> global_reference -> global_reference) =
fun f_id kind input_type fterm_ref ->
declare_fun f_id kind (value_f input_type fterm_ref);;
let rec n_x_id ids n =
if n = 0 then []
else let x = next_ident_away_in_goal x_id ids in
x::n_x_id (x::ids) (n-1);;
let start_equation (f:global_reference) (term_f:global_reference)
(cont_tactic:identifier list -> tactic) g =
let ids = pf_ids_of_hyps g in
let terminate_constr = constr_of_global term_f in
let nargs = nb_prod (type_of_const terminate_constr) in
let x = n_x_id ids nargs in
tclTHENLIST [
h_intros x;
unfold_in_concl [(Termops.all_occurrences, evaluable_of_global_reference f)];
observe_tac "simplest_case"
(simplest_case (mkApp (terminate_constr,
Array.of_list (List.map mkVar x))));
observe_tac "prove_eq" (cont_tactic x)] g;;
let base_leaf_eq func eqs f_id g =
let ids = pf_ids_of_hyps g in
let k = next_ident_away_in_goal k_id ids in
let p = next_ident_away_in_goal p_id (k::ids) in
let v = next_ident_away_in_goal v_id (p::k::ids) in
let heq = next_ident_away_in_goal heq_id (v::p::k::ids) in
let heq1 = next_ident_away_in_goal heq_id (heq::v::p::k::ids) in
let hex = next_ident_away_in_goal hex_id (heq1::heq::v::p::k::ids) in
tclTHENLIST [
h_intros [v; hex];
simplest_elim (mkVar hex);
h_intros [p;heq1];
tclTRY
(rewriteRL
(mkApp(mkVar heq1,
[|mkApp (delayed_force coq_S, [|mkVar p|]);
mkApp(delayed_force lt_n_Sn, [|mkVar p|]); f_id|])));
simpl_iter onConcl;
tclTRY (unfold_in_concl [((true,[1]), evaluable_of_global_reference func)]);
observe_tac "list_revrite" (list_rewrite true eqs);
apply (delayed_force refl_equal)] g;;
let f_S t = mkApp(delayed_force coq_S, [|t|]);;
let rec introduce_all_values_eq cont_tac functional termine
f p heq1 pmax bounds le_proofs eqs ids =
function
[] ->
let heq2 = next_ident_away_in_goal heq_id ids in
tclTHENLIST
[pose_proof (Name heq2)
(mkApp(mkVar heq1, [|f_S(f_S(mkVar pmax))|]));
simpl_iter (onHyp heq2);
unfold_in_hyp [((true,[1]), evaluable_of_global_reference
(global_of_constr functional))]
(heq2, Termops.InHyp);
tclTHENS
(fun gls ->
let t_eq = compute_renamed_type gls (mkVar heq2) in
let def_id =
let _,_,t = destProd t_eq in let def_na,_,_ = destProd t in
Nameops.out_name def_na
in
observe_tac "rewrite heq" (general_rewrite_bindings false Termops.all_occurrences
true (* dep proofs also: *) true (mkVar heq2,
ExplicitBindings[dummy_loc,NamedHyp def_id,
f]) false) gls)
[tclTHENLIST
[observe_tac "list_rewrite" (list_rewrite true eqs);
cont_tac pmax le_proofs];
tclTHENLIST[apply (delayed_force le_lt_SS);
compute_le_proofs le_proofs]]]
| arg::args ->
let v' = next_ident_away_in_goal v_id ids in
let ids = v'::ids in
let hex' = next_ident_away_in_goal hex_id ids in
let ids = hex'::ids in
let p' = next_ident_away_in_goal p_id ids in
let ids = p'::ids in
let new_pmax = next_ident_away_in_goal pmax_id ids in
let ids = pmax::ids in
let hle1 = next_ident_away_in_goal hle_id ids in
let ids = hle1::ids in
let hle2 = next_ident_away_in_goal hle_id ids in
let ids = hle2::ids in
let heq = next_ident_away_in_goal heq_id ids in
let ids = heq::ids in
let heq2 = next_ident_away_in_goal heq_id ids in
let ids = heq2::ids in
tclTHENLIST
[mkCaseEq(mkApp(termine, Array.of_list arg));
h_intros [v'; hex'];
simplest_elim(mkVar hex');
h_intros [p'];
simplest_elim(mkApp(delayed_force max_constr, [|mkVar pmax;
mkVar p'|]));
h_intros [new_pmax;hle1;hle2];
introduce_all_values_eq
(fun pmax' le_proofs'->
tclTHENLIST
[cont_tac pmax' le_proofs';
h_intros [heq;heq2];
observe_tac ("rewriteRL " ^ (string_of_id heq2))
(tclTRY (rewriteLR (mkVar heq2)));
tclTRY (tclTHENS
( fun g ->
let t_eq = compute_renamed_type g (mkVar heq) in
let k_id,def_id =
let k_na,_,t = destProd t_eq in
let _,_,t = destProd t in
let def_na,_,_ = destProd t in
Nameops.out_name k_na,Nameops.out_name def_na
in
