1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Nullstellensatz with Groebner basis computation
We use a sparse representation for polynomials:
a monomial is an array of exponents (one for each variable)
with its degree in head
a polynomial is a sorted list of (coefficient, monomial)
*)
open Utile
open List
exception NotInIdeal
module type S = sig
(* Monomials *)
type mon = int array
val mult_mon : mon -> mon -> mon
val deg : mon -> int
val compare_mon : mon -> mon -> int
val div_mon : mon -> mon -> mon
val div_mon_test : mon -> mon -> bool
val ppcm_mon : mon -> mon -> mon
(* Polynomials *)
type deg = int
type coef
type poly
type polynom
val repr : poly -> (coef * mon) list
val polconst : coef -> poly
val zeroP : poly
val gen : int -> poly
val equal : poly -> poly -> bool
val name_var : string list ref
val getvar : string list -> int -> string
val lstringP : poly list -> string
val printP : poly -> unit
val lprintP : poly list -> unit
val div_pol_coef : poly -> coef -> poly
val plusP : poly -> poly -> poly
val mult_t_pol : coef -> mon -> poly -> poly
val selectdiv : mon -> poly list -> poly
val oppP : poly -> poly
val emultP : coef -> poly -> poly
val multP : poly -> poly -> poly
val puisP : poly -> int -> poly
val contentP : poly -> coef
val contentPlist : poly list -> coef
val pgcdpos : coef -> coef -> coef
val div_pol : poly -> poly -> coef -> coef -> mon -> poly
val reduce2 : poly -> poly list -> coef * poly
val poldepcontent : coef list ref
val coefpoldep_find : poly -> poly -> poly
val coefpoldep_set : poly -> poly -> poly -> unit
val initcoefpoldep : poly list -> unit
val reduce2_trace : poly -> poly list -> poly list -> poly list * poly
val spol : poly -> poly -> poly
val etrangers : poly -> poly -> bool
val div_ppcm : poly -> poly -> poly -> bool
val genPcPf : poly -> poly list -> poly list -> poly list
val genOCPf : poly list -> poly list
val is_homogeneous : poly -> bool
type certificate =
{ coef : coef; power : int;
gb_comb : poly list list; last_comb : poly list }
val test_dans_ideal : poly -> poly list -> poly list ->
poly list * poly * certificate
val in_ideal : deg -> poly list -> poly -> poly list * poly * certificate
end
(***********************************************************************
Global options
*)
let lexico = ref false
let use_hmon = ref false
(* division of tail monomials *)
let reduire_les_queues = false
(* divide first with new polynomials *)
let nouveaux_pol_en_tete = false
(***********************************************************************
Functor
*)
module Make (P:Polynom.S) = struct
type coef = P.t
let coef0 = P.of_num (Num.Int 0)
let coef1 = P.of_num (Num.Int 1)
let coefm1 = P.of_num (Num.Int (-1))
let string_of_coef c = "["^(P.to_string c)^"]"
(***********************************************************************
Monomials
array of integers, first is the degree
*)
type mon = int array
type deg = int
type poly = (coef * mon) list
type polynom =
{pol : poly ref;
num : int;
sugar : int}
let nvar m = Array.length m - 1
let deg m = m.(0)
let mult_mon m m' =
let d = nvar m in
let m'' = Array.create (d+1) 0 in
for i=0 to d do
m''.(i)<- (m.(i)+m'.(i));
