1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export Bool.
Set Implicit Arguments.
Section Theory_of_semi_rings.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
(* There is also a "weakly decidable" equality on A. That means
that if (A_eq x y)=true then x=y but x=y can arise when
(A_eq x y)=false. On an abstract ring the function [x,y:A]false
is a good choice. The proof of A_eq_prop is in this case easy. *)
Variable Aeq : A -> A -> bool.
Infix "+" := Aplus (at level 50, left associativity).
Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
Record Semi_Ring_Theory : Prop :=
{SR_plus_comm : forall n m:A, n + m = m + n;
SR_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
SR_mult_comm : forall n m:A, n * m = m * n;
SR_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
SR_plus_zero_left : forall n:A, 0 + n = n;
SR_mult_one_left : forall n:A, 1 * n = n;
SR_mult_zero_left : forall n:A, 0 * n = 0;
SR_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
(* SR_plus_reg_left : forall n m p:A, n + m = n + p -> m = p;*)
SR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
Variable T : Semi_Ring_Theory.
Let plus_comm := SR_plus_comm T.
Let plus_assoc := SR_plus_assoc T.
Let mult_comm := SR_mult_comm T.
Let mult_assoc := SR_mult_assoc T.
Let plus_zero_left := SR_plus_zero_left T.
Let mult_one_left := SR_mult_one_left T.
Let mult_zero_left := SR_mult_zero_left T.
Let distr_left := SR_distr_left T.
(*Let plus_reg_left := SR_plus_reg_left T.*)
Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
mult_one_left mult_zero_left distr_left (*plus_reg_left*).
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
symmetry ; eauto. Qed.
Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
symmetry ; eauto. Qed.
Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n.
symmetry ; eauto. Qed.
Lemma SR_mult_one_left2 : forall n:A, n = 1 * n.
symmetry ; eauto. Qed.
Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n.
symmetry ; eauto. Qed.
Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
symmetry ; eauto. Qed.
Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
intros.
rewrite plus_assoc.
elim (plus_comm m n).
rewrite <- plus_assoc.
reflexivity.
Qed.
Lemma SR_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
intros.
rewrite mult_assoc.
elim (mult_comm m n).
rewrite <- mult_assoc.
reflexivity.
Qed.
Hint Resolve SR_plus_permute SR_mult_permute.
Lemma SR_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
intros.
repeat rewrite (mult_comm n).
eauto.
Qed.
Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
symmetry ; apply SR_distr_right. Qed.
Lemma SR_mult_zero_right : forall n:A, n * 0 = 0.
intro; rewrite mult_comm; eauto.
Qed.
Lemma SR_mult_zero_right2 : forall n:A, 0 = n * 0.
intro; rewrite mult_comm; eauto.
Qed.
Lemma SR_plus_zero_right : forall n:A, n + 0 = n.
intro; rewrite plus_comm; eauto.
Qed.
Lemma SR_plus_zero_right2 : forall n:A, n = n + 0.
intro; rewrite plus_comm; eauto.
Qed.
Lemma SR_mult_one_right : forall n:A, n * 1 = n.
intro; elim mult_comm; auto.
Qed.
Lemma SR_mult_one_right2 : forall n:A, n = n * 1.
intro; elim mult_comm; auto.
Qed.
(*
Lemma SR_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n); eauto.
Qed.
*)
End Theory_of_semi_rings.
Section Theory_of_rings.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Infix "+" := Aplus (at level 50, left associativity).
Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
Notation "- x" := (Aopp x).
Record Ring_Theory : Prop :=
{Th_plus_comm : forall n m:A, n + m = m + n;
Th_plus_assoc : forall n m p:A, n + (m + p) = n + m + p;
Th_mult_comm : forall n m:A, n * m = m * n;
Th_mult_assoc : forall n m p:A, n * (m * p) = n * m * p;
Th_plus_zero_left : forall n:A, 0 + n = n;
Th_mult_one_left : forall n:A, 1 * n = n;
Th_opp_def : forall n:A, n + - n = 0;
Th_distr_left : forall n m p:A, (n + m) * p = n * p + m * p;
Th_eq_prop : forall x y:A, Is_true (Aeq x y) -> x = y}.
Variable T : Ring_Theory.
Let plus_comm := Th_plus_comm T.
Let plus_assoc := Th_plus_assoc T.
Let mult_comm := Th_mult_comm T.
Let mult_assoc := Th_mult_assoc T.
Let plus_zero_left := Th_plus_zero_left T.
Let mult_one_left := Th_mult_one_left T.
Let opp_def := Th_opp_def T.
Let distr_left := Th_distr_left T.
Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
mult_one_left opp_def distr_left.
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
symmetry ; eauto. Qed.
Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
symmetry ; eauto. Qed.
Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n.
symmetry ; eauto. Qed.
Lemma Th_mult_one_left2 : forall n:A, n = 1 * n.
symmetry ; eauto. Qed.
Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
symmetry ; eauto. Qed.
Lemma Th_opp_def2 : forall n:A, 0 = n + - n.
symmetry ; eauto. Qed.
Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
intros.
rewrite plus_assoc.
elim (plus_comm m n).
rewrite <- plus_assoc.
reflexivity.
Qed.