let c_b = (mkVar heq,
ExplicitBindings
[dummy_loc, NamedHyp k_id,
f_S(mkVar pmax');
dummy_loc, NamedHyp def_id, f])
in
observe_tac "general_rewrite_bindings" ( (general_rewrite_bindings false Termops.all_occurrences true (* dep proofs also: *) true
c_b false))
g
)
[tclIDTAC;
tclTHENLIST
[apply (delayed_force le_lt_n_Sm);
compute_le_proofs le_proofs']])])
functional termine f p heq1 new_pmax
(p'::bounds)((mkVar pmax)::le_proofs) eqs
(heq2::heq::hle2::hle1::new_pmax::p'::hex'::v'::ids) args]
let rec_leaf_eq termine f ids functional eqs expr fn args =
let p = next_ident_away_in_goal p_id ids in
let ids = p::ids in
let v = next_ident_away_in_goal v_id ids in
let ids = v::ids in
let hex = next_ident_away_in_goal hex_id ids in
let ids = hex::ids in
let heq1 = next_ident_away_in_goal heq_id ids in
let ids = heq1::ids in
let hle1 = next_ident_away_in_goal hle_id ids in
let ids = hle1::ids in
tclTHENLIST
[observe_tac "intros v hex" (h_intros [v;hex]);
simplest_elim (mkVar hex);
h_intros [p;heq1];
h_generalize [mkApp(delayed_force le_n,[|mkVar p|])];
h_intros [hle1];
observe_tac "introduce_all_values_eq" (introduce_all_values_eq
(fun _ _ -> tclIDTAC)
functional termine f p heq1 p [] [] eqs ids args);
observe_tac "failing here" (apply (delayed_force refl_equal))]
let rec prove_eq nb_arg (termine:constr) (f:constr)(functional:global_reference)
(eqs:constr list) (expr:constr) =
(* tclTRY *)
observe_tac "prove_eq" (match kind_of_term expr with
Case(ci,t,a,l) ->
(match find_call_occs nb_arg 0 f a with
_,[] ->
(fun g ->
let destruct_tac,rev_to_thin_intro = mkDestructEq [] a g in
tclTHENS
destruct_tac
(list_map_i
(fun i -> mk_intros_and_continue
(List.rev rev_to_thin_intro) true
(prove_eq nb_arg termine f functional)
eqs ci.ci_cstr_ndecls.(i))
0 (Array.to_list l)) g)
| _,_::_ ->
(match find_call_occs nb_arg 0 f expr with
_,[] -> observe_tac "base_leaf_eq(1)" (base_leaf_eq functional eqs f)
| fn,args ->
fun g ->
let ids = Termops.ids_of_named_context (pf_hyps g) in
observe_tac "rec_leaf_eq" (rec_leaf_eq termine f ids
(constr_of_global functional)
eqs expr fn args) g))
| _ ->
(match find_call_occs nb_arg 0 f expr with
_,[] -> observe_tac "base_leaf_eq(2)" ( base_leaf_eq functional eqs f)
| fn,args ->
fun g ->
let ids = Termops.ids_of_named_context (pf_hyps g) in
observe_tac "rec_leaf_eq" (rec_leaf_eq
termine f ids (constr_of_global functional)
eqs expr fn args) g));;
let (com_eqn : int -> identifier ->
global_reference -> global_reference -> global_reference
-> constr -> unit) =
fun nb_arg eq_name functional_ref f_ref terminate_ref equation_lemma_type ->
let opacity =
match terminate_ref with
| ConstRef c -> is_opaque_constant c
| _ -> anomaly "terminate_lemma: not a constant"
in
let (evmap, env) = Lemmas.get_current_context() in
let f_constr = (constr_of_global f_ref) in
let equation_lemma_type = subst1 f_constr equation_lemma_type in
(start_proof eq_name (Global, Proof Lemma)
(Environ.named_context_val env) equation_lemma_type (fun _ _ -> ());
by
(start_equation f_ref terminate_ref
(fun x ->
prove_eq nb_arg
(constr_of_global terminate_ref)
f_constr
functional_ref
[]
(instantiate_lambda
(def_of_const (constr_of_global functional_ref))
(f_constr::List.map mkVar x)
)
)
);
(* (try Vernacentries.interp (Vernacexpr.VernacShow Vernacexpr.ShowProof) with _ -> ()); *)
(* Vernacentries.interp (Vernacexpr.VernacShow Vernacexpr.ShowScript); *)
Flags.silently (fun () -> Lemmas.save_named opacity) () ;
(* Pp.msgnl (str "eqn finished"); *)
);;
let nf_zeta env =
Reductionops.clos_norm_flags (Closure.RedFlags.mkflags [Closure.RedFlags.fZETA])
env
Evd.empty
let nf_betaiotazeta = (* Reductionops.local_strong Reductionops.whd_betaiotazeta *)
let clos_norm_flags flgs env sigma t =
Closure.norm_val (Closure.create_clos_infos flgs env) (Closure.inject (Reductionops.nf_evar sigma t)) in
