1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(**************************************************************************)
(* *)
(* Omega: a solver of quantifier-free problems in Presburger Arithmetic *)
(* *)
(* Pierre Crgut (CNET, Lannion, France) *)
(* *)
(**************************************************************************)
open Util
open Pp
open Reduction
open Proof_type
open Names
open Nameops
open Term
open Declarations
open Environ
open Sign
open Inductive
open Tacticals
open Tacmach
open Evar_refiner
open Tactics
open Clenv
open Logic
open Libnames
open Nametab
open Contradiction
module OmegaSolver = Omega.MakeOmegaSolver (Bigint)
open OmegaSolver
(* Added by JCF, 09/03/98 *)
let elim_id id gl = simplest_elim (pf_global gl id) gl
let resolve_id id gl = apply (pf_global gl id) gl
let timing timer_name f arg = f arg
let display_time_flag = ref false
let display_system_flag = ref false
let display_action_flag = ref false
let old_style_flag = ref false
(* Should we reset all variable labels between two runs of omega ? *)
let reset_flag = ref false
(* Historical version of Coq do not perform such resets, and this
implies that omega is slightly non-deterministic: successive runs of
omega on the same problem may lead to distinct proof-terms.
At the very least, these terms will differ on the inner
variable names, but they could even be non-convertible :
the OmegaSolver relies on Hashtbl.iter, it can hence find a different
solution when variable indices differ.
Starting from Coq 8.4pl4, omega may be made stable via the option
[Set Stable Omega]. In the 8.4 branch, this option is unset by default
for compatibility. In Coq >= 8.5, this option is set by default.
*)
let read f () = !f
let write f x = f:=x
open Goptions
let _ =
declare_bool_option
{ optsync = false;
optdepr = false;
optname = "Omega system time displaying flag";
optkey = ["Omega";"System"];
optread = read display_system_flag;
optwrite = write display_system_flag }
let _ =
declare_bool_option
{ optsync = false;
optdepr = false;
optname = "Omega action display flag";
optkey = ["Omega";"Action"];
optread = read display_action_flag;
optwrite = write display_action_flag }
let _ =
declare_bool_option
{ optsync = false;
optdepr = false;
optname = "Omega old style flag";
optkey = ["Omega";"OldStyle"];
optread = read old_style_flag;
optwrite = write old_style_flag }
let _ =
declare_bool_option
{ optsync = true;
optdepr = false;
optname = "Omega automatic reset of generated names";
optkey = ["Stable";"Omega"];
optread = read reset_flag;
optwrite = write reset_flag }
let all_time = timing "Omega "
let solver_time = timing "Solver "
let exact_time = timing "Rewrites "
let elim_time = timing "Elim "
let simpl_time = timing "Simpl "
let generalize_time = timing "Generalize"
let intref, reset_all_references =
let refs = ref [] in
(fun n -> let r = ref n in refs := (r,n) :: !refs; r),
(fun () -> List.iter (fun (r,n) -> r:=n) !refs)
let new_identifier =
let cpt = intref 0 in
(fun () -> let s = "Omega" ^ string_of_int !cpt in incr cpt; id_of_string s)
let new_identifier_state =
let cpt = intref 0 in
(fun () -> let s = make_ident "State" (Some !cpt) in incr cpt; s)
let new_identifier_var =
let cpt = intref 0 in
(fun () -> let s = "Zvar" ^ string_of_int !cpt in incr cpt; id_of_string s)
let new_id =
let cpt = intref 0 in fun () -> incr cpt; !cpt
let new_var_num =
let cpt = intref 1000 in (fun () -> incr cpt; !cpt)
let new_var =
let cpt = intref 0 in fun () -> incr cpt; Nameops.make_ident "WW" (Some !cpt)
let display_var i = Printf.sprintf "X%d" i
let intern_id,unintern_id,reset_intern_tables =
let cpt = ref 0 in
let table = Hashtbl.create 7 and co_table = Hashtbl.create 7 in
(fun (name : identifier) ->
try Hashtbl.find table name with Not_found ->
let idx = !cpt in
Hashtbl.add table name idx;
Hashtbl.add co_table idx name;
incr cpt; idx),
(fun idx ->
try Hashtbl.find co_table idx with Not_found ->
let v = new_var () in
Hashtbl.add table v idx; Hashtbl.add co_table idx v; v),
(fun () -> cpt := 0; Hashtbl.clear table)
let mk_then = tclTHENLIST
let exists_tac c = constructor_tac false (Some 1) 1 (Glob_term.ImplicitBindings [c])
let generalize_tac t = generalize_time (generalize t)
let elim t = elim_time (simplest_elim t)
let exact t = exact_time (Tactics.refine t)
let unfold s = Tactics.unfold_in_concl [Termops.all_occurrences, Lazy.force s]
let rev_assoc k =
let rec loop = function
| [] -> raise Not_found | (v,k')::_ when k = k' -> v | _ :: l -> loop l
in
loop
let tag_hypothesis,tag_of_hyp, hyp_of_tag, clear_tags =
let l = ref ([]:(identifier * int) list) in
(fun h id -> l := (h,id):: !l),
(fun h -> try List.assoc h !l with Not_found -> failwith "tag_hypothesis"),
(fun h -> try rev_assoc h !l with Not_found -> failwith "tag_hypothesis"),
(fun () -> l := [])
let hide_constr,find_constr,clear_constr_tables,dump_tables =
let l = ref ([]:(constr * (identifier * identifier * bool)) list) in
(fun h id eg b -> l := (h,(id,eg,b)):: !l),
(fun h -> try list_assoc_f eq_constr h !l with Not_found -> failwith "find_contr"),
(fun () -> l := []),
(fun () -> !l)
let reset_all () =
if !reset_flag then begin
reset_all_references ();
reset_intern_tables ();
clear_tags ();
clear_constr_tables ()
end
(* Lazy evaluation is used for Coq constants, because this code
is evaluated before the compiled modules are loaded.
To use the constant Zplus, one must type "Lazy.force coq_Zplus"
This is the right way to access to Coq constants in tactics ML code *)
open Coqlib
let logic_dir = ["Coq";"Logic";"Decidable"]
let coq_modules =
init_modules @arith_modules @ [logic_dir] @ zarith_base_modules
@ [["Coq"; "omega"; "OmegaLemmas"]]
let init_constant = gen_constant_in_modules "Omega" init_modules
let constant = gen_constant_in_modules "Omega" coq_modules
let z_constant = gen_constant_in_modules "Omega" [["Coq";"ZArith"]]
let zbase_constant =
gen_constant_in_modules "Omega" [["Coq";"ZArith";"BinInt"]]
(* Zarith *)
let coq_xH = lazy (constant "xH")
let coq_xO = lazy (constant "xO")
let coq_xI = lazy (constant "xI")
let coq_Z0 = lazy (constant "Z0")
let coq_Zpos = lazy (constant "Zpos")
let coq_Zneg = lazy (constant "Zneg")
let coq_Z = lazy (constant "Z")
let coq_comparison = lazy (constant "comparison")
let coq_Gt = lazy (constant "Gt")
let coq_Zplus = lazy (zbase_constant "Z.add")
let coq_Zmult = lazy (zbase_constant "Z.mul")
let coq_Zopp = lazy (zbase_constant "Z.opp")
let coq_Zminus = lazy (zbase_constant "Z.sub")
let coq_Zsucc = lazy (zbase_constant "Z.succ")
let coq_Zpred = lazy (zbase_constant "Z.pred")
let coq_Zgt = lazy (zbase_constant "Z.gt")
let coq_Zle = lazy (zbase_constant "Z.le")
let coq_Z_of_nat = lazy (zbase_constant "Z.of_nat")
let coq_inj_plus = lazy (z_constant "Nat2Z.inj_add")
let coq_inj_mult = lazy (z_constant "Nat2Z.inj_mul")
let coq_inj_minus1 = lazy (z_constant "Nat2Z.inj_sub")
let coq_inj_minus2 = lazy (constant "inj_minus2")
let coq_inj_S = lazy (z_constant "Nat2Z.inj_succ")
let coq_inj_le = lazy (z_constant "Znat.inj_le")
let coq_inj_lt = lazy (z_constant "Znat.inj_lt")
let coq_inj_ge = lazy (z_constant "Znat.inj_ge")
let coq_inj_gt = lazy (z_constant "Znat.inj_gt")
let coq_inj_neq = lazy (z_constant "inj_neq")
let coq_inj_eq = lazy (z_constant "inj_eq")
let coq_fast_Zplus_assoc_reverse = lazy (constant "fast_Zplus_assoc_reverse")
let coq_fast_Zplus_assoc = lazy (constant "fast_Zplus_assoc")
let coq_fast_Zmult_assoc_reverse = lazy (constant "fast_Zmult_assoc_reverse")
let coq_fast_Zplus_permute = lazy (constant "fast_Zplus_permute")