done;
m''
let compare_mon m m' =
let d = nvar m in
if !lexico
then (
(* Comparaison de monomes avec ordre du degre lexicographique = on commence par regarder la 1ere variable*)
let res=ref 0 in
let i=ref 1 in (* 1 si lexico pur 0 si degre*)
while (!res=0) && (!i<=d) do
res:= (compare m.(!i) m'.(!i));
i:=!i+1;
done;
!res)
else (
(* degre lexicographique inverse *)
match compare m.(0) m'.(0) with
| 0 -> (* meme degre total *)
let res=ref 0 in
let i=ref d in
while (!res=0) && (!i>=1) do
res:= - (compare m.(!i) m'.(!i));
i:=!i-1;
done;
!res
| x -> x)
let div_mon m m' =
let d = nvar m in
let m'' = Array.create (d+1) 0 in
for i=0 to d do
m''.(i)<- (m.(i)-m'.(i));
done;
m''
let div_pol_coef p c =
List.map (fun (a,m) -> (P.divP a c,m)) p
(* m' divides m *)
let div_mon_test m m' =
let d = nvar m in
let res=ref true in
let i=ref 0 in (*il faut que le degre total soit bien mis sinon, i=ref 1*)
while (!res) && (!i<=d) do
res:= (m.(!i) >= m'.(!i));
i:=succ !i;
done;
!res
let set_deg m =
let d = nvar m in
m.(0)<-0;
for i=1 to d do
m.(0)<- m.(i)+m.(0);
done;
m
(* lcm *)
let ppcm_mon m m' =
let d = nvar m in
let m'' = Array.create (d+1) 0 in
for i=1 to d do
m''.(i)<- (max m.(i) m'.(i));
done;
set_deg m''
(**********************************************************************
Polynomials
list of (coefficient, monomial) decreasing order
*)
let repr p = p
let equal =
Util.list_for_all2eq
(fun (c1,m1) (c2,m2) -> P.equal c1 c2 && m1=m2)
let hash p =
let c = map fst p in
let m = map snd p in
fold_left (fun h p -> h * 17 + P.hash p) (Hashtbl.hash m) c
module Hashpol = Hashtbl.Make(
struct
type t = poly
let equal = equal
let hash = hash
end)
(* A pretty printer for polynomials, with Maple-like syntax. *)
open Format
let getvar lv i =
try (nth lv i)
with e when Errors.noncritical e ->
(fold_left (fun r x -> r^" "^x) "lv= " lv)
^" i="^(string_of_int i)
let string_of_pol zeroP hdP tlP coefterm monterm string_of_coef
dimmon string_of_exp lvar p =
let rec string_of_mon m coefone =
let s=ref [] in
for i=1 to (dimmon m) do
(match (string_of_exp m i) with
"0" -> ()
| "1" -> s:= (!s) @ [(getvar !lvar (i-1))]
| e -> s:= (!s) @ [((getvar !lvar (i-1)) ^ "^" ^ e)]);
done;
(match !s with
[] -> if coefone
then "1"
else ""
| l -> if coefone
then (String.concat "*" l)
else ( "*" ^
(String.concat "*" l)))
and string_of_term t start = let a = coefterm t and m = monterm t in
match (string_of_coef a) with
"0" -> ""
| "1" ->(match start with
true -> string_of_mon m true
|false -> ( "+ "^
(string_of_mon m true)))
| "-1" ->( "-" ^" "^(string_of_mon m true))
| c -> if (String.get c 0)='-'
then ( "- "^
(String.sub c 1
((String.length c)-1))^
(string_of_mon m false))
else (match start with
true -> ( c^(string_of_mon m false))
|false -> ( "+ "^
c^(string_of_mon m false)))
and stringP p start =
if (zeroP p)
then (if start
then ("0")
else "")
else ((string_of_term (hdP p) start)^
" "^
(stringP (tlP p) false))
in
(stringP p true)
let print_pol zeroP hdP tlP coefterm monterm string_of_coef
dimmon string_of_exp lvar p =
let rec print_mon m coefone =
let s=ref [] in
for i=1 to (dimmon m) do
(match (string_of_exp m i) with
"0" -> ()
