1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
Require Import NArith.
Require Import Relation_Definitions.
Require Import Setoid.
(*****)
Require Import Env.
Require Import EnvRing.
(*****)
Require Import List.
Require Import Bool.
Require Import OrderedRing.
Require Import Refl.
Set Implicit Arguments.
Import OrderedRingSyntax.
Section Micromega.
(* Assume we have a strict(ly?) ordered ring *)
Variable R : Type.
Variables rO rI : R.
Variables rplus rtimes rminus: R -> R -> R.
Variable ropp : R -> R.
Variables req rle rlt : R -> R -> Prop.
Variable sor : SOR rO rI rplus rtimes rminus ropp req rle rlt.
Notation "0" := rO.
Notation "1" := rI.
Notation "x + y" := (rplus x y).
Notation "x * y " := (rtimes x y).
Notation "x - y " := (rminus x y).
Notation "- x" := (ropp x).
Notation "x == y" := (req x y).
Notation "x ~= y" := (~ req x y).
Notation "x <= y" := (rle x y).
Notation "x < y" := (rlt x y).
(* Assume we have a type of coefficients C and a morphism from C to R *)
Variable C : Type.
Variables cO cI : C.
Variables cplus ctimes cminus: C -> C -> C.
Variable copp : C -> C.
Variables ceqb cleb : C -> C -> bool.
Variable phi : C -> R.
(* Power coefficients *)
Variable E : Set. (* the type of exponents *)
Variable pow_phi : N -> E.
Variable rpow : R -> E -> R.
Notation "[ x ]" := (phi x).
Notation "x [=] y" := (ceqb x y).
Notation "x [<=] y" := (cleb x y).
(* Let's collect all hypotheses in addition to the ordered ring axioms into
one structure *)
Record SORaddon := mk_SOR_addon {
SORrm : ring_morph 0 1 rplus rtimes rminus ropp req cO cI cplus ctimes cminus copp ceqb phi;
SORpower : power_theory rI rtimes req pow_phi rpow;
SORcneqb_morph : forall x y : C, x [=] y = false -> [x] ~= [y];
SORcleb_morph : forall x y : C, x [<=] y = true -> [x] <= [y]
}.
Variable addon : SORaddon.
Add Relation R req
reflexivity proved by sor.(SORsetoid).(@Equivalence_Reflexive _ _ )
symmetry proved by sor.(SORsetoid).(@Equivalence_Symmetric _ _ )
transitivity proved by sor.(SORsetoid).(@Equivalence_Transitive _ _ )
as micomega_sor_setoid.
Add Morphism rplus with signature req ==> req ==> req as rplus_morph.
Proof.
exact sor.(SORplus_wd).
Qed.
Add Morphism rtimes with signature req ==> req ==> req as rtimes_morph.
Proof.
exact sor.(SORtimes_wd).
Qed.
Add Morphism ropp with signature req ==> req as ropp_morph.
Proof.
exact sor.(SORopp_wd).
Qed.
Add Morphism rle with signature req ==> req ==> iff as rle_morph.
Proof.
exact sor.(SORle_wd).
Qed.
Add Morphism rlt with signature req ==> req ==> iff as rlt_morph.
Proof.
exact sor.(SORlt_wd).
Qed.
Add Morphism rminus with signature req ==> req ==> req as rminus_morph.
Proof.
exact (rminus_morph sor). (* We already proved that minus is a morphism in OrderedRing.v *)
Qed.
Definition cneqb (x y : C) := negb (ceqb x y).
Definition cltb (x y : C) := (cleb x y) && (cneqb x y).
Notation "x [~=] y" := (cneqb x y).
Notation "x [<] y" := (cltb x y).
Ltac le_less := rewrite (Rle_lt_eq sor); left; try assumption.
Ltac le_equal := rewrite (Rle_lt_eq sor); right; try reflexivity; try assumption.
Ltac le_elim H := rewrite (Rle_lt_eq sor) in H; destruct H as [H | H].
Lemma cleb_sound : forall x y : C, x [<=] y = true -> [x] <= [y].
Proof.
exact addon.(SORcleb_morph).
Qed.
Lemma cneqb_sound : forall x y : C, x [~=] y = true -> [x] ~= [y].
Proof.
intros x y H1. apply addon.(SORcneqb_morph). unfold cneqb, negb in H1.
destruct (ceqb x y); now try discriminate.
Qed.
Lemma cltb_sound : forall x y : C, x [<] y = true -> [x] < [y].
