1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import LegacyRing_theory.
Require Import Quote.
Require Import Ring_normalize.
Section abstract_semi_rings.
Inductive aspolynomial : Type :=
| ASPvar : index -> aspolynomial
| ASP0 : aspolynomial
| ASP1 : aspolynomial
| ASPplus : aspolynomial -> aspolynomial -> aspolynomial
| ASPmult : aspolynomial -> aspolynomial -> aspolynomial.
Inductive abstract_sum : Type :=
| Nil_acs : abstract_sum
| Cons_acs : varlist -> abstract_sum -> abstract_sum.
Fixpoint abstract_sum_merge (s1:abstract_sum) :
abstract_sum -> abstract_sum :=
match s1 with
| Cons_acs l1 t1 =>
(fix asm_aux (s2:abstract_sum) : abstract_sum :=
match s2 with
| Cons_acs l2 t2 =>
if varlist_lt l1 l2
then Cons_acs l1 (abstract_sum_merge t1 s2)
else Cons_acs l2 (asm_aux t2)
| Nil_acs => s1
end)
| Nil_acs => fun s2 => s2
end.
Fixpoint abstract_varlist_insert (l1:varlist) (s2:abstract_sum) {struct s2} :
abstract_sum :=
match s2 with
| Cons_acs l2 t2 =>
if varlist_lt l1 l2
then Cons_acs l1 s2
else Cons_acs l2 (abstract_varlist_insert l1 t2)
| Nil_acs => Cons_acs l1 Nil_acs
end.
Fixpoint abstract_sum_scalar (l1:varlist) (s2:abstract_sum) {struct s2} :
abstract_sum :=
match s2 with
| Cons_acs l2 t2 =>
abstract_varlist_insert (varlist_merge l1 l2)
(abstract_sum_scalar l1 t2)
| Nil_acs => Nil_acs
end.
Fixpoint abstract_sum_prod (s1 s2:abstract_sum) {struct s1} : abstract_sum :=
match s1 with
| Cons_acs l1 t1 =>
abstract_sum_merge (abstract_sum_scalar l1 s2)
(abstract_sum_prod t1 s2)
| Nil_acs => Nil_acs
end.
Fixpoint aspolynomial_normalize (p:aspolynomial) : abstract_sum :=
match p with
| ASPvar i => Cons_acs (Cons_var i Nil_var) Nil_acs
| ASP1 => Cons_acs Nil_var Nil_acs
| ASP0 => Nil_acs
| ASPplus l r =>
abstract_sum_merge (aspolynomial_normalize l)
(aspolynomial_normalize r)
| ASPmult l r =>
abstract_sum_prod (aspolynomial_normalize l) (aspolynomial_normalize r)
end.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aeq : A -> A -> bool.
Variable vm : varmap A.
Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
Fixpoint interp_asp (p:aspolynomial) : A :=
match p with
| ASPvar i => interp_var Azero vm i
| ASP0 => Azero
| ASP1 => Aone
| ASPplus l r => Aplus (interp_asp l) (interp_asp r)
| ASPmult l r => Amult (interp_asp l) (interp_asp r)
end.
(* Local *) Definition iacs_aux :=
(fix iacs_aux (a:A) (s:abstract_sum) {struct s} : A :=
match s with
| Nil_acs => a
| Cons_acs l t =>
Aplus a (iacs_aux (interp_vl Amult Aone Azero vm l) t)
end).
Definition interp_acs (s:abstract_sum) : A :=
match s with
| Cons_acs l t => iacs_aux (interp_vl Amult Aone Azero vm l) t
| Nil_acs => Azero
end.
Hint Resolve (SR_plus_comm T).
Hint Resolve (SR_plus_assoc T).
Hint Resolve (SR_plus_assoc2 T).
Hint Resolve (SR_mult_comm T).
Hint Resolve (SR_mult_assoc T).
Hint Resolve (SR_mult_assoc2 T).
Hint Resolve (SR_plus_zero_left T).
Hint Resolve (SR_plus_zero_left2 T).
Hint Resolve (SR_mult_one_left T).
Hint Resolve (SR_mult_one_left2 T).
Hint Resolve (SR_mult_zero_left T).