| "1" -> s:= (!s) @ [(getvar !lvar (i-1))]
| e -> s:= (!s) @ [((getvar !lvar (i-1)) ^ "^" ^ e)]);
done;
(match !s with
[] -> if coefone
then print_string "1"
else ()
| l -> if coefone
then print_string (String.concat "*" l)
else (print_string "*";
print_string (String.concat "*" l)))
and print_term t start = let a = coefterm t and m = monterm t in
match (string_of_coef a) with
"0" -> ()
| "1" ->(match start with
true -> print_mon m true
|false -> (print_string "+ ";
print_mon m true))
| "-1" ->(print_string "-";print_space();print_mon m true)
| c -> if (String.get c 0)='-'
then (print_string "- ";
print_string (String.sub c 1
((String.length c)-1));
print_mon m false)
else (match start with
true -> (print_string c;print_mon m false)
|false -> (print_string "+ ";
print_string c;print_mon m false))
and printP p start =
if (zeroP p)
then (if start
then print_string("0")
else ())
else (print_term (hdP p) start;
if start then open_hovbox 0;
print_space();
print_cut();
printP (tlP p) false)
in open_hovbox 3;
printP p true;
print_flush()
let name_var= ref []
let stringP p =
string_of_pol
(fun p -> match p with [] -> true | _ -> false)
(fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
(fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
(fun (a,m) -> a)
(fun (a,m) -> m)
string_of_coef
(fun m -> (Array.length m)-1)
(fun m i -> (string_of_int (m.(i))))
name_var
p
let nsP2 = ref max_int
let stringPcut p =
(*Polynomesrec.nsP1:=20;*)
nsP2:=10;
let res =
if (length p)> !nsP2
then (stringP [hd p])^" + "^(string_of_int (length p))^" terms"
else stringP p in
(*Polynomesrec.nsP1:= max_int;*)
nsP2:= max_int;
res
let rec lstringP l =
match l with
[] -> ""
|p::l -> (stringP p)^("\n")^(lstringP l)
let printP = print_pol
(fun p -> match p with [] -> true | _ -> false)
(fun p -> match p with (t::p) -> t |_ -> failwith "print_pol dans dansideal")
(fun p -> match p with (t::p) -> p |_ -> failwith "print_pol dans dansideal")
(fun (a,m) -> a)
(fun (a,m) -> m)
string_of_coef
(fun m -> (Array.length m)-1)
(fun m i -> (string_of_int (m.(i))))
name_var
let rec lprintP l =
match l with
[] -> ()
|p::l -> printP p;print_string "\n"; lprintP l
(* Operations *)
let zeroP = []
(* returns a constant polynom ial with d variables *)
let polconst d c =
let m = Array.create (d+1) 0 in
let m = set_deg m in
[(c,m)]
let plusP p q =
let rec plusP p q =
match p with
[] -> q
|t::p' ->
match q with
[] -> p
|t'::q' ->
match compare_mon (snd t) (snd t') with
1 -> t::(plusP p' q)
|(-1) -> t'::(plusP p q')
|_ -> let c=P.plusP (fst t) (fst t') in
match P.equal c coef0 with
true -> (plusP p' q')
|false -> (c,(snd t))::(plusP p' q')
in plusP p q
(* multiplication by (a,monomial) *)
let mult_t_pol a m p =
let rec mult_t_pol p =
match p with
[] -> []
|(b,m')::p -> ((P.multP a b),(mult_mon m m'))::(mult_t_pol p)
in mult_t_pol p
let coef_of_int x = P.of_num (Num.Int x)
(* variable i *)
let gen d i =
let m = Array.create (d+1) 0 in
m.(i) <- 1;
let m = set_deg m in
[((coef_of_int 1),m)]
let oppP p =
let rec oppP p =
match p with
[] -> []
|(b,m')::p -> ((P.oppP b),m')::(oppP p)
in oppP p
(* multiplication by a coefficient *)
let emultP a p =