Proof.
intros x y H. unfold cltb in H. apply andb_prop in H. destruct H as [H1 H2].
apply cleb_sound in H1. apply cneqb_sound in H2. apply <- (Rlt_le_neq sor). now split.
Qed.
(* Begin Micromega *)
Definition PolC := Pol C. (* polynomials in generalized Horner form, defined in Ring_polynom or EnvRing *)
Definition PolEnv := Env R. (* For interpreting PolC *)
Definition eval_pol (env : PolEnv) (p:PolC) : R :=
Pphi rplus rtimes phi env p.
Inductive Op1 : Set := (* relations with 0 *)
| Equal (* == 0 *)
| NonEqual (* ~= 0 *)
| Strict (* > 0 *)
| NonStrict (* >= 0 *).
Definition NFormula := (PolC * Op1)%type. (* normalized formula *)
Definition eval_op1 (o : Op1) : R -> Prop :=
match o with
| Equal => fun x => x == 0
| NonEqual => fun x : R => x ~= 0
| Strict => fun x : R => 0 < x
| NonStrict => fun x : R => 0 <= x
end.
Definition eval_nformula (env : PolEnv) (f : NFormula) : Prop :=
let (p, op) := f in eval_op1 op (eval_pol env p).
(** Rule of "signs" for addition and multiplication.
An arbitrary result is coded buy None. *)
Definition OpMult (o o' : Op1) : option Op1 :=
match o with
| Equal => Some Equal
| NonStrict =>
match o' with
| Equal => Some Equal
| NonEqual => None
| Strict => Some NonStrict
| NonStrict => Some NonStrict
end
| Strict => match o' with
| NonEqual => None
| _ => Some o'
end
| NonEqual => match o' with
| Equal => Some Equal
| NonEqual => Some NonEqual
| _ => None
end
end.
Definition OpAdd (o o': Op1) : option Op1 :=
match o with
| Equal => Some o'
| NonStrict =>
match o' with
| Strict => Some Strict
| NonEqual => None
| _ => Some NonStrict
end
| Strict => match o' with
| NonEqual => None
| _ => Some Strict
end
| NonEqual => match o' with
| Equal => Some NonEqual
| _ => None
end
end.
Lemma OpMult_sound :
forall (o o' om: Op1) (x y : R),
eval_op1 o x -> eval_op1 o' y -> OpMult o o' = Some om -> eval_op1 om (x * y).
Proof.
unfold eval_op1; destruct o; simpl; intros o' om x y H1 H2 H3.
(* x == 0 *)
inversion H3. rewrite H1. now rewrite (Rtimes_0_l sor).
(* x ~= 0 *)
destruct o' ; inversion H3.
(* y == 0 *)
rewrite H2. now rewrite (Rtimes_0_r sor).
(* y ~= 0 *)
apply (Rtimes_neq_0 sor) ; auto.
(* 0 < x *)
destruct o' ; inversion H3.
(* y == 0 *)
rewrite H2; now rewrite (Rtimes_0_r sor).
(* 0 < y *)
now apply (Rtimes_pos_pos sor).
(* 0 <= y *)
apply (Rtimes_nonneg_nonneg sor); [le_less | assumption].
(* 0 <= x *)
destruct o' ; inversion H3.
(* y == 0 *)
rewrite H2; now rewrite (Rtimes_0_r sor).
(* 0 < y *)
apply (Rtimes_nonneg_nonneg sor); [assumption | le_less ].
(* 0 <= y *)
now apply (Rtimes_nonneg_nonneg sor).
Qed.
Lemma OpAdd_sound :
forall (o o' oa : Op1) (e e' : R),
eval_op1 o e -> eval_op1 o' e' -> OpAdd o o' = Some oa -> eval_op1 oa (e + e').
Proof.
unfold eval_op1; destruct o; simpl; intros o' oa e e' H1 H2 Hoa.
(* e == 0 *)
inversion Hoa. rewrite <- H0.
destruct o' ; rewrite H1 ; now rewrite (Rplus_0_l sor).
(* e ~= 0 *)
destruct o'.
(* e' == 0 *)
inversion Hoa.
rewrite H2. now rewrite (Rplus_0_r sor).
(* e' ~= 0 *)
discriminate.
(* 0 < e' *)
discriminate.
(* 0 <= e' *)
discriminate.
(* 0 < e *)
destruct o'.
(* e' == 0 *)
inversion Hoa.
rewrite H2. now rewrite (Rplus_0_r sor).
(* e' ~= 0 *)
discriminate.
(* 0 < e' *)
inversion Hoa.
now apply (Rplus_pos_pos sor).
(* 0 <= e' *)
inversion Hoa.
now apply (Rplus_pos_nonneg sor).