clos_norm_flags Closure.betaiotazeta Environ.empty_env Evd.empty
let recursive_definition is_mes function_name rec_impls type_of_f r rec_arg_num eq
generate_induction_principle using_lemmas : unit =
let previous_label = Lib.current_command_label () in
let function_type = interp_constr Evd.empty (Global.env()) type_of_f in
let env = push_named (function_name,None,function_type) (Global.env()) in
(* Pp.msgnl (str "function type := " ++ Printer.pr_lconstr function_type); *)
let equation_lemma_type =
nf_betaiotazeta
(interp_gen (OfType None) Evd.empty env ~impls:rec_impls eq)
in
(* Pp.msgnl (str "lemma type := " ++ Printer.pr_lconstr equation_lemma_type ++ fnl ()); *)
let res_vars,eq' = decompose_prod equation_lemma_type in
let env_eq' = Environ.push_rel_context (List.map (fun (x,y) -> (x,None,y)) res_vars) env in
let eq' = nf_zeta env_eq' eq' in
let res =
(* Pp.msgnl (str "res_var :=" ++ Printer.pr_lconstr_env (push_rel_context (List.map (function (x,t) -> (x,None,t)) res_vars) env) eq'); *)
(* Pp.msgnl (str "rec_arg_num := " ++ str (string_of_int rec_arg_num)); *)
(* Pp.msgnl (str "eq' := " ++ str (string_of_int rec_arg_num)); *)
match kind_of_term eq' with
| App(e,[|_;_;eq_fix|]) ->
mkLambda (Name function_name,function_type,subst_var function_name (compose_lam res_vars eq_fix))
| _ -> failwith "Recursive Definition (res not eq)"
in
let pre_rec_args,function_type_before_rec_arg = decompose_prod_n (rec_arg_num - 1) function_type in
let (_, rec_arg_type, _) = destProd function_type_before_rec_arg in
let arg_types = List.rev_map snd (fst (decompose_prod_n (List.length res_vars) function_type)) in
let equation_id = add_suffix function_name "_equation" in
let functional_id = add_suffix function_name "_F" in
let term_id = add_suffix function_name "_terminate" in
let functional_ref = declare_fun functional_id (IsDefinition Decl_kinds.Definition) res in
let env_with_pre_rec_args = push_rel_context(List.map (function (x,t) -> (x,None,t)) pre_rec_args) env in
let relation =
interp_constr
Evd.empty
env_with_pre_rec_args
r
in
let tcc_lemma_name = add_suffix function_name "_tcc" in
let tcc_lemma_constr = ref None in
(* let _ = Pp.msgnl (str "relation := " ++ Printer.pr_lconstr_env env_with_pre_rec_args relation) in *)
let hook _ _ =
let term_ref = Nametab.locate (qualid_of_ident term_id) in
let f_ref = declare_f function_name (IsProof Lemma) arg_types term_ref in
let _ = Table.extraction_inline true [Ident (dummy_loc,term_id)] in
(* message "start second proof"; *)
let stop = ref false in
begin
try com_eqn (List.length res_vars) equation_id functional_ref f_ref term_ref (subst_var function_name equation_lemma_type)
with e when Errors.noncritical e ->
begin
if Tacinterp.get_debug () <> Tactic_debug.DebugOff
then pperrnl (str "Cannot create equation Lemma " ++ Errors.print e)
else anomaly "Cannot create equation Lemma"
;
stop := true;
end
end;
if not !stop
then
let eq_ref = Nametab.locate (qualid_of_ident equation_id ) in
let f_ref = destConst (constr_of_global f_ref)
and functional_ref = destConst (constr_of_global functional_ref)
and eq_ref = destConst (constr_of_global eq_ref) in
generate_induction_principle f_ref tcc_lemma_constr
functional_ref eq_ref rec_arg_num rec_arg_type (nb_prod res) relation;
if Flags.is_verbose ()
then msgnl (h 1 (Ppconstr.pr_id function_name ++
spc () ++ str"is defined" )++ fnl () ++
h 1 (Ppconstr.pr_id equation_id ++
spc () ++ str"is defined" )
)
in
try
com_terminate
tcc_lemma_name
tcc_lemma_constr
is_mes functional_ref
rec_arg_type
relation rec_arg_num
term_id
using_lemmas
(List.length res_vars)
hook
with reraise ->
begin
(try ignore (Backtrack.backto previous_label)
with e when Errors.noncritical e -> ());
(* anomaly "Cannot create termination Lemma" *)
raise reraise
end
|