let rec emultP p =
match p with
[] -> []
|(b,m')::p -> ((P.multP a b),m')::(emultP p)
in emultP p
let multP p q =
let rec aux p =
match p with
[] -> []
|(a,m)::p' -> plusP (mult_t_pol a m q) (aux p')
in aux p
let puisP p n=
match p with
[] -> []
|_ ->
let d = nvar (snd (hd p)) in
let rec puisP n =
match n with
0 -> [coef1, Array.create (d+1) 0]
| 1 -> p
|_ -> multP p (puisP (n-1))
in puisP n
let rec contentP p =
match p with
|[] -> coef1
|[a,m] -> a
|(a,m)::p1 ->
if P.equal a coef1 || P.equal a coefm1
then a
else P.pgcdP a (contentP p1)
let contentPlist lp =
match lp with
|[] -> coef1
|p::l1 ->
fold_left
(fun r q ->
if P.equal r coef1 || P.equal r coefm1
then r
else P.pgcdP r (contentP q))
(contentP p) l1
(***********************************************************************
Division of polynomials
*)
let pgcdpos a b = P.pgcdP a b
let polynom0 = {pol = ref []; num = 0; sugar = 0}
let ppol p = !(p.pol)
let lm p = snd (hd (ppol p))
let nallpol = ref 0
let allpol = ref (Array.create 1000 polynom0)
let new_allpol p s =
nallpol := !nallpol + 1;
if !nallpol >= Array.length !allpol
then
allpol := Array.append !allpol (Array.create !nallpol polynom0);
let p = {pol = ref p; num = !nallpol; sugar = s} in
!allpol.(!nallpol)<- p;
p
(* returns a polynomial of l whose head monomial divides m, else [] *)
let rec selectdiv m l =
match l with
[] -> polynom0
|q::r -> let m'= snd (hd (ppol q)) in
match (div_mon_test m m') with
true -> q
|false -> selectdiv m r
let div_pol p q a b m =
(* info ".";*)
plusP (emultP a p) (mult_t_pol b m q)
let hmon = Hashtbl.create 1000
let use_hmon = ref false
let find_hmon m =
if !use_hmon
then Hashtbl.find hmon m
else raise Not_found
let add_hmon m q =
if !use_hmon
then Hashtbl.add hmon m q
else ()
let div_coef a b = P.divP a b
(* remainder r of the division of p by polynomials of l, returns (c,r) where c is the coefficient for pseudo-division : c p = sum_i q_i p_i + r *)
let reduce2 p l =
let l = if nouveaux_pol_en_tete then rev l else l in
let rec reduce p =
match p with
[] -> (coef1,[])
|t::p' ->
let (a,m)=t in
let q = (try find_hmon m
with Not_found ->
let q = selectdiv m l in
match (ppol q) with
t'::q' -> (add_hmon m q;
q)
|[] -> q) in
match (ppol q) with
[] -> if reduire_les_queues
then
let (c,r)=(reduce p') in
(c,((P.multP a c,m)::r))
else (coef1,p)
|(b,m')::q' ->
let c=(pgcdpos a b) in
let a'= (div_coef b c) in
let b'=(P.oppP (div_coef a c)) in
let (e,r)=reduce (div_pol p' q' a' b'
(div_mon m m')) in
(P.multP a' e,r)
in let (c,r) = reduce p in
(c,r)
(* trace of divisions *)
(* list of initial polynomials *)
let poldep = ref []
let poldepcontent = ref []
(* coefficients of polynomials when written with initial polynomials *)
let coefpoldep = Hashtbl.create 51
(* coef of q in p = sum_i c_i*q_i *)
let coefpoldep_find p q =
try (Hashtbl.find coefpoldep (p.num,q.num))
with Not_found -> []
let coefpoldep_remove p q =
Hashtbl.remove coefpoldep (p.num,q.num)
let coefpoldep_set p q c =
Hashtbl.add coefpoldep (p.num,q.num) c
let initcoefpoldep d lp =
poldep:=lp;
poldepcontent:= map (fun p -> contentP (ppol p)) lp;
iter
(fun p -> coefpoldep_set p p (polconst d (coef_of_int 1)))