let coq_fast_Zplus_comm = lazy (constant "fast_Zplus_comm")
let coq_fast_Zmult_comm = lazy (constant "fast_Zmult_comm")
let coq_Zmult_le_approx = lazy (constant "Zmult_le_approx")
let coq_OMEGA1 = lazy (constant "OMEGA1")
let coq_OMEGA2 = lazy (constant "OMEGA2")
let coq_OMEGA3 = lazy (constant "OMEGA3")
let coq_OMEGA4 = lazy (constant "OMEGA4")
let coq_OMEGA5 = lazy (constant "OMEGA5")
let coq_OMEGA6 = lazy (constant "OMEGA6")
let coq_OMEGA7 = lazy (constant "OMEGA7")
let coq_OMEGA8 = lazy (constant "OMEGA8")
let coq_OMEGA9 = lazy (constant "OMEGA9")
let coq_fast_OMEGA10 = lazy (constant "fast_OMEGA10")
let coq_fast_OMEGA11 = lazy (constant "fast_OMEGA11")
let coq_fast_OMEGA12 = lazy (constant "fast_OMEGA12")
let coq_fast_OMEGA13 = lazy (constant "fast_OMEGA13")
let coq_fast_OMEGA14 = lazy (constant "fast_OMEGA14")
let coq_fast_OMEGA15 = lazy (constant "fast_OMEGA15")
let coq_fast_OMEGA16 = lazy (constant "fast_OMEGA16")
let coq_OMEGA17 = lazy (constant "OMEGA17")
let coq_OMEGA18 = lazy (constant "OMEGA18")
let coq_OMEGA19 = lazy (constant "OMEGA19")
let coq_OMEGA20 = lazy (constant "OMEGA20")
let coq_fast_Zred_factor0 = lazy (constant "fast_Zred_factor0")
let coq_fast_Zred_factor1 = lazy (constant "fast_Zred_factor1")
let coq_fast_Zred_factor2 = lazy (constant "fast_Zred_factor2")
let coq_fast_Zred_factor3 = lazy (constant "fast_Zred_factor3")
let coq_fast_Zred_factor4 = lazy (constant "fast_Zred_factor4")
let coq_fast_Zred_factor5 = lazy (constant "fast_Zred_factor5")
let coq_fast_Zred_factor6 = lazy (constant "fast_Zred_factor6")
let coq_fast_Zmult_plus_distr_l = lazy (constant "fast_Zmult_plus_distr_l")
let coq_fast_Zmult_opp_comm = lazy (constant "fast_Zmult_opp_comm")
let coq_fast_Zopp_plus_distr = lazy (constant "fast_Zopp_plus_distr")
let coq_fast_Zopp_mult_distr_r = lazy (constant "fast_Zopp_mult_distr_r")
let coq_fast_Zopp_eq_mult_neg_1 = lazy (constant "fast_Zopp_eq_mult_neg_1")
let coq_fast_Zopp_involutive = lazy (constant "fast_Zopp_involutive")
let coq_Zegal_left = lazy (constant "Zegal_left")
let coq_Zne_left = lazy (constant "Zne_left")
let coq_Zlt_left = lazy (constant "Zlt_left")
let coq_Zge_left = lazy (constant "Zge_left")
let coq_Zgt_left = lazy (constant "Zgt_left")
let coq_Zle_left = lazy (constant "Zle_left")
let coq_new_var = lazy (constant "new_var")
let coq_intro_Z = lazy (constant "intro_Z")
let coq_dec_eq = lazy (zbase_constant "Z.eq_decidable")
let coq_dec_Zne = lazy (constant "dec_Zne")
let coq_dec_Zle = lazy (zbase_constant "Z.le_decidable")
let coq_dec_Zlt = lazy (zbase_constant "Z.lt_decidable")
let coq_dec_Zgt = lazy (constant "dec_Zgt")
let coq_dec_Zge = lazy (constant "dec_Zge")
let coq_not_Zeq = lazy (constant "not_Zeq")
let coq_not_Zne = lazy (constant "not_Zne")
let coq_Znot_le_gt = lazy (constant "Znot_le_gt")
let coq_Znot_lt_ge = lazy (constant "Znot_lt_ge")
let coq_Znot_ge_lt = lazy (constant "Znot_ge_lt")
let coq_Znot_gt_le = lazy (constant "Znot_gt_le")
let coq_neq = lazy (constant "neq")
let coq_Zne = lazy (constant "Zne")
let coq_Zle = lazy (zbase_constant "Z.le")
let coq_Zgt = lazy (zbase_constant "Z.gt")
let coq_Zge = lazy (zbase_constant "Z.ge")
let coq_Zlt = lazy (zbase_constant "Z.lt")
(* Peano/Datatypes *)
let coq_le = lazy (init_constant "le")
let coq_lt = lazy (init_constant "lt")
let coq_ge = lazy (init_constant "ge")
let coq_gt = lazy (init_constant "gt")
let coq_minus = lazy (init_constant "minus")
let coq_plus = lazy (init_constant "plus")
let coq_mult = lazy (init_constant "mult")
let coq_pred = lazy (init_constant "pred")
let coq_nat = lazy (init_constant "nat")
let coq_S = lazy (init_constant "S")
let coq_O = lazy (init_constant "O")
(* Compare_dec/Peano_dec/Minus *)
let coq_pred_of_minus = lazy (constant "pred_of_minus")
let coq_le_gt_dec = lazy (constant "le_gt_dec")
let coq_dec_eq_nat = lazy (constant "dec_eq_nat")
let coq_dec_le = lazy (constant "dec_le")
let coq_dec_lt = lazy (constant "dec_lt")
let coq_dec_ge = lazy (constant "dec_ge")
let coq_dec_gt = lazy (constant "dec_gt")
let coq_not_eq = lazy (constant "not_eq")
let coq_not_le = lazy (constant "not_le")
let coq_not_lt = lazy (constant "not_lt")
let coq_not_ge = lazy (constant "not_ge")
let coq_not_gt = lazy (constant "not_gt")
(* Logic/Decidable *)
let coq_eq_ind_r = lazy (constant "eq_ind_r")
let coq_dec_or = lazy (constant "dec_or")
let coq_dec_and = lazy (constant "dec_and")
let coq_dec_imp = lazy (constant "dec_imp")
let coq_dec_iff = lazy (constant "dec_iff")
let coq_dec_not = lazy (constant "dec_not")
let coq_dec_False = lazy (constant "dec_False")
let coq_dec_not_not = lazy (constant "dec_not_not")
let coq_dec_True = lazy (constant "dec_True")
let coq_not_or = lazy (constant "not_or")
let coq_not_and = lazy (constant "not_and")
let coq_not_imp = lazy (constant "not_imp")
let coq_not_iff = lazy (constant "not_iff")
let coq_not_not = lazy (constant "not_not")
let coq_imp_simp = lazy (constant "imp_simp")
let coq_iff = lazy (constant "iff")
(* uses build_coq_and, build_coq_not, build_coq_or, build_coq_ex *)
(* For unfold *)
open Closure
let evaluable_ref_of_constr s c = match kind_of_term (Lazy.force c) with
| Const kn when Tacred.is_evaluable (Global.env()) (EvalConstRef kn) ->
EvalConstRef kn
| _ -> anomaly ("Coq_omega: "^s^" is not an evaluable constant")
let sp_Zsucc = lazy (evaluable_ref_of_constr "Z.succ" coq_Zsucc)
let sp_Zpred = lazy (evaluable_ref_of_constr "Z.pred" coq_Zpred)
let sp_Zminus = lazy (evaluable_ref_of_constr "Z.sub" coq_Zminus)
let sp_Zle = lazy (evaluable_ref_of_constr "Z.le" coq_Zle)
let sp_Zgt = lazy (evaluable_ref_of_constr "Z.gt" coq_Zgt)
let sp_Zge = lazy (evaluable_ref_of_constr "Z.ge" coq_Zge)
let sp_Zlt = lazy (evaluable_ref_of_constr "Z.lt" coq_Zlt)
let sp_not = lazy (evaluable_ref_of_constr "not" (lazy (build_coq_not ())))
let mk_var v = mkVar (id_of_string v)
let mk_plus t1 t2 = mkApp (Lazy.force coq_Zplus, [| t1; t2 |])
let mk_times t1 t2 = mkApp (Lazy.force coq_Zmult, [| t1; t2 |])
let mk_minus t1 t2 = mkApp (Lazy.force coq_Zminus, [| t1;t2 |])
let mk_eq t1 t2 = mkApp (build_coq_eq (), [| Lazy.force coq_Z; t1; t2 |])
let mk_le t1 t2 = mkApp (Lazy.force coq_Zle, [| t1; t2 |])
let mk_gt t1 t2 = mkApp (Lazy.force coq_Zgt, [| t1; t2 |])
let mk_inv t = mkApp (Lazy.force coq_Zopp, [| t |])
let mk_and t1 t2 = mkApp (build_coq_and (), [| t1; t2 |])
let mk_or t1 t2 = mkApp (build_coq_or (), [| t1; t2 |])
let mk_not t = mkApp (build_coq_not (), [| t |])
let mk_eq_rel t1 t2 = mkApp (build_coq_eq (),
[| Lazy.force coq_comparison; t1; t2 |])
let mk_inj t = mkApp (Lazy.force coq_Z_of_nat, [| t |])
let mk_integer n =
let rec loop n =
if n =? one then Lazy.force coq_xH else
mkApp((if n mod two =? zero then Lazy.force coq_xO else Lazy.force coq_xI),
[| loop (n/two) |])
in
if n =? zero then Lazy.force coq_Z0
else mkApp ((if n >? zero then Lazy.force coq_Zpos else Lazy.force coq_Zneg),
[| loop (abs n) |])
type omega_constant =
| Zplus | Zmult | Zminus | Zsucc | Zopp | Zpred
| Plus | Mult | Minus | Pred | S | O
| Zpos | Zneg | Z0 | Z_of_nat
| Eq | Neq
| Zne | Zle | Zlt | Zge | Zgt
| Z | Nat
| And | Or | False | True | Not | Iff
| Le | Lt | Ge | Gt
| Other of string
type omega_proposition =
| Keq of constr * constr * constr
| Kn
type result =
| Kvar of identifier
| Kapp of omega_constant * constr list
| Kimp of constr * constr
| Kufo
(* Nota: Kimp correspond to a binder (Prod), but hopefully we won't
have to bother with term lifting: Kimp will correspond to anonymous
product, for which (Rel 1) doesn't occur in the right term.