(* 0 <= e *)
destruct o'.
(* e' == 0 *)
inversion Hoa.
now rewrite H2, (Rplus_0_r sor).
(* e' ~= 0 *)
discriminate.
(* 0 < e' *)
inversion Hoa.
now apply (Rplus_nonneg_pos sor).
(* 0 <= e' *)
inversion Hoa.
now apply (Rplus_nonneg_nonneg sor).
Qed.
Inductive Psatz : Type :=
| PsatzIn : nat -> Psatz
| PsatzSquare : PolC -> Psatz
| PsatzMulC : PolC -> Psatz -> Psatz
| PsatzMulE : Psatz -> Psatz -> Psatz
| PsatzAdd : Psatz -> Psatz -> Psatz
| PsatzC : C -> Psatz
| PsatzZ : Psatz.
(** Given a list [l] of NFormula and an extended polynomial expression
[e], if [eval_Psatz l e] succeeds (= Some f) then [f] is a
logic consequence of the conjunction of the formulae in l.
Moreover, the polynomial expression is obtained by replacing the (PsatzIn n)
by the nth polynomial expression in [l] and the sign is computed by the "rule of sign" *)
(* Might be defined elsewhere *)
Definition map_option (A B:Type) (f : A -> option B) (o : option A) : option B :=
match o with
| None => None
| Some x => f x
end.
Arguments map_option [A B] f o.
Definition map_option2 (A B C : Type) (f : A -> B -> option C)
(o: option A) (o': option B) : option C :=
match o , o' with
| None , _ => None
| _ , None => None
| Some x , Some x' => f x x'
end.
Arguments map_option2 [A B C] f o o'.
Definition Rops_wd := mk_reqe (*rplus rtimes ropp req*)
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd).
Definition pexpr_times_nformula (e: PolC) (f : NFormula) : option NFormula :=
let (ef,o) := f in
match o with
| Equal => Some (Pmul cO cI cplus ctimes ceqb e ef , Equal)
| _ => None
end.
Definition nformula_times_nformula (f1 f2 : NFormula) : option NFormula :=
let (e1,o1) := f1 in
let (e2,o2) := f2 in
map_option (fun x => (Some (Pmul cO cI cplus ctimes ceqb e1 e2,x))) (OpMult o1 o2).
Definition nformula_plus_nformula (f1 f2 : NFormula) : option NFormula :=
let (e1,o1) := f1 in
let (e2,o2) := f2 in
map_option (fun x => (Some (Padd cO cplus ceqb e1 e2,x))) (OpAdd o1 o2).
Fixpoint eval_Psatz (l : list NFormula) (e : Psatz) {struct e} : option NFormula :=
match e with
| PsatzIn n => Some (nth n l (Pc cO, Equal))
| PsatzSquare e => Some (Psquare cO cI cplus ctimes ceqb e , NonStrict)
| PsatzMulC re e => map_option (pexpr_times_nformula re) (eval_Psatz l e)
| PsatzMulE f1 f2 => map_option2 nformula_times_nformula (eval_Psatz l f1) (eval_Psatz l f2)
| PsatzAdd f1 f2 => map_option2 nformula_plus_nformula (eval_Psatz l f1) (eval_Psatz l f2)
| PsatzC c => if cltb cO c then Some (Pc c, Strict) else None
(* This could be 0, or <> 0 -- but these cases are useless *)
| PsatzZ => Some (Pc cO, Equal) (* Just to make life easier *)
end.
Lemma pexpr_times_nformula_correct : forall (env: PolEnv) (e: PolC) (f f' : NFormula),
eval_nformula env f -> pexpr_times_nformula e f = Some f' ->
eval_nformula env f'.
Proof.
unfold pexpr_times_nformula.
destruct f.
intros. destruct o ; inversion H0 ; try discriminate.
simpl in *. unfold eval_pol in *.
rewrite (Pmul_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
rewrite H. apply (Rtimes_0_r sor).
Qed.
Lemma nformula_times_nformula_correct : forall (env:PolEnv)
(f1 f2 f : NFormula),
eval_nformula env f1 -> eval_nformula env f2 ->
nformula_times_nformula f1 f2 = Some f ->
eval_nformula env f.
Proof.
unfold nformula_times_nformula.
destruct f1 ; destruct f2.
case_eq (OpMult o o0) ; simpl ; try discriminate.
intros. inversion H2 ; simpl.
unfold eval_pol.
destruct o1; simpl;
rewrite (Pmul_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
apply OpMult_sound with (3:= H);assumption.
Qed.