Hint Resolve (SR_mult_zero_left2 T).
Hint Resolve (SR_distr_left T).
Hint Resolve (SR_distr_left2 T).
(*Hint Resolve (SR_plus_reg_left T).*)
Hint Resolve (SR_plus_permute T).
Hint Resolve (SR_mult_permute T).
Hint Resolve (SR_distr_right T).
Hint Resolve (SR_distr_right2 T).
Hint Resolve (SR_mult_zero_right T).
Hint Resolve (SR_mult_zero_right2 T).
Hint Resolve (SR_plus_zero_right T).
Hint Resolve (SR_plus_zero_right2 T).
Hint Resolve (SR_mult_one_right T).
Hint Resolve (SR_mult_one_right2 T).
(*Hint Resolve (SR_plus_reg_right T).*)
Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
Remark iacs_aux_ok :
forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
Proof.
simple induction s; simpl; intros.
trivial.
reflexivity.
Qed.
Hint Extern 10 (_ = _ :>A) => rewrite iacs_aux_ok: core.
Lemma abstract_varlist_insert_ok :
forall (l:varlist) (s:abstract_sum),
interp_acs (abstract_varlist_insert l s) =
Aplus (interp_vl Amult Aone Azero vm l) (interp_acs s).
simple induction s.
trivial.
simpl; intros.
elim (varlist_lt l v); simpl.
eauto.
rewrite iacs_aux_ok.
rewrite H; auto.
Qed.
Lemma abstract_sum_merge_ok :
forall x y:abstract_sum,
interp_acs (abstract_sum_merge x y) = Aplus (interp_acs x) (interp_acs y).
Proof.
simple induction x.
trivial.
simple induction y; intros.
auto.
simpl; elim (varlist_lt v v0); simpl.
repeat rewrite iacs_aux_ok.
rewrite H; simpl; auto.
simpl in H0.
repeat rewrite iacs_aux_ok.
rewrite H0. simpl; auto.
Qed.
Lemma abstract_sum_scalar_ok :
forall (l:varlist) (s:abstract_sum),
interp_acs (abstract_sum_scalar l s) =
Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
Proof.
simple induction s.
simpl; eauto.
simpl; intros.
rewrite iacs_aux_ok.
rewrite abstract_varlist_insert_ok.
rewrite H.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
auto.
Qed.
Lemma abstract_sum_prod_ok :
forall x y:abstract_sum,
interp_acs (abstract_sum_prod x y) = Amult (interp_acs x) (interp_acs y).
Proof.
simple induction x.
intros; simpl; eauto.
destruct y as [| v0 a0]; intros.
simpl; rewrite H; eauto.
unfold abstract_sum_prod; fold abstract_sum_prod.
rewrite abstract_sum_merge_ok.
rewrite abstract_sum_scalar_ok.
rewrite H; simpl; auto.
Qed.
Theorem aspolynomial_normalize_ok :
forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
Proof.
simple induction x; simpl; intros; trivial.
rewrite abstract_sum_merge_ok.
rewrite H; rewrite H0; eauto.
rewrite abstract_sum_prod_ok.
rewrite H; rewrite H0; eauto.
Qed.
End abstract_semi_rings.
Section abstract_rings.
(* In abstract polynomials there is no constants other
than 0 and 1. An abstract ring is a ring whose operations plus,
and mult are not functions but constructors. In other words,
when c1 and c2 are closed, (plus c1 c2) doesn't reduce to a closed
term. "closed" mean here "without plus and mult". *)
(* this section is not parametrized by a (semi-)ring.
Nevertheless, they are two different types for semi-rings and rings
and there will be 2 correction theorems *)
Inductive apolynomial : Type :=
| APvar : index -> apolynomial
| AP0 : apolynomial
| AP1 : apolynomial
| APplus : apolynomial -> apolynomial -> apolynomial
| APmult : apolynomial -> apolynomial -> apolynomial
| APopp : apolynomial -> apolynomial.
(* A canonical "abstract" sum is a list of varlist with the sign "+" or "-".