Moreover, we'll work on fully introduced goals, hence no Rel's in
the term parts that we manipulate, but rather Var's.
Said otherwise: all constr manipulated here are closed *)
let destructurate_prop t =
let c, args = decompose_app t in
match kind_of_term c, args with
| _, [_;_;_] when eq_constr c (build_coq_eq ()) -> Kapp (Eq,args)
| _, [_;_] when eq_constr c (Lazy.force coq_neq) -> Kapp (Neq,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zne) -> Kapp (Zne,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zle) -> Kapp (Zle,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zlt) -> Kapp (Zlt,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zge) -> Kapp (Zge,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zgt) -> Kapp (Zgt,args)
| _, [_;_] when eq_constr c (build_coq_and ()) -> Kapp (And,args)
| _, [_;_] when eq_constr c (build_coq_or ()) -> Kapp (Or,args)
| _, [_;_] when eq_constr c (Lazy.force coq_iff) -> Kapp (Iff, args)
| _, [_] when eq_constr c (build_coq_not ()) -> Kapp (Not,args)
| _, [] when eq_constr c (build_coq_False ()) -> Kapp (False,args)
| _, [] when eq_constr c (build_coq_True ()) -> Kapp (True,args)
| _, [_;_] when eq_constr c (Lazy.force coq_le) -> Kapp (Le,args)
| _, [_;_] when eq_constr c (Lazy.force coq_lt) -> Kapp (Lt,args)
| _, [_;_] when eq_constr c (Lazy.force coq_ge) -> Kapp (Ge,args)
| _, [_;_] when eq_constr c (Lazy.force coq_gt) -> Kapp (Gt,args)
| Const sp, args ->
Kapp (Other (string_of_path (path_of_global (ConstRef sp))),args)
| Construct csp , args ->
Kapp (Other (string_of_path (path_of_global (ConstructRef csp))), args)
| Ind isp, args ->
Kapp (Other (string_of_path (path_of_global (IndRef isp))),args)
| Var id,[] -> Kvar id
| Prod (Anonymous,typ,body), [] -> Kimp(typ,body)
| Prod (Name _,_,_),[] -> error "Omega: Not a quantifier-free goal"
| _ -> Kufo
let destructurate_type t =
let c, args = decompose_app t in
match kind_of_term c, args with
| _, [] when eq_constr c (Lazy.force coq_Z) -> Kapp (Z,args)
| _, [] when eq_constr c (Lazy.force coq_nat) -> Kapp (Nat,args)
| _ -> Kufo
let destructurate_term t =
let c, args = decompose_app t in
match kind_of_term c, args with
| _, [_;_] when eq_constr c (Lazy.force coq_Zplus) -> Kapp (Zplus,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zmult) -> Kapp (Zmult,args)
| _, [_;_] when eq_constr c (Lazy.force coq_Zminus) -> Kapp (Zminus,args)
| _, [_] when eq_constr c (Lazy.force coq_Zsucc) -> Kapp (Zsucc,args)
| _, [_] when eq_constr c (Lazy.force coq_Zpred) -> Kapp (Zpred,args)
| _, [_] when eq_constr c (Lazy.force coq_Zopp) -> Kapp (Zopp,args)
| _, [_;_] when eq_constr c (Lazy.force coq_plus) -> Kapp (Plus,args)
| _, [_;_] when eq_constr c (Lazy.force coq_mult) -> Kapp (Mult,args)
| _, [_;_] when eq_constr c (Lazy.force coq_minus) -> Kapp (Minus,args)
| _, [_] when eq_constr c (Lazy.force coq_pred) -> Kapp (Pred,args)
| _, [_] when eq_constr c (Lazy.force coq_S) -> Kapp (S,args)
| _, [] when eq_constr c (Lazy.force coq_O) -> Kapp (O,args)
| _, [_] when eq_constr c (Lazy.force coq_Zpos) -> Kapp (Zneg,args)
| _, [_] when eq_constr c (Lazy.force coq_Zneg) -> Kapp (Zpos,args)
| _, [] when eq_constr c (Lazy.force coq_Z0) -> Kapp (Z0,args)
| _, [_] when eq_constr c (Lazy.force coq_Z_of_nat) -> Kapp (Z_of_nat,args)
| Var id,[] -> Kvar id
| _ -> Kufo
let recognize_number t =
let rec loop t =
match decompose_app t with
| f, [t] when eq_constr f (Lazy.force coq_xI) -> one + two * loop t
| f, [t] when eq_constr f (Lazy.force coq_xO) -> two * loop t
| f, [] when eq_constr f (Lazy.force coq_xH) -> one
| _ -> failwith "not a number"
in
match decompose_app t with
| f, [t] when eq_constr f (Lazy.force coq_Zpos) -> loop t
| f, [t] when eq_constr f (Lazy.force coq_Zneg) -> neg (loop t)
| f, [] when eq_constr f (Lazy.force coq_Z0) -> zero
| _ -> failwith "not a number"
type constr_path =
| P_APP of int
(* Abstraction and product *)
| P_BODY
| P_TYPE
(* Case *)
| P_BRANCH of int
| P_ARITY
| P_ARG
let context operation path (t : constr) =
let rec loop i p0 t =
match (p0,kind_of_term t) with
| (p, Cast (c,k,t)) -> mkCast (loop i p c,k,t)
| ([], _) -> operation i t
| ((P_APP n :: p), App (f,v)) ->
let v' = Array.copy v in
v'.(pred n) <- loop i p v'.(pred n); mkApp (f, v')
| ((P_BRANCH n :: p), Case (ci,q,c,v)) ->
(* avant, y avait mkApp... anyway, BRANCH seems nowhere used *)
let v' = Array.copy v in
v'.(n) <- loop i p v'.(n); (mkCase (ci,q,c,v'))
| ((P_ARITY :: p), App (f,l)) ->
appvect (loop i p f,l)
| ((P_ARG :: p), App (f,v)) ->
let v' = Array.copy v in
v'.(0) <- loop i p v'.(0); mkApp (f,v')
| (p, Fix ((_,n as ln),(tys,lna,v))) ->
let l = Array.length v in
let v' = Array.copy v in
v'.(n)<- loop (Pervasives.(+) i l) p v.(n); (mkFix (ln,(tys,lna,v')))
| ((P_BODY :: p), Prod (n,t,c)) ->
(mkProd (n,t,loop (succ i) p c))
| ((P_BODY :: p), Lambda (n,t,c)) ->
(mkLambda (n,t,loop (succ i) p c))
| ((P_BODY :: p), LetIn (n,b,t,c)) ->
(mkLetIn (n,b,t,loop (succ i) p c))
| ((P_TYPE :: p), Prod (n,t,c)) ->
(mkProd (n,loop i p t,c))
| ((P_TYPE :: p), Lambda (n,t,c)) ->
(mkLambda (n,loop i p t,c))
| ((P_TYPE :: p), LetIn (n,b,t,c)) ->
(mkLetIn (n,b,loop i p t,c))
| (p, _) ->
ppnl (Printer.pr_lconstr t);
failwith ("abstract_path " ^ string_of_int(List.length p))
in
loop 1 path t
let occurence path (t : constr) =
let rec loop p0 t = match (p0,kind_of_term t) with
| (p, Cast (c,_,_)) -> loop p c
| ([], _) -> t
| ((P_APP n :: p), App (f,v)) -> loop p v.(pred n)
| ((P_BRANCH n :: p), Case (_,_,_,v)) -> loop p v.(n)
| ((P_ARITY :: p), App (f,_)) -> loop p f
| ((P_ARG :: p), App (f,v)) -> loop p v.(0)
| (p, Fix((_,n) ,(_,_,v))) -> loop p v.(n)
| ((P_BODY :: p), Prod (n,t,c)) -> loop p c
| ((P_BODY :: p), Lambda (n,t,c)) -> loop p c
| ((P_BODY :: p), LetIn (n,b,t,c)) -> loop p c
| ((P_TYPE :: p), Prod (n,term,c)) -> loop p term
| ((P_TYPE :: p), Lambda (n,term,c)) -> loop p term
| ((P_TYPE :: p), LetIn (n,b,term,c)) -> loop p term
| (p, _) ->
ppnl (Printer.pr_lconstr t);
failwith ("occurence " ^ string_of_int(List.length p))
in
loop path t
let abstract_path typ path t =
let term_occur = ref (mkRel 0) in
let abstract = context (fun i t -> term_occur:= t; mkRel i) path t in
mkLambda (Name (id_of_string "x"), typ, abstract), !term_occur
let focused_simpl path gl =
let newc = context (fun i t -> pf_nf gl t) (List.rev path) (pf_concl gl) in
convert_concl_no_check newc DEFAULTcast gl
let focused_simpl path = simpl_time (focused_simpl path)
type oformula =
| Oplus of oformula * oformula
| Oinv of oformula
| Otimes of oformula * oformula
| Oatom of identifier
| Oz of bigint
| Oufo of constr
let rec oprint = function
| Oplus(t1,t2) ->
print_string "("; oprint t1; print_string "+";
oprint t2; print_string ")"
| Oinv t -> print_string "~"; oprint t
| Otimes (t1,t2) ->
print_string "("; oprint t1; print_string "*";
oprint t2; print_string ")"
| Oatom s -> print_string (string_of_id s)
| Oz i -> print_string (string_of_bigint i)
| Oufo f -> print_string "?"