Lemma nformula_plus_nformula_correct : forall (env:PolEnv)
(f1 f2 f : NFormula),
eval_nformula env f1 -> eval_nformula env f2 ->
nformula_plus_nformula f1 f2 = Some f ->
eval_nformula env f.
Proof.
unfold nformula_plus_nformula.
destruct f1 ; destruct f2.
case_eq (OpAdd o o0) ; simpl ; try discriminate.
intros. inversion H2 ; simpl.
unfold eval_pol.
destruct o1; simpl;
rewrite (Padd_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
apply OpAdd_sound with (3:= H);assumption.
Qed.
Lemma eval_Psatz_Sound :
forall (l : list NFormula) (env : PolEnv),
(forall (f : NFormula), In f l -> eval_nformula env f) ->
forall (e : Psatz) (f : NFormula), eval_Psatz l e = Some f ->
eval_nformula env f.
Proof.
induction e.
(* PsatzIn *)
simpl ; intros.
destruct (nth_in_or_default n l (Pc cO, Equal)).
(* index is in bounds *)
apply H ; congruence.
(* index is out-of-bounds *)
inversion H0.
rewrite e. simpl.
now apply addon.(SORrm).(morph0).
(* PsatzSquare *)
simpl. intros. inversion H0.
simpl. unfold eval_pol.
rewrite (Psquare_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
now apply (Rtimes_square_nonneg sor).
(* PsatzMulC *)
simpl.
intro.
case_eq (eval_Psatz l e) ; simpl ; intros.
apply IHe in H0.
apply pexpr_times_nformula_correct with (1:=H0) (2:= H1).
discriminate.
(* PsatzMulC *)
simpl ; intro.
case_eq (eval_Psatz l e1) ; simpl ; try discriminate.
case_eq (eval_Psatz l e2) ; simpl ; try discriminate.
intros.
apply IHe1 in H1. apply IHe2 in H0.
apply (nformula_times_nformula_correct env n0 n) ; assumption.
(* PsatzAdd *)
simpl ; intro.
case_eq (eval_Psatz l e1) ; simpl ; try discriminate.
case_eq (eval_Psatz l e2) ; simpl ; try discriminate.
intros.
apply IHe1 in H1. apply IHe2 in H0.
apply (nformula_plus_nformula_correct env n0 n) ; assumption.
(* PsatzC *)
simpl.
intro. case_eq (cO [<] c).
intros. inversion H1. simpl.
rewrite <- addon.(SORrm).(morph0). now apply cltb_sound.
discriminate.
(* PsatzZ *)
simpl. intros. inversion H0.
simpl. apply addon.(SORrm).(morph0).
Qed.
Fixpoint ge_bool (n m : nat) : bool :=
match n with
| O => match m with
| O => true
| S _ => false
end
| S n => match m with
| O => true
| S m => ge_bool n m
end
end.
Lemma ge_bool_cases : forall n m,
(if ge_bool n m then n >= m else n < m)%nat.
Proof.
induction n; destruct m ; simpl; auto with arith.
specialize (IHn m). destruct (ge_bool); auto with arith.
Qed.
Fixpoint xhyps_of_psatz (base:nat) (acc : list nat) (prf : Psatz) : list nat :=
match prf with
| PsatzC _ | PsatzZ | PsatzSquare _ => acc
| PsatzMulC _ prf => xhyps_of_psatz base acc prf
| PsatzAdd e1 e2 | PsatzMulE e1 e2 => xhyps_of_psatz base (xhyps_of_psatz base acc e2) e1
| PsatzIn n => if ge_bool n base then (n::acc) else acc
end.
Fixpoint nhyps_of_psatz (prf : Psatz) : list nat :=
match prf with
| PsatzC _ | PsatzZ | PsatzSquare _ => nil
| PsatzMulC _ prf => nhyps_of_psatz prf
| PsatzAdd e1 e2 | PsatzMulE e1 e2 => nhyps_of_psatz e1 ++ nhyps_of_psatz e2
| PsatzIn n => n :: nil
end.
Fixpoint extract_hyps (l: list NFormula) (ln : list nat) : list NFormula :=
match ln with
| nil => nil
| n::ln => nth n l (Pc cO, Equal) :: extract_hyps l ln
end.
Lemma extract_hyps_app : forall l ln1 ln2,
extract_hyps l (ln1 ++ ln2) = (extract_hyps l ln1) ++ (extract_hyps l ln2).
Proof.
induction ln1.
reflexivity.
simpl.
intros.
rewrite IHln1. reflexivity.
Qed.
Ltac inv H := inversion H ; try subst ; clear H.