lp
(* keeps trace in coefpoldep
divides without pseudodivisions *)
let reduce2_trace p l lcp =
let l = if nouveaux_pol_en_tete then rev l else l in
(* rend (lq,r), ou r = p + sum(lq) *)
let rec reduce p =
match p with
[] -> ([],[])
|t::p' ->
let (a,m)=t in
let q =
(try find_hmon m
with Not_found ->
let q = selectdiv m l in
match (ppol q) with
t'::q' -> (add_hmon m q;
q)
|[] -> q) in
match (ppol q) with
[] ->
if reduire_les_queues
then
let (lq,r)=(reduce p') in
(lq,((a,m)::r))
else ([],p)
|(b,m')::q' ->
let b'=(P.oppP (div_coef a b)) in
let m''= div_mon m m' in
let p1=plusP p' (mult_t_pol b' m'' q') in
let (lq,r)=reduce p1 in
((b',m'',q)::lq, r)
in let (lq,r) = reduce p in
(*info "reduce2_trace:\n";
iter
(fun (a,m,s) ->
let x = mult_t_pol a m s in
info ((stringP x)^"\n"))
lq;
info "ok\n";*)
(map2
(fun c0 q ->
let c =
fold_left
(fun x (a,m,s) ->
if equal (ppol s) (ppol q)
then
plusP x (mult_t_pol a m (polconst (nvar m) (coef_of_int 1)))
else x)
c0
lq in
c)
lcp
!poldep,
r)
let homogeneous = ref false
let pol_courant = ref polynom0
(***********************************************************************
Completion
*)
let sugar_flag = ref true
let compute_sugar p =
fold_left (fun s (a,m) -> max s m.(0)) 0 p
let mk_polynom p =
new_allpol p (compute_sugar p)
let spol ps qs=
let p = ppol ps in
let q = ppol qs in
let m = snd (hd p) in
let m'= snd (hd q) in
let a = fst (hd p) in
let b = fst (hd q) in
let p'= tl p in
let q'= tl q in
let c = (pgcdpos a b) in
let m''=(ppcm_mon m m') in
let m1 = div_mon m'' m in
let m2 = div_mon m'' m' in
let fsp p' q' =
plusP
(mult_t_pol
(div_coef b c)
m1 p')
(mult_t_pol
(P.oppP (div_coef a c))
m2 q') in
let sp = fsp p' q' in
let sps =
new_allpol
sp
(max (m1.(0) + ps.sugar) (m2.(0) + qs.sugar)) in
coefpoldep_set sps ps (fsp (polconst (nvar m) (coef_of_int 1)) []);
coefpoldep_set sps qs (fsp [] (polconst (nvar m) (coef_of_int 1)));
sps
let etrangers p p'=
let m = snd (hd p) in
let m'= snd (hd p') in
let d = nvar m in
let res=ref true in
let i=ref 1 in
while (!res) && (!i<=d) do
res:= (m.(!i) = 0) || (m'.(!i)=0);
i:=!i+1;
done;
!res
(* teste if head monomial of p'' divides lcm of lhead monomials of p and p' *)
let div_ppcm p p' p'' =
let m = snd (hd p) in
let m'= snd (hd p') in
let m''= snd (hd p'') in
let d = nvar m in
let res=ref true in
let i=ref 1 in
while (!res) && (!i<=d) do
res:= ((max m.(!i) m'.(!i)) >= m''.(!i));
i:=!i+1;
done;
!res
(* code from extraction of Laurent Théry Coq program *)
type 'poly cpRes =
Keep of ('poly list)
| DontKeep of ('poly list)
let list_rec f0 f1 =
let rec f2 = function
[] -> f0
| a0::l0 -> f1 a0 l0 (f2 l0)
in f2
let addRes i = function
Keep h'0 -> Keep (i::h'0)
| DontKeep h'0 -> DontKeep (i::h'0)
let slice i a q =
list_rec
(match etrangers (ppol i) (ppol a) with
true -> DontKeep []
| false -> Keep [])
(fun b q1 rec_ren ->
match div_ppcm (ppol i) (ppol a) (ppol b) with
true -> DontKeep (b::q1)
| false ->
(match div_ppcm (ppol i) (ppol b) (ppol a) with
true -> rec_ren
| false -> addRes b rec_ren)) q
(* sugar strategy *)
let rec addS x l = l @ [x] (* oblige de mettre en queue sinon le certificat deconne *)
let addSsugar x l =
