1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
Require Import QArith.
Require Import Qfield.
Require Setoid.
(*Declare ML Module "micromega_plugin".*)
Definition Rsrt : ring_theory R0 R1 Rplus Rmult Rminus Ropp (@eq R).
Proof.
constructor.
exact Rplus_0_l.
exact Rplus_comm.
intros. rewrite Rplus_assoc. auto.
exact Rmult_1_l.
exact Rmult_comm.
intros ; rewrite Rmult_assoc ; auto.
intros. rewrite Rmult_comm. rewrite Rmult_plus_distr_l.
rewrite (Rmult_comm z). rewrite (Rmult_comm z). auto.
reflexivity.
exact Rplus_opp_r.
Qed.
Add Ring Rring : Rsrt.
Open Scope R_scope.
Lemma Rmult_neutral : forall x:R , 0 * x = 0.
Proof.
intro ; ring.
Qed.
Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle Rlt.
Proof.
constructor; intros ; subst ; try (intuition (subst; try ring ; auto with real)).
constructor.
constructor.
unfold RelationClasses.Symmetric. auto.
unfold RelationClasses.Transitive. intros. subst. reflexivity.
apply Rsrt.
eapply Rle_trans ; eauto.
apply (Rlt_irrefl m) ; auto.
apply Rnot_le_lt. auto with real.
destruct (total_order_T n m) as [ [H1 | H1] | H1] ; auto.
intros.
rewrite <- (Rmult_neutral m).
apply (Rmult_lt_compat_r) ; auto.
Qed.
Definition IQR := fun x : Q => (IZR (Qnum x) * / IZR (' Qden x))%R.
Lemma Rinv_elim : forall x y z,
y <> 0 -> (z * y = x <-> x * / y = z).
Proof.
intros.
split ; intros.
subst.
rewrite Rmult_assoc.
rewrite Rinv_r; auto.
ring.
subst.
rewrite Rmult_assoc.
rewrite (Rmult_comm (/ y)).
rewrite Rinv_r ; auto.
ring.
Qed.
Ltac INR_nat_of_P :=
match goal with
| H : context[INR (Pos.to_nat ?X)] |- _ =>
revert H ;
let HH := fresh in
assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
| |- context[INR (Pos.to_nat ?X)] =>
let HH := fresh in
assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
end.
Ltac add_eq expr val := set (temp := expr) ;
generalize (eq_refl temp) ;
unfold temp at 1 ; generalize temp ; intro val ; clear temp.
Ltac Rinv_elim :=
match goal with
| |- context[?x * / ?y] =>
let z := fresh "v" in
add_eq (x * / y) z ;
let H := fresh in intro H ; rewrite <- Rinv_elim in H
end.
Lemma Rlt_neq : forall r , 0 < r -> r <> 0.
Proof.
red. intros.
subst.
apply (Rlt_irrefl 0 H).
Qed.
Lemma Rinv_1 : forall x, x * / 1 = x.
Proof.
intro.
Rinv_elim.
subst ; ring.
apply R1_neq_R0.
Qed.
Lemma Qeq_true : forall x y,
Qeq_bool x y = true ->
IQR x = IQR y.
Proof.
unfold IQR.
simpl.
intros.
apply Qeq_bool_eq in H.
unfold Qeq in H.
assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z.
rewrite H. reflexivity.
repeat rewrite mult_IZR in H0.
simpl in H0.
revert H0.
repeat INR_nat_of_P.
intros.
apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto].
rewrite <- H2.
field.
split ; apply Rlt_neq ; auto.
Qed.
Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
Proof.
intros.
apply Qeq_bool_neq in H.
intro. apply H. clear H.
unfold Qeq,IQR in *.
simpl in *.
revert H0.
repeat Rinv_elim.
intros.
subst.
assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z).
repeat rewrite mult_IZR.
simpl.
rewrite <- H0. rewrite <- H.
ring.
apply eq_IZR ; auto.