Invariant : the list is sorted and there is no varlist is present
with both signs. +x +x +x -x is forbidden => the canonical form is +x+x *)
Inductive signed_sum : Type :=
| Nil_varlist : signed_sum
| Plus_varlist : varlist -> signed_sum -> signed_sum
| Minus_varlist : varlist -> signed_sum -> signed_sum.
Fixpoint signed_sum_merge (s1:signed_sum) : signed_sum -> signed_sum :=
match s1 with
| Plus_varlist l1 t1 =>
(fix ssm_aux (s2:signed_sum) : signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
if varlist_lt l1 l2
then Plus_varlist l1 (signed_sum_merge t1 s2)
else Plus_varlist l2 (ssm_aux t2)
| Minus_varlist l2 t2 =>
if varlist_eq l1 l2
then signed_sum_merge t1 t2
else
if varlist_lt l1 l2
then Plus_varlist l1 (signed_sum_merge t1 s2)
else Minus_varlist l2 (ssm_aux t2)
| Nil_varlist => s1
end)
| Minus_varlist l1 t1 =>
(fix ssm_aux2 (s2:signed_sum) : signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
if varlist_eq l1 l2
then signed_sum_merge t1 t2
else
if varlist_lt l1 l2
then Minus_varlist l1 (signed_sum_merge t1 s2)
else Plus_varlist l2 (ssm_aux2 t2)
| Minus_varlist l2 t2 =>
if varlist_lt l1 l2
then Minus_varlist l1 (signed_sum_merge t1 s2)
else Minus_varlist l2 (ssm_aux2 t2)
| Nil_varlist => s1
end)
| Nil_varlist => fun s2 => s2
end.
Fixpoint plus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
if varlist_lt l1 l2
then Plus_varlist l1 s2
else Plus_varlist l2 (plus_varlist_insert l1 t2)
| Minus_varlist l2 t2 =>
if varlist_eq l1 l2
then t2
else
if varlist_lt l1 l2
then Plus_varlist l1 s2
else Minus_varlist l2 (plus_varlist_insert l1 t2)
| Nil_varlist => Plus_varlist l1 Nil_varlist
end.
Fixpoint minus_varlist_insert (l1:varlist) (s2:signed_sum) {struct s2} :
signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
if varlist_eq l1 l2
then t2
else
if varlist_lt l1 l2
then Minus_varlist l1 s2
else Plus_varlist l2 (minus_varlist_insert l1 t2)
| Minus_varlist l2 t2 =>
if varlist_lt l1 l2
then Minus_varlist l1 s2
else Minus_varlist l2 (minus_varlist_insert l1 t2)
| Nil_varlist => Minus_varlist l1 Nil_varlist
end.
Fixpoint signed_sum_opp (s:signed_sum) : signed_sum :=
match s with
| Plus_varlist l2 t2 => Minus_varlist l2 (signed_sum_opp t2)
| Minus_varlist l2 t2 => Plus_varlist l2 (signed_sum_opp t2)
| Nil_varlist => Nil_varlist
end.
Fixpoint plus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
plus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
| Minus_varlist l2 t2 =>
minus_varlist_insert (varlist_merge l1 l2) (plus_sum_scalar l1 t2)
| Nil_varlist => Nil_varlist
end.
Fixpoint minus_sum_scalar (l1:varlist) (s2:signed_sum) {struct s2} :
signed_sum :=
match s2 with
| Plus_varlist l2 t2 =>
minus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
| Minus_varlist l2 t2 =>
plus_varlist_insert (varlist_merge l1 l2) (minus_sum_scalar l1 t2)
| Nil_varlist => Nil_varlist
end.
Fixpoint signed_sum_prod (s1 s2:signed_sum) {struct s1} : signed_sum :=
match s1 with
| Plus_varlist l1 t1 =>
signed_sum_merge (plus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
| Minus_varlist l1 t1 =>
signed_sum_merge (minus_sum_scalar l1 s2) (signed_sum_prod t1 s2)
| Nil_varlist => Nil_varlist
end.