Lemma nhyps_of_psatz_correct : forall (env : PolEnv) (e:Psatz) (l : list NFormula) (f: NFormula),
eval_Psatz l e = Some f ->
((forall f', In f' (extract_hyps l (nhyps_of_psatz e)) -> eval_nformula env f') -> eval_nformula env f).
Proof.
induction e ; intros.
(*PsatzIn*)
simpl in *.
apply H0. intuition congruence.
(* PsatzSquare *)
simpl in *.
inv H.
simpl.
unfold eval_pol.
rewrite (Psquare_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
now apply (Rtimes_square_nonneg sor).
(* PsatzMulC *)
simpl in *.
case_eq (eval_Psatz l e).
intros. rewrite H1 in H. simpl in H.
apply pexpr_times_nformula_correct with (2:= H).
apply IHe with (1:= H1); auto.
intros. rewrite H1 in H. simpl in H ; discriminate.
(* PsatzMulE *)
simpl in *.
revert H.
case_eq (eval_Psatz l e1).
case_eq (eval_Psatz l e2) ; simpl ; intros.
apply nformula_times_nformula_correct with (3:= H2).
apply IHe1 with (1:= H1) ; auto.
intros. apply H0. rewrite extract_hyps_app.
apply in_or_app. tauto.
apply IHe2 with (1:= H) ; auto.
intros. apply H0. rewrite extract_hyps_app.
apply in_or_app. tauto.
discriminate. simpl. discriminate.
(* PsatzAdd *)
simpl in *.
revert H.
case_eq (eval_Psatz l e1).
case_eq (eval_Psatz l e2) ; simpl ; intros.
apply nformula_plus_nformula_correct with (3:= H2).
apply IHe1 with (1:= H1) ; auto.
intros. apply H0. rewrite extract_hyps_app.
apply in_or_app. tauto.
apply IHe2 with (1:= H) ; auto.
intros. apply H0. rewrite extract_hyps_app.
apply in_or_app. tauto.
discriminate. simpl. discriminate.
(* PsatzC *)
simpl in H.
case_eq (cO [<] c).
intros. rewrite H1 in H. inv H.
unfold eval_nformula. simpl.
rewrite <- addon.(SORrm).(morph0). now apply cltb_sound.
intros. rewrite H1 in H. discriminate.
(* PsatzZ *)
simpl in *. inv H.
unfold eval_nformula. simpl.
apply addon.(SORrm).(morph0).
Qed.
(* roughly speaking, normalise_pexpr_correct is a proof of
forall env p, eval_pexpr env p == eval_pol env (normalise_pexpr p) *)
(*****)
Definition paddC := PaddC cplus.
Definition psubC := PsubC cminus.
Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env P - [c] :=
let Rops_wd := mk_reqe (*rplus rtimes ropp req*)
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd) in
PsubC_ok sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt))
addon.(SORrm).
Definition PaddC_ok : forall c P env, eval_pol env (paddC P c) == eval_pol env P + [c] :=
let Rops_wd := mk_reqe (*rplus rtimes ropp req*)
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd) in
PaddC_ok sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt))
addon.(SORrm).
(* Check that a formula f is inconsistent by normalizing and comparing the
resulting constant with 0 *)
Definition check_inconsistent (f : NFormula) : bool :=
let (e, op) := f in
match e with
| Pc c =>
match op with
| Equal => cneqb c cO
| NonStrict => c [<] cO
| Strict => c [<=] cO
| NonEqual => c [=] cO
end
| _ => false (* not a constant *)
end.
Lemma check_inconsistent_sound :
forall (p : PolC) (op : Op1),
check_inconsistent (p, op) = true -> forall env, ~ eval_op1 op (eval_pol env p).
Proof.
intros p op H1 env. unfold check_inconsistent in H1.
destruct op; simpl ;
(*****)
destruct p ; simpl; try discriminate H1;
try rewrite <- addon.(SORrm).(morph0); trivial.
now apply cneqb_sound.
apply addon.(SORrm).(morph_eq) in H1. congruence.
apply cleb_sound in H1. now apply -> (Rle_ngt sor).
apply cltb_sound in H1. now apply -> (Rlt_nge sor).
Qed.
Definition check_normalised_formulas : list NFormula -> Psatz -> bool :=
fun l cm =>
match eval_Psatz l cm with
| None => false
| Some f => check_inconsistent f
end.
Lemma checker_nf_sound :
forall (l : list NFormula) (cm : Psatz),
check_normalised_formulas l cm = true ->
forall env : PolEnv, make_impl (eval_nformula env) l False.