INR_nat_of_P; intros; apply Rlt_neq ; auto.
INR_nat_of_P; intros ; apply Rlt_neq ; auto.
Qed.
Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
Proof.
intros.
apply Qle_bool_imp_le in H.
unfold Qle in H.
unfold IQR.
simpl in *.
apply IZR_le in H.
repeat rewrite mult_IZR in H.
simpl in H.
repeat INR_nat_of_P; intros.
assert (Hr := Rlt_neq r H).
assert (Hr0 := Rlt_neq r0 H0).
replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)).
replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)).
apply Rmult_le_compat_r ; auto.
apply Rmult_le_pos.
unfold Rle. left. apply Rinv_0_lt_compat ; auto.
unfold Rle. left. apply Rinv_0_lt_compat ; auto.
field ; intuition.
field ; intuition.
Qed.
Lemma IQR_0 : IQR 0 = 0.
Proof.
compute. apply Rinv_1.
Qed.
Lemma IQR_1 : IQR 1 = 1.
Proof.
compute. apply Rinv_1.
Qed.
Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y.
Proof.
intros.
unfold IQR.
simpl in *.
rewrite plus_IZR in *.
rewrite mult_IZR in *.
simpl.
rewrite Pos2Nat.inj_mul.
rewrite mult_INR.
rewrite mult_IZR.
simpl.
repeat INR_nat_of_P.
intros. field.
split ; apply Rlt_neq ; auto.
Qed.
Lemma IQR_opp : forall x, IQR (- x) = - IQR x.
Proof.
intros.
unfold IQR.
simpl.
rewrite opp_IZR.
ring.
Qed.
Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y.
Proof.
intros.
unfold Qminus.
rewrite IQR_plus.
rewrite IQR_opp.
ring.
Qed.
Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y.
Proof.
unfold IQR ; intros.
simpl.
repeat rewrite mult_IZR.
simpl.
rewrite Pos2Nat.inj_mul.
rewrite mult_INR.
repeat INR_nat_of_P.
intros. field ; split ; apply Rlt_neq ; auto.
Qed.
Lemma IQR_inv_lt : forall x, (0 < x)%Q ->
IQR (/ x) = / IQR x.
Proof.
unfold IQR ; simpl.
intros.
unfold Qlt in H.
revert H.
simpl.
intros.
unfold Qinv.
destruct x ; simpl in *.
destruct Qnum ; simpl.
exfalso. auto with zarith.
clear H.
repeat INR_nat_of_P.
intros.
assert (HH := Rlt_neq _ H).
assert (HH0 := Rlt_neq _ H0).
rewrite Rinv_mult_distr ; auto.
rewrite Rinv_involutive ; auto.
ring.
apply Rinv_0_lt_compat in H0.
apply Rlt_neq ; auto.
simpl in H.
exfalso.
rewrite Pos.mul_comm in H.
compute in H.
discriminate.
Qed.
Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q.
Proof.
destruct x ; destruct Qnum ; reflexivity.
Qed.
Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q.
Proof.
intros.
destruct x.
unfold Qopp.
simpl.
rewrite Z.opp_involutive.
reflexivity.
Qed.
Lemma Ropp_0 : forall r , - r = 0 -> r = 0.
Proof.
intros.
rewrite <- (Ropp_involutive r).
apply Ropp_eq_0_compat ; auto.
Qed.
Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q.
Proof.
destruct x ; simpl.
unfold IQR.
simpl.
INR_nat_of_P.
intros.
apply Rmult_integral in H0.
destruct H0.
apply eq_IZR_R0 in H0.
subst.
reflexivity.
exfalso.
apply Rinv_0_lt_compat in H.
rewrite <- H0 in H.
apply Rlt_irrefl in H. auto.
Qed.
Lemma IQR_inv_gt : forall x, (0 > x)%Q ->
IQR (/ x) = / IQR x.