let rec weight = function
| Oatom c -> intern_id c
| Oz _ -> -1
| Oinv c -> weight c
| Otimes(c,_) -> weight c
| Oplus _ -> failwith "weight"
| Oufo _ -> -1
let rec val_of = function
| Oatom c -> mkVar c
| Oz c -> mk_integer c
| Oinv c -> mkApp (Lazy.force coq_Zopp, [| val_of c |])
| Otimes (t1,t2) -> mkApp (Lazy.force coq_Zmult, [| val_of t1; val_of t2 |])
| Oplus(t1,t2) -> mkApp (Lazy.force coq_Zplus, [| val_of t1; val_of t2 |])
| Oufo c -> c
let compile name kind =
let rec loop accu = function
| Oplus(Otimes(Oatom v,Oz n),r) -> loop ({v=intern_id v; c=n} :: accu) r
| Oz n ->
let id = new_id () in
tag_hypothesis name id;
{kind = kind; body = List.rev accu; constant = n; id = id}
| _ -> anomaly "compile_equation"
in
loop []
let rec decompile af =
let rec loop = function
| ({v=v; c=n}::r) -> Oplus(Otimes(Oatom (unintern_id v),Oz n),loop r)
| [] -> Oz af.constant
in
loop af.body
let mkNewMeta () = mkMeta (Evarutil.new_meta())
let clever_rewrite_base_poly typ p result theorem gl =
let full = pf_concl gl in
let (abstracted,occ) = abstract_path typ (List.rev p) full in
let t =
applist
(mkLambda
(Name (id_of_string "P"),
mkArrow typ mkProp,
mkLambda
(Name (id_of_string "H"),
applist (mkRel 1,[result]),
mkApp (Lazy.force coq_eq_ind_r,
[| typ; result; mkRel 2; mkRel 1; occ; theorem |]))),
[abstracted])
in
exact (applist(t,[mkNewMeta()])) gl
let clever_rewrite_base p result theorem gl =
clever_rewrite_base_poly (Lazy.force coq_Z) p result theorem gl
let clever_rewrite_base_nat p result theorem gl =
clever_rewrite_base_poly (Lazy.force coq_nat) p result theorem gl
let clever_rewrite_gen p result (t,args) =
let theorem = applist(t, args) in
clever_rewrite_base p result theorem
let clever_rewrite_gen_nat p result (t,args) =
let theorem = applist(t, args) in
clever_rewrite_base_nat p result theorem
let clever_rewrite p vpath t gl =
let full = pf_concl gl in
let (abstracted,occ) = abstract_path (Lazy.force coq_Z) (List.rev p) full in
let vargs = List.map (fun p -> occurence p occ) vpath in
let t' = applist(t, (vargs @ [abstracted])) in
exact (applist(t',[mkNewMeta()])) gl
let rec shuffle p (t1,t2) =
match t1,t2 with
| Oplus(l1,r1), Oplus(l2,r2) ->
if weight l1 > weight l2 then
let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
(clever_rewrite p [[P_APP 1;P_APP 1];
[P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse)
:: tac,
Oplus(l1,t'))
else
let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
(clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zplus_permute)
:: tac,
Oplus(l2,t'))
| Oplus(l1,r1), t2 ->
if weight l1 > weight t2 then
let (tac,t') = shuffle (P_APP 2 :: p) (r1,t2) in
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse)
:: tac,
Oplus(l1, t')
else
[clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zplus_comm)],
Oplus(t2,t1)
| t1,Oplus(l2,r2) ->
if weight l2 > weight t1 then
let (tac,t') = shuffle (P_APP 2 :: p) (t1,r2) in
clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zplus_permute)
:: tac,
Oplus(l2,t')
else [],Oplus(t1,t2)
| Oz t1,Oz t2 ->
[focused_simpl p], Oz(Bigint.add t1 t2)
| t1,t2 ->
if weight t1 < weight t2 then
[clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zplus_comm)],
Oplus(t2,t1)
else [],Oplus(t1,t2)
let rec shuffle_mult p_init k1 e1 k2 e2 =
let rec loop p = function
| (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
if v1 = v2 then
let tac =
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA10)
in
if Bigint.add (Bigint.mult k1 c1) (Bigint.mult k2 c2) =? zero then
let tac' =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5) in
tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
loop p (l1,l2)
else tac :: loop (P_APP 2 :: p) (l1,l2)
else if v1 > v2 then
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2];
[P_APP 2];
[P_APP 1; P_APP 2]]
(Lazy.force coq_fast_OMEGA11) ::
loop (P_APP 2 :: p) (l1,l2')
else
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) (l1',l2)
| ({c=c1;v=v1}::l1), [] ->
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2];
[P_APP 2];
[P_APP 1; P_APP 2]]
(Lazy.force coq_fast_OMEGA11) ::
loop (P_APP 2 :: p) (l1,[])
| [],({c=c2;v=v2}::l2) ->
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) ([],l2)
| [],[] -> [focused_simpl p_init]
in
loop p_init (e1,e2)
let rec shuffle_mult_right p_init e1 k2 e2 =
let rec loop p = function
| (({c=c1;v=v1}::l1) as l1'),(({c=c2;v=v2}::l2) as l2') ->
if v1 = v2 then
let tac =
clever_rewrite p
[[P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 2];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA15)
in
if Bigint.add c1 (Bigint.mult k2 c2) =? zero then
let tac' =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5)
in
tac :: focused_simpl (P_APP 1::P_APP 2:: p) :: tac' ::
loop p (l1,l2)
else tac :: loop (P_APP 2 :: p) (l1,l2)
else if v1 > v2 then
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse) ::
loop (P_APP 2 :: p) (l1,l2')
else
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) (l1',l2)
| ({c=c1;v=v1}::l1), [] ->
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse) ::
loop (P_APP 2 :: p) (l1,[])
| [],({c=c2;v=v2}::l2) ->
clever_rewrite p [[P_APP 2; P_APP 1; P_APP 1; P_APP 1];
[P_APP 2; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1];
[P_APP 2; P_APP 1; P_APP 2];
[P_APP 2; P_APP 2]]
(Lazy.force coq_fast_OMEGA12) ::
loop (P_APP 2 :: p) ([],l2)
| [],[] -> [focused_simpl p_init]
in
loop p_init (e1,e2)
let rec shuffle_cancel p = function
| [] -> [focused_simpl p]
| ({c=c1}::l1) ->
let tac =
clever_rewrite p [[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 2];
[P_APP 2; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2; P_APP 1]]
(if c1 >? zero then
(Lazy.force coq_fast_OMEGA13)
else
(Lazy.force coq_fast_OMEGA14))
in
tac :: shuffle_cancel p l1
let rec scalar p n = function
| Oplus(t1,t2) ->
let tac1,t1' = scalar (P_APP 1 :: p) n t1 and
tac2,t2' = scalar (P_APP 2 :: p) n t2 in
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zmult_plus_distr_l) ::
(tac1 @ tac2), Oplus(t1',t2')
| Oinv t ->
[clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zmult_opp_comm);
focused_simpl (P_APP 2 :: p)], Otimes(t,Oz(neg n))
| Otimes(t1,Oz x) ->
[clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zmult_assoc_reverse);
focused_simpl (P_APP 2 :: p)],
Otimes(t1,Oz (n*x))
| Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
| (Oatom _ as t) -> [], Otimes(t,Oz n)
| Oz i -> [focused_simpl p],Oz(n*i)
| Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zmult, [| mk_integer n; c |]))
let rec scalar_norm p_init =
let rec loop p = function
| [] -> [focused_simpl p_init]
| (_::l) ->
clever_rewrite p
[[P_APP 1; P_APP 1; P_APP 1];[P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_OMEGA16) :: loop (P_APP 2 :: p) l
in
loop p_init
let rec norm_add p_init =
let rec loop p = function
| [] -> [focused_simpl p_init]