Proof.
intros l cm H env.
unfold check_normalised_formulas in H.
revert H.
case_eq (eval_Psatz l cm) ; [|discriminate].
intros nf. intros.
rewrite <- make_conj_impl. intro.
assert (H1' := make_conj_in _ _ H1).
assert (Hnf := @eval_Psatz_Sound _ _ H1' _ _ H).
destruct nf.
apply (@check_inconsistent_sound _ _ H0 env Hnf).
Qed.
(** Normalisation of formulae **)
Inductive Op2 : Set := (* binary relations *)
| OpEq
| OpNEq
| OpLe
| OpGe
| OpLt
| OpGt.
Definition eval_op2 (o : Op2) : R -> R -> Prop :=
match o with
| OpEq => req
| OpNEq => fun x y : R => x ~= y
| OpLe => rle
| OpGe => fun x y : R => y <= x
| OpLt => fun x y : R => x < y
| OpGt => fun x y : R => y < x
end.
Definition eval_pexpr (l : PolEnv) (pe : PExpr C) : R := PEeval rplus rtimes rminus ropp phi pow_phi rpow l pe.
Record Formula (T:Type) : Type := {
Flhs : PExpr T;
Fop : Op2;
Frhs : PExpr T
}.
Definition eval_formula (env : PolEnv) (f : Formula C) : Prop :=
let (lhs, op, rhs) := f in
(eval_op2 op) (eval_pexpr env lhs) (eval_pexpr env rhs).
(* We normalize Formulas by moving terms to one side *)
Definition norm := norm_aux cO cI cplus ctimes cminus copp ceqb.
Definition psub := Psub cO cplus cminus copp ceqb.
Definition padd := Padd cO cplus ceqb.
Definition normalise (f : Formula C) : NFormula :=
let (lhs, op, rhs) := f in
let lhs := norm lhs in
let rhs := norm rhs in
match op with
| OpEq => (psub lhs rhs, Equal)
| OpNEq => (psub lhs rhs, NonEqual)
| OpLe => (psub rhs lhs, NonStrict)
| OpGe => (psub lhs rhs, NonStrict)
| OpGt => (psub lhs rhs, Strict)
| OpLt => (psub rhs lhs, Strict)
end.
Definition negate (f : Formula C) : NFormula :=
let (lhs, op, rhs) := f in
let lhs := norm lhs in
let rhs := norm rhs in
match op with
| OpEq => (psub rhs lhs, NonEqual)
| OpNEq => (psub rhs lhs, Equal)
| OpLe => (psub lhs rhs, Strict) (* e <= e' == ~ e > e' *)
| OpGe => (psub rhs lhs, Strict)
| OpGt => (psub rhs lhs, NonStrict)
| OpLt => (psub lhs rhs, NonStrict)
end.
Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) == eval_pol env lhs - eval_pol env rhs.
Proof.
intros.
apply (Psub_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
Qed.
Lemma eval_pol_add : forall env lhs rhs, eval_pol env (padd lhs rhs) == eval_pol env lhs + eval_pol env rhs.
Proof.
intros.
apply (Padd_ok sor.(SORsetoid) Rops_wd
(Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm)).
Qed.
Lemma eval_pol_norm : forall env lhs, eval_pexpr env lhs == eval_pol env (norm lhs).
Proof.
intros.
apply (norm_aux_spec sor.(SORsetoid) Rops_wd (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm) addon.(SORpower) ).
Qed.
Theorem normalise_sound :
forall (env : PolEnv) (f : Formula C),
eval_formula env f -> eval_nformula env (normalise f).
Proof.
intros env f H; destruct f as [lhs op rhs]; simpl in *.
destruct op; simpl in *; rewrite eval_pol_sub ; rewrite <- eval_pol_norm ; rewrite <- eval_pol_norm.
now apply <- (Rminus_eq_0 sor).
intros H1. apply -> (Rminus_eq_0 sor) in H1. now apply H.
now apply -> (Rle_le_minus sor).
now apply -> (Rle_le_minus sor).
now apply -> (Rlt_lt_minus sor).
now apply -> (Rlt_lt_minus sor).
Qed.
Theorem negate_correct :
forall (env : PolEnv) (f : Formula C),
eval_formula env f <-> ~ (eval_nformula env (negate f)).
Proof.
intros env f; destruct f as [lhs op rhs]; simpl.
destruct op; simpl in *; rewrite eval_pol_sub ; rewrite <- eval_pol_norm ; rewrite <- eval_pol_norm.
symmetry. rewrite (Rminus_eq_0 sor).
split; intro H; [symmetry; now apply -> (Req_dne sor) | symmetry in H; now apply <- (Req_dne sor)].
rewrite (Rminus_eq_0 sor). split; intro; now apply (Rneq_symm sor).
rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
rewrite <- (Rlt_lt_minus sor). now rewrite <- (Rle_ngt sor).
rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
Qed.