Proof.
intros.
rewrite <- (Qopp_involutive_strong x).
rewrite <- Qinv_opp.
rewrite IQR_opp.
rewrite IQR_inv_lt.
repeat rewrite IQR_opp.
rewrite Ropp_inv_permute.
auto.
intro.
apply Ropp_0 in H0.
apply IQR_x_0 in H0.
rewrite H0 in H.
compute in H. discriminate.
unfold Qlt in *.
destruct x ; simpl in *.
auto with zarith.
Qed.
Lemma IQR_inv : forall x, ~ x == 0 ->
IQR (/ x) = / IQR x.
Proof.
intros.
assert ( 0 > x \/ 0 < x)%Q.
destruct x ; unfold Qlt, Qeq in * ; simpl in *.
rewrite Z.mul_1_r in *.
destruct Qnum ; simpl in * ; intuition auto.
right. reflexivity.
left ; reflexivity.
destruct H0.
apply IQR_inv_gt ; auto.
apply IQR_inv_lt ; auto.
Qed.
Lemma IQR_inv_ext : forall x,
IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
Proof.
intros.
case_eq (Qeq_bool x 0).
intros.
apply Qeq_bool_eq in H.
destruct x ; simpl.
unfold Qeq in H.
simpl in H.
replace Qnum with 0%Z.
compute. rewrite Rinv_1.
reflexivity.
rewrite <- H. ring.
intros.
apply IQR_inv.
intro.
rewrite <- Qeq_bool_iff in H0.
congruence.
Qed.
Notation to_nat := N.to_nat.
Lemma QSORaddon :
@SORaddon R
R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle (* ring elements *)
Q 0%Q 1%Q Qplus Qmult Qminus Qopp (* coefficients *)
Qeq_bool Qle_bool
IQR nat to_nat pow.
Proof.
constructor.
constructor ; intros ; try reflexivity.
apply IQR_0.
apply IQR_1.
apply IQR_plus.
apply IQR_minus.
apply IQR_mult.
apply IQR_opp.
apply Qeq_true ; auto.
apply R_power_theory.
apply Qeq_false.
apply Qle_true.
Qed.
(* Syntactic ring coefficients.
For computing, we use Q. *)
Inductive Rcst :=
| C0
| C1
| CQ (r : Q)
| CZ (r : Z)
| CPlus (r1 r2 : Rcst)
| CMinus (r1 r2 : Rcst)
| CMult (r1 r2 : Rcst)
| CInv (r : Rcst)
| COpp (r : Rcst).
Fixpoint Q_of_Rcst (r : Rcst) : Q :=
match r with
| C0 => 0 # 1
| C1 => 1 # 1
| CZ z => z # 1
| CQ q => q
| CPlus r1 r2 => Qplus (Q_of_Rcst r1) (Q_of_Rcst r2)
| CMinus r1 r2 => Qminus (Q_of_Rcst r1) (Q_of_Rcst r2)
| CMult r1 r2 => Qmult (Q_of_Rcst r1) (Q_of_Rcst r2)
| CInv r => Qinv (Q_of_Rcst r)
| COpp r => Qopp (Q_of_Rcst r)
end.
Fixpoint R_of_Rcst (r : Rcst) : R :=
match r with
| C0 => R0
| C1 => R1
| CZ z => IZR z
| CQ q => IQR q
| CPlus r1 r2 => (R_of_Rcst r1) + (R_of_Rcst r2)
| CMinus r1 r2 => (R_of_Rcst r1) - (R_of_Rcst r2)
| CMult r1 r2 => (R_of_Rcst r1) * (R_of_Rcst r2)
| CInv r =>
if Qeq_bool (Q_of_Rcst r) (0 # 1)
then R0
else Rinv (R_of_Rcst r)
| COpp r => - (R_of_Rcst r)
end.
Lemma Q_of_RcstR : forall c, IQR (Q_of_Rcst c) = R_of_Rcst c.