Fixpoint apolynomial_normalize (p:apolynomial) : signed_sum :=
match p with
| APvar i => Plus_varlist (Cons_var i Nil_var) Nil_varlist
| AP1 => Plus_varlist Nil_var Nil_varlist
| AP0 => Nil_varlist
| APplus l r =>
signed_sum_merge (apolynomial_normalize l) (apolynomial_normalize r)
| APmult l r =>
signed_sum_prod (apolynomial_normalize l) (apolynomial_normalize r)
| APopp q => signed_sum_opp (apolynomial_normalize q)
end.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Variable vm : varmap A.
Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
(* Local *) Definition isacs_aux :=
(fix isacs_aux (a:A) (s:signed_sum) {struct s} : A :=
match s with
| Nil_varlist => a
| Plus_varlist l t =>
Aplus a (isacs_aux (interp_vl Amult Aone Azero vm l) t)
| Minus_varlist l t =>
Aplus a
(isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t)
end).
Definition interp_sacs (s:signed_sum) : A :=
match s with
| Plus_varlist l t => isacs_aux (interp_vl Amult Aone Azero vm l) t
| Minus_varlist l t => isacs_aux (Aopp (interp_vl Amult Aone Azero vm l)) t
| Nil_varlist => Azero
end.
Fixpoint interp_ap (p:apolynomial) : A :=
match p with
| APvar i => interp_var Azero vm i
| AP0 => Azero
| AP1 => Aone
| APplus l r => Aplus (interp_ap l) (interp_ap r)
| APmult l r => Amult (interp_ap l) (interp_ap r)
| APopp q => Aopp (interp_ap q)
end.
Hint Resolve (Th_plus_comm T).
Hint Resolve (Th_plus_assoc T).
Hint Resolve (Th_plus_assoc2 T).
Hint Resolve (Th_mult_comm T).
Hint Resolve (Th_mult_assoc T).
Hint Resolve (Th_mult_assoc2 T).
Hint Resolve (Th_plus_zero_left T).
Hint Resolve (Th_plus_zero_left2 T).
Hint Resolve (Th_mult_one_left T).
Hint Resolve (Th_mult_one_left2 T).
Hint Resolve (Th_mult_zero_left T).
Hint Resolve (Th_mult_zero_left2 T).
Hint Resolve (Th_distr_left T).
Hint Resolve (Th_distr_left2 T).
(*Hint Resolve (Th_plus_reg_left T).*)
Hint Resolve (Th_plus_permute T).
Hint Resolve (Th_mult_permute T).
Hint Resolve (Th_distr_right T).
Hint Resolve (Th_distr_right2 T).
Hint Resolve (Th_mult_zero_right2 T).
Hint Resolve (Th_plus_zero_right T).
Hint Resolve (Th_plus_zero_right2 T).
Hint Resolve (Th_mult_one_right T).
Hint Resolve (Th_mult_one_right2 T).
(*Hint Resolve (Th_plus_reg_right T).*)
Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
Lemma isacs_aux_ok :
forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
Proof.
simple induction s; simpl; intros.
trivial.
reflexivity.
reflexivity.
Qed.
Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
Ltac solve1 v v0 H H0 :=
simpl; elim (varlist_lt v v0); simpl; rewrite isacs_aux_ok;
[ rewrite H; simpl; auto | simpl in H0; rewrite H0; auto ].
Lemma signed_sum_merge_ok :
forall x y:signed_sum,
interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
simple induction x.
intro; simpl; auto.
simple induction y; intros.
auto.
solve1 v v0 H H0.
simpl; generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0); simpl.
intro Heq; rewrite (Heq I).
rewrite H.
repeat rewrite isacs_aux_ok.
rewrite (Th_plus_permute T).
repeat rewrite (Th_plus_assoc T).
rewrite
(Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v0))
(interp_vl Amult Aone Azero vm v0)).
rewrite (Th_opp_def T).
rewrite (Th_plus_zero_left T).
reflexivity.
solve1 v v0 H H0.
simple induction y; intros.
auto.
simpl; generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0); simpl.
intro Heq; rewrite (Heq I).
rewrite H.
repeat rewrite isacs_aux_ok.
rewrite (Th_plus_permute T).
repeat rewrite (Th_plus_assoc T).
rewrite (Th_opp_def T).
rewrite (Th_plus_zero_left T).
reflexivity.
solve1 v v0 H H0.
solve1 v v0 H H0.
Qed.