(** Another normalisation - this is used for cnf conversion **)
Definition xnormalise (t:Formula C) : list (NFormula) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq =>
(psub lhs rhs, Strict)::(psub rhs lhs , Strict)::nil
| OpNEq => (psub lhs rhs,Equal) :: nil
| OpGt => (psub rhs lhs,NonStrict) :: nil
| OpLt => (psub lhs rhs,NonStrict) :: nil
| OpGe => (psub rhs lhs , Strict) :: nil
| OpLe => (psub lhs rhs ,Strict) :: nil
end.
Require Import Tauto.
Definition cnf_normalise (t:Formula C) : cnf (NFormula) :=
List.map (fun x => x::nil) (xnormalise t).
Add Ring SORRing : sor.(SORrt).
Lemma cnf_normalise_correct : forall env t, eval_cnf eval_nformula env (cnf_normalise t) -> eval_formula env t.
Proof.
unfold cnf_normalise, xnormalise ; simpl ; intros env t.
unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o ; simpl;
repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
generalize (eval_pexpr env lhs);
generalize (eval_pexpr env rhs) ; intros z1 z2 ; intros.
(**)
apply sor.(SORle_antisymm).
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
now rewrite <- (Rminus_eq_0 sor).
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). auto.
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). auto.
rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
Qed.
Definition xnegate (t:Formula C) : list (NFormula) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
match o with
| OpEq => (psub lhs rhs,Equal) :: nil
| OpNEq => (psub lhs rhs ,Strict)::(psub rhs lhs,Strict)::nil
| OpGt => (psub lhs rhs,Strict) :: nil
| OpLt => (psub rhs lhs,Strict) :: nil
| OpGe => (psub lhs rhs,NonStrict) :: nil
| OpLe => (psub rhs lhs,NonStrict) :: nil
end.
Definition cnf_negate (t:Formula C) : cnf (NFormula) :=
List.map (fun x => x::nil) (xnegate t).
Lemma cnf_negate_correct : forall env t, eval_cnf eval_nformula env (cnf_negate t) -> ~ eval_formula env t.
Proof.
unfold cnf_negate, xnegate ; simpl ; intros env t.
unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o ; simpl;
repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
generalize (eval_pexpr env lhs);
generalize (eval_pexpr env rhs) ; intros z1 z2 ; intros ; intuition.
(**)
apply H0.
rewrite H1 ; ring.
(**)
apply H1.
apply sor.(SORle_antisymm).
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
rewrite (Rle_ngt sor). rewrite (Rlt_lt_minus sor). tauto.
(**)
apply H0. now rewrite (Rle_le_minus sor) in H1.
apply H0. now rewrite (Rle_le_minus sor) in H1.
apply H0. now rewrite (Rlt_lt_minus sor) in H1.
apply H0. now rewrite (Rlt_lt_minus sor) in H1.
Qed.
Lemma eval_nformula_dec : forall env d, (eval_nformula env d) \/ ~ (eval_nformula env d).
Proof.
intros.
destruct d ; simpl.
generalize (eval_pol env p); intros.
destruct o ; simpl.
apply (Req_em sor r 0).
destruct (Req_em sor r 0) ; tauto.
rewrite <- (Rle_ngt sor r 0). generalize (Rle_gt_cases sor r 0). tauto.
rewrite <- (Rlt_nge sor r 0). generalize (Rle_gt_cases sor 0 r). tauto.
Qed.
(** Reverse transformation *)
Fixpoint xdenorm (jmp : positive) (p: Pol C) : PExpr C :=
match p with
| Pc c => PEc c
| Pinj j p => xdenorm (Pos.add j jmp ) p
| PX p j q => PEadd
(PEmul (xdenorm jmp p) (PEpow (PEX _ jmp) (Npos j)))
(xdenorm (Pos.succ jmp) q)
end.
Lemma xdenorm_correct : forall p i env,
eval_pol (jump i env) p == eval_pexpr env (xdenorm (Pos.succ i) p).
Proof.
unfold eval_pol.
induction p.
simpl. reflexivity.
(* Pinj *)
simpl.
intros.
rewrite Pos.add_succ_r.
rewrite <- IHp.
symmetry.
rewrite Pos.add_comm.
rewrite Pjump_add. reflexivity.