if !sugar_flag
then
let sx = x.sugar in
let rec insere l =
match l with
| [] -> [x]
| y::l1 ->
if sx <= y.sugar
then x::l
else y::(insere l1)
in insere l
else addS x l
(* ajoute les spolynomes de i avec la liste de polynomes aP,
a la liste q *)
let genPcPf i aP q =
(let rec genPc aP0 =
match aP0 with
[] -> (fun r -> r)
| a::l1 ->
(fun l ->
(match slice i a l1 with
Keep l2 -> addSsugar (spol i a) (genPc l2 l)
| DontKeep l2 -> genPc l2 l))
in genPc aP) q
let genOCPf h' =
list_rec [] (fun a l rec_ren ->
genPcPf a l rec_ren) h'
(***********************************************************************
critical pairs/s-polynomials
*)
let ordcpair ((i1,j1),m1) ((i2,j2),m2) =
(* let s1 = (max
(!allpol.(i1).sugar + m1.(0)
- (snd (hd (ppol !allpol.(i1)))).(0))
(!allpol.(j1).sugar + m1.(0)
- (snd (hd (ppol !allpol.(j1)))).(0))) in
let s2 = (max
(!allpol.(i2).sugar + m2.(0)
- (snd (hd (ppol !allpol.(i2)))).(0))
(!allpol.(j2).sugar + m2.(0)
- (snd (hd (ppol !allpol.(j2)))).(0))) in
match compare s1 s2 with
| 1 -> 1
|(-1) -> -1
|0 -> compare_mon m1 m2*)
compare_mon m1 m2
let sortcpairs lcp =
sort ordcpair lcp
let mergecpairs l1 l2 =
merge ordcpair l1 l2
let ord i j =
if i<j then (i,j) else (j,i)
let cpair p q =
if etrangers (ppol p) (ppol q)
then []
else [(ord p.num q.num,
ppcm_mon (lm p) (lm q))]
let cpairs1 p lq =
sortcpairs (fold_left (fun r q -> r @ (cpair p q)) [] lq)
let cpairs lp =
let rec aux l =
match l with
[]|[_] -> []
|p::l1 -> mergecpairs (cpairs1 p l1) (aux l1)
in aux lp
let critere2 ((i,j),m) lp lcp =
exists
(fun h ->
h.num <> i && h.num <> j
&& (div_mon_test m (lm h))
&& (let c1 = ord i h.num in
not (exists (fun (c,_) -> c1 = c) lcp))
&& (let c1 = ord j h.num in
not (exists (fun (c,_) -> c1 = c) lcp)))
lp
let critere3 ((i,j),m) lp lcp =
exists
(fun h ->
h.num <> i && h.num <> j
&& (div_mon_test m (lm h))
&& (h.num < j
|| not (m = ppcm_mon
(lm (!allpol.(i)))
(lm h)))
&& (h.num < i
|| not (m = ppcm_mon
(lm (!allpol.(j)))
(lm h))))
lp
let add_cpairs p lp lcp =
mergecpairs (cpairs1 p lp) lcp
let step = ref 0
let infobuch p q =
if !step = 0
then (info ("[" ^ (string_of_int (length p))
^ "," ^ (string_of_int (length q))
^ "]"))
(* in lp new polynomials are at the end *)
let coef_courant = ref coef1
type certificate =
{ coef : coef; power : int;
gb_comb : poly list list; last_comb : poly list }
let test_dans_ideal p lp lp0 =
let (c,r) = reduce2 (ppol !pol_courant) lp in
info ("remainder: "^(stringPcut r)^"\n");
coef_courant:= P.multP !coef_courant c;
pol_courant:= mk_polynom r;
if r=[]
then (info "polynomial reduced to 0\n";
let lcp = map (fun q -> []) !poldep in
let c = !coef_courant in
let (lcq,r) = reduce2_trace (emultP c p) lp lcp in
info "r ok\n";
info ("r: "^(stringP r)^"\n");
let res=ref (emultP c p) in
iter2
(fun cq q -> res:=plusP (!res) (multP cq (ppol q));
)
lcq !poldep;
info ("verif sum: "^(stringP (!res))^"\n");
info ("coefficient: "^(stringP (polconst 1 c))^"\n");
let rec aux lp =
match lp with
|[] -> []
|p::lp ->
(map
(fun q -> coefpoldep_find p q)
lp)::(aux lp)
in
let coefficient_multiplicateur = c in
let liste_polynomes_de_depart = rev lp0 in
let polynome_a_tester = p in