Ltac solve2 l v H :=
elim (varlist_lt l v); simpl; rewrite isacs_aux_ok;
[ auto | rewrite H; auto ].
Lemma plus_varlist_insert_ok :
forall (l:varlist) (s:signed_sum),
interp_sacs (plus_varlist_insert l s) =
Aplus (interp_vl Amult Aone Azero vm l) (interp_sacs s).
Proof.
simple induction s.
trivial.
simpl; intros.
solve2 l v H.
simpl; intros.
generalize (varlist_eq_prop l v).
elim (varlist_eq l v); simpl.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
repeat rewrite (Th_plus_assoc T).
rewrite (Th_opp_def T).
rewrite (Th_plus_zero_left T).
reflexivity.
solve2 l v H.
Qed.
Lemma minus_varlist_insert_ok :
forall (l:varlist) (s:signed_sum),
interp_sacs (minus_varlist_insert l s) =
Aplus (Aopp (interp_vl Amult Aone Azero vm l)) (interp_sacs s).
Proof.
simple induction s.
trivial.
simpl; intros.
generalize (varlist_eq_prop l v).
elim (varlist_eq l v); simpl.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
repeat rewrite (Th_plus_assoc T).
rewrite
(Th_plus_comm T (Aopp (interp_vl Amult Aone Azero vm v))
(interp_vl Amult Aone Azero vm v)).
rewrite (Th_opp_def T).
auto.
simpl; intros.
solve2 l v H.
simpl; intros; solve2 l v H.
Qed.
Lemma signed_sum_opp_ok :
forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
Proof.
simple induction s; simpl; intros.
symmetry ; apply (Th_opp_zero T).
repeat rewrite isacs_aux_ok.
rewrite H.
rewrite (Th_plus_opp_opp T).
reflexivity.
repeat rewrite isacs_aux_ok.
rewrite H.
rewrite <- (Th_plus_opp_opp T).
rewrite (Th_opp_opp T).
reflexivity.
Qed.
Lemma plus_sum_scalar_ok :
forall (l:varlist) (s:signed_sum),
interp_sacs (plus_sum_scalar l s) =
Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s).
Proof.
simple induction s.
trivial.
simpl; intros.
rewrite plus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
simpl; intros.
rewrite minus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
rewrite H.
rewrite (Th_distr_right T).
rewrite <- (Th_opp_mult_right T).
reflexivity.
Qed.
Lemma minus_sum_scalar_ok :
forall (l:varlist) (s:signed_sum),
interp_sacs (minus_sum_scalar l s) =
Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
Proof.
simple induction s; simpl; intros.
rewrite (Th_mult_zero_right T); symmetry ; apply (Th_opp_zero T).
simpl; intros.
rewrite minus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
rewrite H.
rewrite (Th_distr_right T).
rewrite (Th_plus_opp_opp T).
reflexivity.
simpl; intros.
rewrite plus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
rewrite H.
rewrite (Th_distr_right T).
rewrite <- (Th_opp_mult_right T).
rewrite <- (Th_plus_opp_opp T).
rewrite (Th_opp_opp T).
reflexivity.
Qed.
Lemma signed_sum_prod_ok :
forall x y:signed_sum,
interp_sacs (signed_sum_prod x y) = Amult (interp_sacs x) (interp_sacs y).
Proof.
simple induction x.
simpl; eauto 1.
intros; simpl.
rewrite signed_sum_merge_ok.
rewrite plus_sum_scalar_ok.
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
intros; simpl.
repeat rewrite isacs_aux_ok.
rewrite signed_sum_merge_ok.
rewrite minus_sum_scalar_ok.
rewrite H.
rewrite (Th_distr_left T).
rewrite (Th_opp_mult_left T).
reflexivity.
Qed.
Theorem apolynomial_normalize_ok :
forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
Proof.
simple induction p; simpl; auto 1.
intros.
rewrite signed_sum_merge_ok.
rewrite H; rewrite H0; reflexivity.
intros.
rewrite signed_sum_prod_ok.
rewrite H; rewrite H0; reflexivity.
intros.
rewrite signed_sum_opp_ok.
rewrite H; reflexivity.
Qed.
End abstract_rings.
|