(* PX *)
simpl.
intros.
rewrite <- IHp1, <- IHp2.
unfold Env.tail , Env.hd.
rewrite <- Pjump_add.
rewrite Pos.add_1_r.
unfold Env.nth.
unfold jump at 2.
rewrite <- Pos.add_1_l.
rewrite addon.(SORpower).(rpow_pow_N).
unfold pow_N. ring.
Qed.
Definition denorm (p : Pol C) := xdenorm xH p.
Lemma denorm_correct : forall p env, eval_pol env p == eval_pexpr env (denorm p).
Proof.
unfold denorm.
induction p.
reflexivity.
simpl.
rewrite Pos.add_1_r.
apply xdenorm_correct.
simpl.
intros.
rewrite IHp1.
unfold Env.tail.
rewrite xdenorm_correct.
change (Pos.succ xH) with 2%positive.
rewrite addon.(SORpower).(rpow_pow_N).
simpl. reflexivity.
Qed.
(** Sometimes it is convenient to make a distinction between "syntactic" coefficients and "real"
coefficients that are used to actually compute *)
Variable S : Type.
Variable C_of_S : S -> C.
Variable phiS : S -> R.
Variable phi_C_of_S : forall c, phiS c = phi (C_of_S c).
Fixpoint map_PExpr (e : PExpr S) : PExpr C :=
match e with
| PEc c => PEc (C_of_S c)
| PEX p => PEX _ p
| PEadd e1 e2 => PEadd (map_PExpr e1) (map_PExpr e2)
| PEsub e1 e2 => PEsub (map_PExpr e1) (map_PExpr e2)
| PEmul e1 e2 => PEmul (map_PExpr e1) (map_PExpr e2)
| PEopp e => PEopp (map_PExpr e)
| PEpow e n => PEpow (map_PExpr e) n
end.
Definition map_Formula (f : Formula S) : Formula C :=
let (l,o,r) := f in
Build_Formula (map_PExpr l) o (map_PExpr r).
Definition eval_sexpr (env : PolEnv) (e : PExpr S) : R :=
PEeval rplus rtimes rminus ropp phiS pow_phi rpow env e.
Definition eval_sformula (env : PolEnv) (f : Formula S) : Prop :=
let (lhs, op, rhs) := f in
(eval_op2 op) (eval_sexpr env lhs) (eval_sexpr env rhs).
Lemma eval_pexprSC : forall env s, eval_sexpr env s = eval_pexpr env (map_PExpr s).
Proof.
unfold eval_pexpr, eval_sexpr.
induction s ; simpl ; try (rewrite IHs1 ; rewrite IHs2) ; try reflexivity.
apply phi_C_of_S.
rewrite IHs. reflexivity.
rewrite IHs. reflexivity.
Qed.
(** equality migth be (too) strong *)
Lemma eval_formulaSC : forall env f, eval_sformula env f = eval_formula env (map_Formula f).
Proof.
destruct f.
simpl.
repeat rewrite eval_pexprSC.
reflexivity.
Qed.
(** Some syntactic simplifications of expressions *)
Definition simpl_cone (e:Psatz) : Psatz :=
match e with
| PsatzSquare t =>
match t with
| Pc c => if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
| _ => PsatzSquare t
end
| PsatzMulE t1 t2 =>
match t1 , t2 with
| PsatzZ , x => PsatzZ
| x , PsatzZ => PsatzZ
| PsatzC c , PsatzC c' => PsatzC (ctimes c c')
| PsatzC p1 , PsatzMulE (PsatzC p2) x => PsatzMulE (PsatzC (ctimes p1 p2)) x
| PsatzC p1 , PsatzMulE x (PsatzC p2) => PsatzMulE (PsatzC (ctimes p1 p2)) x
| PsatzMulE (PsatzC p2) x , PsatzC p1 => PsatzMulE (PsatzC (ctimes p1 p2)) x
| PsatzMulE x (PsatzC p2) , PsatzC p1 => PsatzMulE (PsatzC (ctimes p1 p2)) x
| PsatzC x , PsatzAdd y z => PsatzAdd (PsatzMulE (PsatzC x) y) (PsatzMulE (PsatzC x) z)
| PsatzC c , _ => if ceqb cI c then t2 else PsatzMulE t1 t2
| _ , PsatzC c => if ceqb cI c then t1 else PsatzMulE t1 t2
| _ , _ => e
end
| PsatzAdd t1 t2 =>
match t1 , t2 with
| PsatzZ , x => x
| x , PsatzZ => x
| x , y => PsatzAdd x y
end
| _ => e
end.
End Micromega.
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
|