Lemma Th_mult_permute : forall n m p:A, n * (m * p) = m * (n * p).
intros.
rewrite mult_assoc.
elim (mult_comm m n).
rewrite <- mult_assoc.
reflexivity.
Qed.
Hint Resolve Th_plus_permute Th_mult_permute.
Lemma aux1 : forall a:A, a + a = a -> a = 0.
intros.
generalize (opp_def a).
pattern a at 1.
rewrite <- H.
rewrite <- plus_assoc.
rewrite opp_def.
elim plus_comm.
rewrite plus_zero_left.
trivial.
Qed.
Lemma Th_mult_zero_left : forall n:A, 0 * n = 0.
intros.
apply aux1.
rewrite <- distr_left.
rewrite plus_zero_left.
reflexivity.
Qed.
Hint Resolve Th_mult_zero_left.
Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n.
symmetry ; eauto. Qed.
Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z.
intros.
rewrite <- (plus_zero_left y).
elim H0.
elim plus_assoc.
elim (plus_comm y z).
rewrite plus_assoc.
rewrite H.
rewrite plus_zero_left.
reflexivity.
Qed.
Lemma Th_opp_mult_left : forall x y:A, - (x * y) = - x * y.
intros.
apply (aux2 (x:=(x * y)));
[ apply opp_def | rewrite <- distr_left; rewrite opp_def; auto ].
Qed.
Hint Resolve Th_opp_mult_left.
Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y).
symmetry ; eauto. Qed.
Lemma Th_mult_zero_right : forall n:A, n * 0 = 0.
intro; elim mult_comm; eauto.
Qed.
Lemma Th_mult_zero_right2 : forall n:A, 0 = n * 0.
intro; elim mult_comm; eauto.
Qed.
Lemma Th_plus_zero_right : forall n:A, n + 0 = n.
intro; rewrite plus_comm; eauto.
Qed.
Lemma Th_plus_zero_right2 : forall n:A, n = n + 0.
intro; rewrite plus_comm; eauto.
Qed.
Lemma Th_mult_one_right : forall n:A, n * 1 = n.
intro; elim mult_comm; eauto.
Qed.
Lemma Th_mult_one_right2 : forall n:A, n = n * 1.
intro; elim mult_comm; eauto.
Qed.
Lemma Th_opp_mult_right : forall x y:A, - (x * y) = x * - y.
intros; do 2 rewrite (mult_comm x); auto.
Qed.
Lemma Th_opp_mult_right2 : forall x y:A, x * - y = - (x * y).
intros; do 2 rewrite (mult_comm x); auto.
Qed.
Lemma Th_plus_opp_opp : forall x y:A, - x + - y = - (x + y).
intros.
apply (aux2 (x:=(x + y)));
[ elim plus_assoc; rewrite (Th_plus_permute y (- x)); rewrite plus_assoc;
rewrite opp_def; rewrite plus_zero_left; auto
| auto ].
Qed.
Lemma Th_plus_permute_opp : forall n m p:A, - m + (n + p) = n + (- m + p).
eauto. Qed.
Lemma Th_opp_opp : forall n:A, - - n = n.
intro; apply (aux2 (x:=(- n))); [ auto | elim plus_comm; auto ].
Qed.
Hint Resolve Th_opp_opp.
Lemma Th_opp_opp2 : forall n:A, n = - - n.
symmetry ; eauto. Qed.
Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y.
intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto.
Qed.
Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y.
symmetry ; apply Th_mult_opp_opp. Qed.
Lemma Th_opp_zero : - 0 = 0.
rewrite <- (plus_zero_left (- 0)).
auto. Qed.
(*
Lemma Th_plus_reg_left : forall n m p:A, n + m = n + p -> m = p.
intros; generalize (f_equal (fun z => - n + z) H).
repeat rewrite plus_assoc.
rewrite (plus_comm (- n) n).
rewrite opp_def.
repeat rewrite Th_plus_zero_left; eauto.
Qed.
Lemma Th_plus_reg_right : forall n m p:A, m + n = p + n -> m = p.
intros.
eapply Th_plus_reg_left with n.
rewrite (plus_comm n m).
rewrite (plus_comm n p).
auto.
Qed.
*)
Lemma Th_distr_right : forall n m p:A, n * (m + p) = n * m + n * p.
intros.
repeat rewrite (mult_comm n).
eauto.
Qed.
Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
symmetry ; apply Th_distr_right.
Qed.
End Theory_of_rings.
Hint Resolve Th_mult_zero_left (*Th_plus_reg_left*): core.
Unset Implicit Arguments.
Definition Semi_Ring_Theory_of :
forall (A:Type) (Aplus Amult:A -> A -> A) (Aone Azero:A)
(Aopp:A -> A) (Aeq:A -> A -> bool),
Ring_Theory Aplus Amult Aone Azero Aopp Aeq ->
Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
intros until 1; case H.
split; intros; simpl; eauto.
Defined.
(* Every ring can be viewed as a semi-ring : this property will be used
in Abstract_polynom. *)
Coercion Semi_Ring_Theory_of : Ring_Theory >-> Semi_Ring_Theory.
Section product_ring.
End product_ring.
Section power_ring.
End power_ring.
|