| _:: l ->
clever_rewrite p [[P_APP 1;P_APP 1]; [P_APP 1; P_APP 2];[P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc_reverse) ::
loop (P_APP 2 :: p) l
in
loop p_init
let rec scalar_norm_add p_init =
let rec loop p = function
| [] -> [focused_simpl p_init]
| _ :: l ->
clever_rewrite p
[[P_APP 1; P_APP 1; P_APP 1; P_APP 1];
[P_APP 1; P_APP 1; P_APP 1; P_APP 2];
[P_APP 1; P_APP 1; P_APP 2]; [P_APP 2]; [P_APP 1; P_APP 2]]
(Lazy.force coq_fast_OMEGA11) :: loop (P_APP 2 :: p) l
in
loop p_init
let rec negate p = function
| Oplus(t1,t2) ->
let tac1,t1' = negate (P_APP 1 :: p) t1 and
tac2,t2' = negate (P_APP 2 :: p) t2 in
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
(Lazy.force coq_fast_Zopp_plus_distr) ::
(tac1 @ tac2),
Oplus(t1',t2')
| Oinv t ->
[clever_rewrite p [[P_APP 1;P_APP 1]] (Lazy.force coq_fast_Zopp_involutive)], t
| Otimes(t1,Oz x) ->
[clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 1;P_APP 2]]
(Lazy.force coq_fast_Zopp_mult_distr_r);
focused_simpl (P_APP 2 :: p)], Otimes(t1,Oz (neg x))
| Otimes(t1,t2) -> error "Omega: Can't solve a goal with non-linear products"
| (Oatom _ as t) ->
let r = Otimes(t,Oz(negone)) in
[clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1)], r
| Oz i -> [focused_simpl p],Oz(neg i)
| Oufo c -> [], Oufo (mkApp (Lazy.force coq_Zopp, [| c |]))
let rec transform p t =
let default isnat t' =
try
let v,th,_ = find_constr t' in
[clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
with e when Errors.noncritical e ->
let v = new_identifier_var ()
and th = new_identifier () in
hide_constr t' v th isnat;
[clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
in
try match destructurate_term t with
| Kapp(Zplus,[t1;t2]) ->
let tac1,t1' = transform (P_APP 1 :: p) t1
and tac2,t2' = transform (P_APP 2 :: p) t2 in
let tac,t' = shuffle p (t1',t2') in
tac1 @ tac2 @ tac, t'
| Kapp(Zminus,[t1;t2]) ->
let tac,t =
transform p
(mkApp (Lazy.force coq_Zplus,
[| t1; (mkApp (Lazy.force coq_Zopp, [| t2 |])) |])) in
unfold sp_Zminus :: tac,t
| Kapp(Zsucc,[t1]) ->
let tac,t = transform p (mkApp (Lazy.force coq_Zplus,
[| t1; mk_integer one |])) in
unfold sp_Zsucc :: tac,t
| Kapp(Zpred,[t1]) ->
let tac,t = transform p (mkApp (Lazy.force coq_Zplus,
[| t1; mk_integer negone |])) in
unfold sp_Zpred :: tac,t
| Kapp(Zmult,[t1;t2]) ->
let tac1,t1' = transform (P_APP 1 :: p) t1
and tac2,t2' = transform (P_APP 2 :: p) t2 in
begin match t1',t2' with
| (_,Oz n) -> let tac,t' = scalar p n t1' in tac1 @ tac2 @ tac,t'
| (Oz n,_) ->
let sym =
clever_rewrite p [[P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zmult_comm) in
let tac,t' = scalar p n t2' in tac1 @ tac2 @ (sym :: tac),t'
| _ -> default false t
end
| Kapp((Zpos|Zneg|Z0),_) ->
(try ([],Oz(recognize_number t))
with e when Errors.noncritical e -> default false t)
| Kvar s -> [],Oatom s
| Kapp(Zopp,[t]) ->
let tac,t' = transform (P_APP 1 :: p) t in
let tac',t'' = negate p t' in
tac @ tac', t''
| Kapp(Z_of_nat,[t']) -> default true t'
| _ -> default false t
with e when catchable_exception e -> default false t
let shrink_pair p f1 f2 =
match f1,f2 with
| Oatom v,Oatom _ ->
let r = Otimes(Oatom v,Oz two) in
clever_rewrite p [[P_APP 1]] (Lazy.force coq_fast_Zred_factor1), r
| Oatom v, Otimes(_,c2) ->
let r = Otimes(Oatom v,Oplus(c2,Oz one)) in
clever_rewrite p [[P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zred_factor2), r
| Otimes (v1,c1),Oatom v ->
let r = Otimes(Oatom v,Oplus(c1,Oz one)) in
clever_rewrite p [[P_APP 2];[P_APP 1;P_APP 2]]
(Lazy.force coq_fast_Zred_factor3), r
| Otimes (Oatom v,c1),Otimes (v2,c2) ->
let r = Otimes(Oatom v,Oplus(c1,c2)) in
clever_rewrite p
[[P_APP 1;P_APP 1];[P_APP 1;P_APP 2];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zred_factor4),r
| t1,t2 ->
begin
oprint t1; print_newline (); oprint t2; print_newline ();
flush Pervasives.stdout; error "shrink.1"
end
let reduce_factor p = function
| Oatom v ->
let r = Otimes(Oatom v,Oz one) in
[clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor0)],r
| Otimes(Oatom v,Oz n) as f -> [],f
| Otimes(Oatom v,c) ->
let rec compute = function
| Oz n -> n
| Oplus(t1,t2) -> Bigint.add (compute t1) (compute t2)
| _ -> error "condense.1"
in
[focused_simpl (P_APP 2 :: p)], Otimes(Oatom v,Oz(compute c))
| t -> oprint t; error "reduce_factor.1"
let rec condense p = function
| Oplus(f1,(Oplus(f2,r) as t)) ->
if weight f1 = weight f2 then begin
let shrink_tac,t = shrink_pair (P_APP 1 :: p) f1 f2 in
let assoc_tac =
clever_rewrite p
[[P_APP 1];[P_APP 2;P_APP 1];[P_APP 2;P_APP 2]]
(Lazy.force coq_fast_Zplus_assoc) in
let tac_list,t' = condense p (Oplus(t,r)) in
(assoc_tac :: shrink_tac :: tac_list), t'
end else begin
let tac,f = reduce_factor (P_APP 1 :: p) f1 in
let tac',t' = condense (P_APP 2 :: p) t in
(tac @ tac'), Oplus(f,t')
end
| Oplus(f1,Oz n) ->
let tac,f1' = reduce_factor (P_APP 1 :: p) f1 in tac,Oplus(f1',Oz n)
| Oplus(f1,f2) ->
if weight f1 = weight f2 then begin
let tac_shrink,t = shrink_pair p f1 f2 in
let tac,t' = condense p t in
tac_shrink :: tac,t'
end else begin
let tac,f = reduce_factor (P_APP 1 :: p) f1 in
let tac',t' = condense (P_APP 2 :: p) f2 in
(tac @ tac'),Oplus(f,t')
end
| Oz _ as t -> [],t
| t ->
let tac,t' = reduce_factor p t in
let final = Oplus(t',Oz zero) in
let tac' = clever_rewrite p [[]] (Lazy.force coq_fast_Zred_factor6) in
tac @ [tac'], final
let rec clear_zero p = function
| Oplus(Otimes(Oatom v,Oz n),r) when n =? zero ->
let tac =
clever_rewrite p [[P_APP 1;P_APP 1];[P_APP 2]]
(Lazy.force coq_fast_Zred_factor5) in
let tac',t = clear_zero p r in
tac :: tac',t
| Oplus(f,r) ->
let tac,t = clear_zero (P_APP 2 :: p) r in tac,Oplus(f,t)
| t -> [],t
let replay_history tactic_normalisation =
let aux = id_of_string "auxiliary" in
let aux1 = id_of_string "auxiliary_1" in
let aux2 = id_of_string "auxiliary_2" in
let izero = mk_integer zero in
let rec loop t =
match t with
| HYP e :: l ->
begin
try
tclTHEN
(List.assoc (hyp_of_tag e.id) tactic_normalisation)
(loop l)
with Not_found -> loop l end
| NEGATE_CONTRADICT (e2,e1,b) :: l ->
let eq1 = decompile e1
and eq2 = decompile e2 in
let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2.id in
let k = if b then negone else one in
let p_initial = [P_APP 1;P_TYPE] in
let tac= shuffle_mult_right p_initial e1.body k e2.body in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_OMEGA17, [|
val_of eq1;
val_of eq2;
mk_integer k;
mkVar id1; mkVar id2 |])]);
(mk_then tac);
(intros_using [aux]);
(resolve_id aux);
reflexivity
]
| CONTRADICTION (e1,e2) :: l ->
let eq1 = decompile e1
and eq2 = decompile e2 in
let p_initial = [P_APP 2;P_TYPE] in
let tac = shuffle_cancel p_initial e1.body in
let solve_le =
let not_sup_sup = mkApp (build_coq_eq (), [|
Lazy.force coq_comparison;
Lazy.force coq_Gt;
Lazy.force coq_Gt |])
in
tclTHENS