let liste_des_coefficients_intermediaires =
(let lci = rev (aux (rev lp)) in
let lci = ref lci (* (map rev lci) *) in
iter (fun x -> lci := tl (!lci)) lp0;
!lci) in
let liste_des_coefficients =
map
(fun cq -> emultP (coef_of_int (-1)) cq)
(rev lcq) in
(liste_polynomes_de_depart,
polynome_a_tester,
{coef = coefficient_multiplicateur;
power = 1;
gb_comb = liste_des_coefficients_intermediaires;
last_comb = liste_des_coefficients})
)
else ((*info "polynomial not reduced to 0\n";
info ("\nremainder: "^(stringPcut r)^"\n");*)
raise NotInIdeal)
let divide_rem_with_critical_pair = ref false
let list_diff l x =
filter (fun y -> y <> x) l
let deg_hom p =
match p with
| [] -> -1
| (a,m)::_ -> m.(0)
let pbuchf pq p lp0=
info "computation of the Groebner basis\n";
step:=0;
Hashtbl.clear hmon;
let rec pbuchf (lp, lpc) =
infobuch lp lpc;
(* step:=(!step+1)mod 10;*)
match lpc with
[] ->
(* info ("List of polynomials:\n"^(fold_left (fun r p -> r^(stringP p)^"\n") "" lp));
info "--------------------\n";*)
test_dans_ideal (ppol p) lp lp0
| ((i,j),m) :: lpc2 ->
(* info "choosen pair\n";*)
if critere3 ((i,j),m) lp lpc2
then (info "c"; pbuchf (lp, lpc2))
else
let a = spol !allpol.(i) !allpol.(j) in
if !homogeneous && (ppol a)<>[] && deg_hom (ppol a)
> deg_hom (ppol !pol_courant)
then (info "h"; pbuchf (lp, lpc2))
else
(* let sa = a.sugar in*)
let (ca,a0)= reduce2 (ppol a) lp in
match a0 with
[] -> info "0";pbuchf (lp, lpc2)
| _ ->
(* info "pair reduced\n";*)
a.pol := emultP ca (ppol a);
let (lca,a0) = reduce2_trace (ppol a) lp
(map (fun q -> emultP ca (coefpoldep_find a q))
!poldep) in
(* info "paire re-reduced";*)
a.pol := a0;
(* let a0 = new_allpol a0 sa in*)
iter2 (fun c q ->
coefpoldep_remove a q;
coefpoldep_set a q c) lca !poldep;
let a0 = a in
info ("\nnew polynomial: "^(stringPcut (ppol a0))^"\n");
let ct = coef1 (* contentP a0 *) in
(*info ("content: "^(string_of_coef ct)^"\n");*)
poldep:=addS a0 lp;
poldepcontent:=addS ct (!poldepcontent);
try test_dans_ideal (ppol p) (addS a0 lp) lp0
with NotInIdeal ->
let newlpc = add_cpairs a0 lp lpc2 in
pbuchf (((addS a0 lp), newlpc))
in pbuchf pq
let is_homogeneous p =
match p with
| [] -> true
| (a,m)::p1 -> let d = m.(0) in
for_all (fun (b,m') -> m'.(0)=d) p1
(* returns
c
lp = [pn;...;p1]
p
lci = [[a(n+1,n);...;a(n+1,1)];
[a(n+2,n+1);...;a(n+2,1)];
...
[a(n+m,n+m-1);...;a(n+m,1)]]
lc = [qn+m; ... q1]
such that
c*p = sum qi*pi
where pn+k = a(n+k,n+k-1)*pn+k-1 + ... + a(n+k,1)* p1
*)
let in_ideal d lp p =
Hashtbl.clear hmon;
Hashtbl.clear coefpoldep;
nallpol := 0;
allpol := Array.create 1000 polynom0;
homogeneous := for_all is_homogeneous (p::lp);
if !homogeneous then info "homogeneous polynomials\n";
info ("p: "^(stringPcut p)^"\n");
info ("lp:\n"^(fold_left (fun r p -> r^(stringPcut p)^"\n") "" lp));
(*info ("p: "^(stringP p)^"\n");
info ("lp:\n"^(fold_left (fun r p -> r^(stringP p)^"\n") "" lp));*)
let lp = map mk_polynom lp in
let p = mk_polynom p in
initcoefpoldep d lp;
coef_courant:=coef1;
pol_courant:=p;
let (lp1,p1,cert) =
try test_dans_ideal (ppol p) lp lp
with NotInIdeal -> pbuchf (lp, (cpairs lp)) p lp in
info "computed\n";
(map ppol lp1, p1, cert)
(* *)
end
|