Proof.
induction c ; simpl ; try (rewrite <- IHc1 ; rewrite <- IHc2).
apply IQR_0.
apply IQR_1.
reflexivity.
unfold IQR. simpl. rewrite Rinv_1. reflexivity.
apply IQR_plus.
apply IQR_minus.
apply IQR_mult.
rewrite <- IHc.
apply IQR_inv_ext.
rewrite <- IHc.
apply IQR_opp.
Qed.
Require Import EnvRing.
Definition INZ (n:N) : R :=
match n with
| N0 => IZR 0%Z
| Npos p => IZR (Zpos p)
end.
Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst N.to_nat pow.
Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
match o with
| OpEq => @eq R
| OpNEq => fun x y => ~ x = y
| OpLe => Rle
| OpGe => Rge
| OpLt => Rlt
| OpGt => Rgt
end.
Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) :=
let (lhs,o,rhs) := ff in Reval_op2 o (Reval_expr e lhs) (Reval_expr e rhs).
Definition Reval_formula' :=
eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt N.to_nat pow R_of_Rcst.
Definition QReval_formula :=
eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR N.to_nat pow .
Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f.
Proof.
intros.
unfold Reval_formula.
destruct f.
unfold Reval_formula'.
unfold Reval_expr.
split ; destruct Fop ; simpl ; auto.
apply Rge_le.
apply Rle_ge.
Qed.
Definition Qeval_nformula :=
eval_nformula 0 Rplus Rmult (@eq R) Rle Rlt IQR.
Lemma Reval_nformula_dec : forall env d, (Qeval_nformula env d) \/ ~ (Qeval_nformula env d).
Proof.
exact (fun env d =>eval_nformula_dec Rsor IQR env d).
Qed.
Definition RWitness := Psatz Q.
Definition RWeakChecker := check_normalised_formulas 0%Q 1%Q Qplus Qmult Qeq_bool Qle_bool.
Require Import List.
Lemma RWeakChecker_sound : forall (l : list (NFormula Q)) (cm : RWitness),
RWeakChecker l cm = true ->
forall env, make_impl (Qeval_nformula env) l False.
Proof.
intros l cm H.
intro.
unfold Qeval_nformula.
apply (checker_nf_sound Rsor QSORaddon l cm).
unfold RWeakChecker in H.
exact H.
Qed.
Require Import Tauto.
Definition Rnormalise := @cnf_normalise Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
Definition Rnegate := @cnf_negate Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
Definition runsat := check_inconsistent 0%Q Qeq_bool Qle_bool.
Definition rdeduce := nformula_plus_nformula 0%Q Qplus Qeq_bool.
Definition RTautoChecker (f : BFormula (Formula Rcst)) (w: list RWitness) : bool :=
@tauto_checker (Formula Q) (NFormula Q)
runsat rdeduce
Rnormalise Rnegate
RWitness RWeakChecker (map_bformula (map_Formula Q_of_Rcst) f) w.
Lemma RTautoChecker_sound : forall f w, RTautoChecker f w = true -> forall env, eval_f (Reval_formula env) f.
Proof.
intros f w.
unfold RTautoChecker.
intros TC env.
apply (tauto_checker_sound QReval_formula Qeval_nformula) with (env := env) in TC.
rewrite eval_f_map in TC.
rewrite eval_f_morph with (ev':= Reval_formula env) in TC ; auto.
intro.
unfold QReval_formula.
rewrite <- eval_formulaSC with (phiS := R_of_Rcst).
rewrite Reval_formula_compat.
tauto.
intro. rewrite Q_of_RcstR. reflexivity.
apply Reval_nformula_dec.
destruct t.
apply (check_inconsistent_sound Rsor QSORaddon) ; auto.
unfold rdeduce. apply (nformula_plus_nformula_correct Rsor QSORaddon).
now apply (cnf_normalise_correct Rsor QSORaddon).
intros. now apply (cnf_negate_correct Rsor QSORaddon).
intros t w0.
apply RWeakChecker_sound.
Qed.
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|