(tclTHENLIST [
(unfold sp_Zle);
(simpl_in_concl);
intro;
(absurd not_sup_sup) ])
[ assumption ; reflexivity ]
in
let theorem =
mkApp (Lazy.force coq_OMEGA2, [|
val_of eq1; val_of eq2;
mkVar (hyp_of_tag e1.id);
mkVar (hyp_of_tag e2.id) |])
in
tclTHEN (tclTHEN (generalize_tac [theorem]) (mk_then tac)) (solve_le)
| DIVIDE_AND_APPROX (e1,e2,k,d) :: l ->
let id = hyp_of_tag e1.id in
let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
let kk = mk_integer k
and dd = mk_integer d in
let rhs = mk_plus (mk_times eq2 kk) dd in
let state_eg = mk_eq eq1 rhs in
let tac = scalar_norm_add [P_APP 3] e2.body in
tclTHENS
(cut state_eg)
[ tclTHENS
(tclTHENLIST [
(intros_using [aux]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA1,
[| eq1; rhs; mkVar aux; mkVar id |])]);
(clear [aux;id]);
(intros_using [id]);
(cut (mk_gt kk dd)) ])
[ tclTHENS
(cut (mk_gt kk izero))
[ tclTHENLIST [
(intros_using [aux1; aux2]);
(generalize_tac
[mkApp (Lazy.force coq_Zmult_le_approx,
[| kk;eq2;dd;mkVar aux1;mkVar aux2; mkVar id |])]);
(clear [aux1;aux2;id]);
(intros_using [id]);
(loop l) ];
tclTHENLIST [
(unfold sp_Zgt);
(simpl_in_concl);
reflexivity ] ];
tclTHENLIST [ (unfold sp_Zgt); simpl_in_concl; reflexivity ]
];
tclTHEN (mk_then tac) reflexivity ]
| NOT_EXACT_DIVIDE (e1,k) :: l ->
let c = floor_div e1.constant k in
let d = Bigint.sub e1.constant (Bigint.mult c k) in
let e2 = {id=e1.id; kind=EQUA;constant = c;
body = map_eq_linear (fun c -> c / k) e1.body } in
let eq2 = val_of(decompile e2) in
let kk = mk_integer k
and dd = mk_integer d in
let tac = scalar_norm_add [P_APP 2] e2.body in
tclTHENS
(cut (mk_gt dd izero))
[ tclTHENS (cut (mk_gt kk dd))
[tclTHENLIST [
(intros_using [aux2;aux1]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA4,
[| dd;kk;eq2;mkVar aux1; mkVar aux2 |])]);
(clear [aux1;aux2]);
(unfold sp_not);
(intros_using [aux]);
(resolve_id aux);
(mk_then tac);
assumption ] ;
tclTHENLIST [
(unfold sp_Zgt);
simpl_in_concl;
reflexivity ] ];
tclTHENLIST [
(unfold sp_Zgt);
simpl_in_concl;
reflexivity ] ]
| EXACT_DIVIDE (e1,k) :: l ->
let id = hyp_of_tag e1.id in
let e2 = map_eq_afine (fun c -> c / k) e1 in
let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
let kk = mk_integer k in
let state_eq = mk_eq eq1 (mk_times eq2 kk) in
if e1.kind = DISE then
let tac = scalar_norm [P_APP 3] e2.body in
tclTHENS
(cut state_eq)
[tclTHENLIST [
(intros_using [aux1]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA18,
[| eq1;eq2;kk;mkVar aux1; mkVar id |])]);
(clear [aux1;id]);
(intros_using [id]);
(loop l) ];
tclTHEN (mk_then tac) reflexivity ]
else
let tac = scalar_norm [P_APP 3] e2.body in
tclTHENS (cut state_eq)
[
tclTHENS
(cut (mk_gt kk izero))
[tclTHENLIST [
(intros_using [aux2;aux1]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA3,
[| eq1; eq2; kk; mkVar aux2; mkVar aux1;mkVar id|])]);
(clear [aux1;aux2;id]);
(intros_using [id]);
(loop l) ];
tclTHENLIST [
(unfold sp_Zgt);
simpl_in_concl;
reflexivity ] ];
tclTHEN (mk_then tac) reflexivity ]
| (MERGE_EQ(e3,e1,e2)) :: l ->
let id = new_identifier () in
tag_hypothesis id e3;
let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2 in
let eq1 = val_of(decompile e1)
and eq2 = val_of (decompile (negate_eq e1)) in
let tac =
clever_rewrite [P_APP 3] [[P_APP 1]]
(Lazy.force coq_fast_Zopp_eq_mult_neg_1) ::
scalar_norm [P_APP 3] e1.body
in
tclTHENS
(cut (mk_eq eq1 (mk_inv eq2)))
[tclTHENLIST [
(intros_using [aux]);
(generalize_tac [mkApp (Lazy.force coq_OMEGA8,
[| eq1;eq2;mkVar id1;mkVar id2; mkVar aux|])]);
(clear [id1;id2;aux]);
(intros_using [id]);
(loop l) ];
tclTHEN (mk_then tac) reflexivity]
| STATE {st_new_eq=e;st_def=def;st_orig=orig;st_coef=m;st_var=v} :: l ->
let id = new_identifier ()
and id2 = hyp_of_tag orig.id in
tag_hypothesis id e.id;
let eq1 = val_of(decompile def)
and eq2 = val_of(decompile orig) in
let vid = unintern_id v in
let theorem =
mkApp (build_coq_ex (), [|
Lazy.force coq_Z;
mkLambda
(Name vid,
Lazy.force coq_Z,
mk_eq (mkRel 1) eq1) |])
in
let mm = mk_integer m in
let p_initial = [P_APP 2;P_TYPE] in
let tac =
clever_rewrite (P_APP 1 :: P_APP 1 :: P_APP 2 :: p_initial)
[[P_APP 1]] (Lazy.force coq_fast_Zopp_eq_mult_neg_1) ::
shuffle_mult_right p_initial
orig.body m ({c= negone;v= v}::def.body) in
tclTHENS
(cut theorem)
[tclTHENLIST [
(intros_using [aux]);
(elim_id aux);
(clear [aux]);
(intros_using [vid; aux]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA9,
[| mkVar vid;eq2;eq1;mm; mkVar id2;mkVar aux |])]);
(mk_then tac);
(clear [aux]);
(intros_using [id]);
(loop l) ];
tclTHEN (exists_tac eq1) reflexivity ]
| SPLIT_INEQ(e,(e1,act1),(e2,act2)) :: l ->
let id1 = new_identifier ()
and id2 = new_identifier () in
tag_hypothesis id1 e1; tag_hypothesis id2 e2;
let id = hyp_of_tag e.id in
let tac1 = norm_add [P_APP 2;P_TYPE] e.body in
let tac2 = scalar_norm_add [P_APP 2;P_TYPE] e.body in
let eq = val_of(decompile e) in
tclTHENS
(simplest_elim (applist (Lazy.force coq_OMEGA19, [eq; mkVar id])))
[tclTHENLIST [ (mk_then tac1); (intros_using [id1]); (loop act1) ];
tclTHENLIST [ (mk_then tac2); (intros_using [id2]); (loop act2) ]]
| SUM(e3,(k1,e1),(k2,e2)) :: l ->
let id = new_identifier () in
tag_hypothesis id e3;
let id1 = hyp_of_tag e1.id
and id2 = hyp_of_tag e2.id in
let eq1 = val_of(decompile e1)
and eq2 = val_of(decompile e2) in
if k1 =? one & e2.kind = EQUA then
let tac_thm =
match e1.kind with
| EQUA -> Lazy.force coq_OMEGA5
| INEQ -> Lazy.force coq_OMEGA6
| DISE -> Lazy.force coq_OMEGA20
in
let kk = mk_integer k2 in
let p_initial =
if e1.kind=DISE then [P_APP 1; P_TYPE] else [P_APP 2; P_TYPE] in
let tac = shuffle_mult_right p_initial e1.body k2 e2.body in
tclTHENLIST [
(generalize_tac
[mkApp (tac_thm, [| eq1; eq2; kk; mkVar id1; mkVar id2 |])]);
(mk_then tac);
(intros_using [id]);
(loop l)
]
else
let kk1 = mk_integer k1
and kk2 = mk_integer k2 in
let p_initial = [P_APP 2;P_TYPE] in
let tac= shuffle_mult p_initial k1 e1.body k2 e2.body in
tclTHENS (cut (mk_gt kk1 izero))
[tclTHENS
(cut (mk_gt kk2 izero))
[tclTHENLIST [
(intros_using [aux2;aux1]);
(generalize_tac
[mkApp (Lazy.force coq_OMEGA7, [|
eq1;eq2;kk1;kk2;
mkVar aux1;mkVar aux2;
mkVar id1;mkVar id2 |])]);
(clear [aux1;aux2]);
(mk_then tac);
(intros_using [id]);
(loop l) ];
tclTHENLIST [
(unfold sp_Zgt);
simpl_in_concl;
reflexivity ] ];
tclTHENLIST [
(unfold sp_Zgt);
simpl_in_concl;
reflexivity ] ]
| CONSTANT_NOT_NUL(e,k) :: l ->
tclTHEN (generalize_tac [mkVar (hyp_of_tag e)]) Equality.discrConcl
| CONSTANT_NUL(e) :: l ->
tclTHEN (resolve_id (hyp_of_tag e)) reflexivity
| CONSTANT_NEG(e,k) :: l ->
tclTHENLIST [
(generalize_tac [mkVar (hyp_of_tag e)]);
(unfold sp_Zle);
simpl_in_concl;
(unfold sp_not);
(intros_using [aux]);
(resolve_id aux);
reflexivity
]
| _ -> tclIDTAC
in
loop
let normalize p_initial t =
let (tac,t') = transform p_initial t in
let (tac',t'') = condense p_initial t' in
let (tac'',t''') = clear_zero p_initial t'' in
tac @ tac' @ tac'' , t'''
let normalize_equation id flag theorem pos t t1 t2 (tactic,defs) =
let p_initial = [P_APP pos ;P_TYPE] in
let (tac,t') = normalize p_initial t in
let shift_left =
tclTHEN
(generalize_tac [mkApp (theorem, [| t1; t2; mkVar id |]) ])
(tclTRY (clear [id]))
in
if tac <> [] then
let id' = new_identifier () in
((id',(tclTHENLIST [ (shift_left); (mk_then tac); (intros_using [id']) ]))
:: tactic,
compile id' flag t' :: defs)
else
(tactic,defs)
let destructure_omega gl tac_def (id,c) =
if atompart_of_id id = "State" then
tac_def
else
try match destructurate_prop c with
| Kapp(Eq,[typ;t1;t2])
when destructurate_type (pf_nf gl typ) = Kapp(Z,[]) ->
let t = mk_plus t1 (mk_inv t2) in
normalize_equation
id EQUA (Lazy.force coq_Zegal_left) 2 t t1 t2 tac_def
| Kapp(Zne,[t1;t2]) ->
let t = mk_plus t1 (mk_inv t2) in
normalize_equation
id DISE (Lazy.force coq_Zne_left) 1 t t1 t2 tac_def
| Kapp(Zle,[t1;t2]) ->
let t = mk_plus t2 (mk_inv t1) in
normalize_equation
id INEQ (Lazy.force coq_Zle_left) 2 t t1 t2 tac_def
| Kapp(Zlt,[t1;t2]) ->
let t = mk_plus (mk_plus t2 (mk_integer negone)) (mk_inv t1) in
normalize_equation
id INEQ (Lazy.force coq_Zlt_left) 2 t t1 t2 tac_def
| Kapp(Zge,[t1;t2]) ->
let t = mk_plus t1 (mk_inv t2) in
normalize_equation
id INEQ (Lazy.force coq_Zge_left) 2 t t1 t2 tac_def
| Kapp(Zgt,[t1;t2]) ->
let t = mk_plus (mk_plus t1 (mk_integer negone)) (mk_inv t2) in
normalize_equation
id INEQ (Lazy.force coq_Zgt_left) 2 t t1 t2 tac_def
| _ -> tac_def
with e when catchable_exception e -> tac_def
let reintroduce id =
(* [id] cannot be cleared if dependent: protect it by a try *)
tclTHEN (tclTRY (clear [id])) (intro_using id)
let coq_omega gl =
clear_constr_tables ();
let tactic_normalisation, system =
List.fold_left (destructure_omega gl) ([],[]) (pf_hyps_types gl) in
let prelude,sys =
List.fold_left
(fun (tac,sys) (t,(v,th,b)) ->
if b then
let id = new_identifier () in
let i = new_id () in
tag_hypothesis id i;
(tclTHENLIST [
(simplest_elim (applist (Lazy.force coq_intro_Z, [t])));
(intros_using [v; id]);
(elim_id id);
(clear [id]);
(intros_using [th;id]);
tac ]),
{kind = INEQ;
body = [{v=intern_id v; c=one}];
constant = zero; id = i} :: sys
else
(tclTHENLIST [
(simplest_elim (applist (Lazy.force coq_new_var, [t])));
(intros_using [v;th]);
tac ]),
sys)
(tclIDTAC,[]) (dump_tables ())
in
let system = system @ sys in
if !display_system_flag then display_system display_var system;
if !old_style_flag then begin
try
let _ = simplify (new_id,new_var_num,display_var) false system in
tclIDTAC gl
with UNSOLVABLE ->
let _,path = depend [] [] (history ()) in
if !display_action_flag then display_action display_var path;
(tclTHEN prelude (replay_history tactic_normalisation path)) gl
end else begin
try
let path = simplify_strong (new_id,new_var_num,display_var) system in
if !display_action_flag then display_action display_var path;
(tclTHEN prelude (replay_history tactic_normalisation path)) gl
with NO_CONTRADICTION -> error "Omega can't solve this system"
end
let coq_omega = solver_time coq_omega
let nat_inject gl =
let rec explore p t =
try match destructurate_term t with
| Kapp(Plus,[t1;t2]) ->
tclTHENLIST [
(clever_rewrite_gen p (mk_plus (mk_inj t1) (mk_inj t2))
((Lazy.force coq_inj_plus),[t1;t2]));
(explore (P_APP 1 :: p) t1);
(explore (P_APP 2 :: p) t2)
]
| Kapp(Mult,[t1;t2]) ->
tclTHENLIST [
(clever_rewrite_gen p (mk_times (mk_inj t1) (mk_inj t2))
((Lazy.force coq_inj_mult),[t1;t2]));
(explore (P_APP 1 :: p) t1);
(explore (P_APP 2 :: p) t2)
]
| Kapp(Minus,[t1;t2]) ->
let id = new_identifier () in
tclTHENS
(tclTHEN
(simplest_elim (applist (Lazy.force coq_le_gt_dec, [t2;t1])))
(intros_using [id]))
[
tclTHENLIST [
(clever_rewrite_gen p
(mk_minus (mk_inj t1) (mk_inj t2))
((Lazy.force coq_inj_minus1),[t1;t2;mkVar id]));
(loop [id,mkApp (Lazy.force coq_le, [| t2;t1 |])]);
(explore (P_APP 1 :: p) t1);
(explore (P_APP 2 :: p) t2) ];
(tclTHEN
(clever_rewrite_gen p (mk_integer zero)
((Lazy.force coq_inj_minus2),[t1;t2;mkVar id]))
(loop [id,mkApp (Lazy.force coq_gt, [| t2;t1 |])]))
]
| Kapp(S,[t']) ->
let rec is_number t =
try match destructurate_term t with
Kapp(S,[t]) -> is_number t
| Kapp(O,[]) -> true
| _ -> false
with e when catchable_exception e -> false
in
let rec loop p t =
try match destructurate_term t with
Kapp(S,[t]) ->
(tclTHEN
(clever_rewrite_gen p
(mkApp (Lazy.force coq_Zsucc, [| mk_inj t |]))
((Lazy.force coq_inj_S),[t]))
(loop (P_APP 1 :: p) t))
| _ -> explore p t
with e when catchable_exception e -> explore p t
in
if is_number t' then focused_simpl p else loop p t
| Kapp(Pred,[t]) ->
let t_minus_one =
mkApp (Lazy.force coq_minus, [| t;
mkApp (Lazy.force coq_S, [| Lazy.force coq_O |]) |]) in
tclTHEN
(clever_rewrite_gen_nat (P_APP 1 :: p) t_minus_one
((Lazy.force coq_pred_of_minus),[t]))
(explore p t_minus_one)
| Kapp(O,[]) -> focused_simpl p
| _ -> tclIDTAC
with e when catchable_exception e -> tclIDTAC
and loop = function
| [] -> tclIDTAC
| (i,t)::lit ->
begin try match destructurate_prop t with
Kapp(Le,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_le, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Lt,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_lt, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Ge,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_ge, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Gt,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_gt, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Neq,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_neq, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 1; P_TYPE] t1);
(explore [P_APP 2; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
| Kapp(Eq,[typ;t1;t2]) ->
if pf_conv_x gl typ (Lazy.force coq_nat) then
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_inj_eq, [| t1;t2;mkVar i |]) ]);
(explore [P_APP 2; P_TYPE] t1);
(explore [P_APP 3; P_TYPE] t2);
(reintroduce i);
(loop lit)
]
else loop lit
| _ -> loop lit
with e when catchable_exception e -> loop lit end
in
loop (List.rev (pf_hyps_types gl)) gl
let dec_binop = function
| Zne -> coq_dec_Zne
| Zle -> coq_dec_Zle
| Zlt -> coq_dec_Zlt
| Zge -> coq_dec_Zge
| Zgt -> coq_dec_Zgt
| Le -> coq_dec_le
| Lt -> coq_dec_lt
| Ge -> coq_dec_ge
| Gt -> coq_dec_gt
| _ -> raise Not_found
let not_binop = function
| Zne -> coq_not_Zne
| Zle -> coq_Znot_le_gt
| Zlt -> coq_Znot_lt_ge
| Zge -> coq_Znot_ge_lt
| Zgt -> coq_Znot_gt_le
| Le -> coq_not_le
| Lt -> coq_not_lt
| Ge -> coq_not_ge
| Gt -> coq_not_gt
| _ -> raise Not_found
(** A decidability check : for some [t], could we build a term
of type [decidable t] (i.e. [t\/~t]) ? Otherwise, we raise
[Undecidable]. Note that a successful check implies that
[t] has type Prop.
*)
exception Undecidable
let rec decidability gl t =
match destructurate_prop t with
| Kapp(Or,[t1;t2]) ->
mkApp (Lazy.force coq_dec_or, [| t1; t2;
decidability gl t1; decidability gl t2 |])
| Kapp(And,[t1;t2]) ->
mkApp (Lazy.force coq_dec_and, [| t1; t2;
decidability gl t1; decidability gl t2 |])
| Kapp(Iff,[t1;t2]) ->
mkApp (Lazy.force coq_dec_iff, [| t1; t2;
decidability gl t1; decidability gl t2 |])
| Kimp(t1,t2) ->
(* This is the only situation where it's not obvious that [t]
is in Prop. The recursive call on [t2] will ensure that. *)
mkApp (Lazy.force coq_dec_imp,
[| t1; t2; decidability gl t1; decidability gl t2 |])
| Kapp(Not,[t1]) ->
mkApp (Lazy.force coq_dec_not, [| t1; decidability gl t1 |])
| Kapp(Eq,[typ;t1;t2]) ->
begin match destructurate_type (pf_nf gl typ) with
| Kapp(Z,[]) -> mkApp (Lazy.force coq_dec_eq, [| t1;t2 |])
| Kapp(Nat,[]) -> mkApp (Lazy.force coq_dec_eq_nat, [| t1;t2 |])
| _ -> raise Undecidable
end
| Kapp(op,[t1;t2]) ->
(try mkApp (Lazy.force (dec_binop op), [| t1; t2 |])
with Not_found -> raise Undecidable)
| Kapp(False,[]) -> Lazy.force coq_dec_False
| Kapp(True,[]) -> Lazy.force coq_dec_True
| _ -> raise Undecidable
let onClearedName id tac =
(* We cannot ensure that hyps can be cleared (because of dependencies), *)
(* so renaming may be necessary *)
tclTHEN
(tclTRY (clear [id]))
(fun gl ->
let id = fresh_id [] id gl in
tclTHEN (introduction id) (tac id) gl)
let onClearedName2 id tac =
tclTHEN
(tclTRY (clear [id]))
(fun gl ->
let id1 = fresh_id [] (add_suffix id "_left") gl in
let id2 = fresh_id [] (add_suffix id "_right") gl in
tclTHENLIST [ introduction id1; introduction id2; tac id1 id2 ] gl)
let destructure_hyps gl =
let rec loop = function
| [] -> (tclTHEN nat_inject coq_omega)
| (i,body,t)::lit ->
begin try match destructurate_prop t with
| Kapp(False,[]) -> elim_id i
| Kapp((Zle|Zge|Zgt|Zlt|Zne),[t1;t2]) -> loop lit
| Kapp(Or,[t1;t2]) ->
(tclTHENS
(elim_id i)
[ onClearedName i (fun i -> (loop ((i,None,t1)::lit)));
onClearedName i (fun i -> (loop ((i,None,t2)::lit))) ])
| Kapp(And,[t1;t2]) ->
tclTHEN
(elim_id i)
(onClearedName2 i (fun i1 i2 ->
loop ((i1,None,t1)::(i2,None,t2)::lit)))
| Kapp(Iff,[t1;t2]) ->
tclTHEN
(elim_id i)
(onClearedName2 i (fun i1 i2 ->
loop ((i1,None,mkArrow t1 t2)::(i2,None,mkArrow t2 t1)::lit)))
| Kimp(t1,t2) ->
(* t1 and t2 might be in Type rather than Prop.
For t1, the decidability check will ensure being Prop. *)
if is_Prop (pf_type_of gl t2)
then
let d1 = decidability gl t1 in
tclTHENLIST [
(generalize_tac [mkApp (Lazy.force coq_imp_simp,
[| t1; t2; d1; mkVar i|])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_or (mk_not t1) t2)::lit))))
]
else
loop lit
| Kapp(Not,[t]) ->
begin match destructurate_prop t with
Kapp(Or,[t1;t2]) ->
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_or,[| t1; t2; mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_and (mk_not t1) (mk_not t2)):: lit))))
]
| Kapp(And,[t1;t2]) ->
let d1 = decidability gl t1 in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_and,
[| t1; t2; d1; mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_or (mk_not t1) (mk_not t2))::lit))))
]
| Kapp(Iff,[t1;t2]) ->
let d1 = decidability gl t1 in
let d2 = decidability gl t2 in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_iff,
[| t1; t2; d1; d2; mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,
mk_or (mk_and t1 (mk_not t2))
(mk_and (mk_not t1) t2))::lit))))
]
| Kimp(t1,t2) ->
(* t2 must be in Prop otherwise ~(t1->t2) wouldn't be ok.
For t1, being decidable implies being Prop. *)
let d1 = decidability gl t1 in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_imp,
[| t1; t2; d1; mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_and t1 (mk_not t2)) :: lit))))
]
| Kapp(Not,[t]) ->
let d = decidability gl t in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force coq_not_not, [| t; d; mkVar i |])]);
(onClearedName i (fun i -> (loop ((i,None,t)::lit))))
]
| Kapp(op,[t1;t2]) ->
(try
let thm = not_binop op in
tclTHENLIST [
(generalize_tac
[mkApp (Lazy.force thm, [| t1;t2;mkVar i|])]);
(onClearedName i (fun _ -> loop lit))
]
with Not_found -> loop lit)
| Kapp(Eq,[typ;t1;t2]) ->
if !old_style_flag then begin
match destructurate_type (pf_nf gl typ) with
| Kapp(Nat,_) ->
tclTHENLIST [
(simplest_elim
(mkApp
(Lazy.force coq_not_eq, [|t1;t2;mkVar i|])));
(onClearedName i (fun _ -> loop lit))
]
| Kapp(Z,_) ->
tclTHENLIST [
(simplest_elim
(mkApp
(Lazy.force coq_not_Zeq, [|t1;t2;mkVar i|])));
(onClearedName i (fun _ -> loop lit))
]
| _ -> loop lit
end else begin
match destructurate_type (pf_nf gl typ) with
| Kapp(Nat,_) ->
(tclTHEN
(convert_hyp_no_check
(i,body,
(mkApp (Lazy.force coq_neq, [| t1;t2|]))))
(loop lit))
| Kapp(Z,_) ->
(tclTHEN
(convert_hyp_no_check
(i,body,
(mkApp (Lazy.force coq_Zne, [| t1;t2|]))))
(loop lit))
| _ -> loop lit
end
| _ -> loop lit
end
| _ -> loop lit
with
| Undecidable -> loop lit
| e when catchable_exception e -> loop lit
end
in
loop (pf_hyps gl) gl
let destructure_goal gl =
let concl = pf_concl gl in
let rec loop t =
match destructurate_prop t with
| Kapp(Not,[t]) ->
(tclTHEN
(tclTHEN (unfold sp_not) intro)
destructure_hyps)
| Kimp(a,b) -> (tclTHEN intro (loop b))
| Kapp(False,[]) -> destructure_hyps
| _ ->
let goal_tac =
try
let dec = decidability gl t in
tclTHEN
(Tactics.refine
(mkApp (Lazy.force coq_dec_not_not, [| t; dec; mkNewMeta () |])))
intro
with Undecidable -> Tactics.elim_type (build_coq_False ())
in
tclTHEN goal_tac destructure_hyps
in
(loop concl) gl
let destructure_goal = all_time (destructure_goal)
let omega_solver gl =
Coqlib.check_required_library ["Coq";"omega";"Omega"];
reset_all ();
let result = destructure_goal gl in
(* if !display_time_flag then begin text_time ();
flush Pervasives.stdout end; *)
result
|