1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import LegacyRing_theory.
Require Import Quote.
Set Implicit Arguments.
Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
Proof.
intros.
apply index_eq_prop.
generalize H.
case (index_eq n m); simpl; trivial; intros.
contradiction.
Qed.
Section semi_rings.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aeq : A -> A -> bool.
(* Section definitions. *)
(******************************************)
(* Normal abtract Polynomials *)
(******************************************)
(* DEFINITIONS :
- A varlist is a sorted product of one or more variables : x, x*y*z
- A monom is a constant, a varlist or the product of a constant by a varlist
variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
- A canonical sum is either a monom or an ordered sum of monoms
(the order on monoms is defined later)
- A normal polynomial it either a constant or a canonical sum or a constant
plus a canonical sum
*)
(* varlist is isomorphic to (list var), but we built a special inductive
for efficiency *)
Inductive varlist : Type :=
| Nil_var : varlist
| Cons_var : index -> varlist -> varlist.
Inductive canonical_sum : Type :=
| Nil_monom : canonical_sum
| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
| Cons_varlist : varlist -> canonical_sum -> canonical_sum.
(* Order on monoms *)
(* That's the lexicographic order on varlist, extended by :
- A constant is less than every monom
- The relation between two varlist is preserved by multiplication by a
constant.
Examples :
3 < x < y
x*y < x*y*y*z
2*x*y < x*y*y*z
x*y < 54*x*y*y*z
4*x*y < 59*x*y*y*z
*)
Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
match x, y with
| Nil_var, Nil_var => true
| Cons_var i xrest, Cons_var j yrest =>
andb (index_eq i j) (varlist_eq xrest yrest)
| _, _ => false
end.
Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
match x, y with
| Nil_var, Cons_var _ _ => true
| Cons_var i xrest, Cons_var j yrest =>
if index_lt i j
then true
else andb (index_eq i j) (varlist_lt xrest yrest)
| _, _ => false
end.
(* merges two variables lists *)
Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
match l1 with
| Cons_var v1 t1 =>
(fix vm_aux (l2:varlist) : varlist :=
match l2 with
| Cons_var v2 t2 =>
if index_lt v1 v2
then Cons_var v1 (varlist_merge t1 l2)
else Cons_var v2 (vm_aux t2)
| Nil_var => l1
end)
| Nil_var => fun l2 => l2
end.
(* returns the sum of two canonical sums *)
Fixpoint canonical_sum_merge (s1:canonical_sum) :
canonical_sum -> canonical_sum :=
match s1 with
| Cons_monom c1 l1 t1 =>
(fix csm_aux (s2:canonical_sum) : canonical_sum :=
match s2 with
| Cons_monom c2 l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
else
if varlist_lt l1 l2
then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
else Cons_monom c2 l2 (csm_aux t2)
| Cons_varlist l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
else
if varlist_lt l1 l2
then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
else Cons_varlist l2 (csm_aux t2)
| Nil_monom => s1
end)
| Cons_varlist l1 t1 =>
(fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
match s2 with
| Cons_monom c2 l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
else
if varlist_lt l1 l2
then Cons_varlist l1 (canonical_sum_merge t1 s2)
else Cons_monom c2 l2 (csm_aux2 t2)
| Cons_varlist l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
else
if varlist_lt l1 l2
then Cons_varlist l1 (canonical_sum_merge t1 s2)
else Cons_varlist l2 (csm_aux2 t2)
| Nil_monom => s1
end)
| Nil_monom => fun s2 => s2
end.
(* Insertion of a monom in a canonical sum *)
Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
canonical_sum :=
match s2 with
| Cons_monom c2 l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus c1 c2) l1 t2
else
if varlist_lt l1 l2
then Cons_monom c1 l1 s2
else Cons_monom c2 l2 (monom_insert c1 l1 t2)
| Cons_varlist l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus c1 Aone) l1 t2
else
if varlist_lt l1 l2
then Cons_monom c1 l1 s2
else Cons_varlist l2 (monom_insert c1 l1 t2)
| Nil_monom => Cons_monom c1 l1 Nil_monom
end.
Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
canonical_sum :=
match s2 with
| Cons_monom c2 l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus Aone c2) l1 t2
else
if varlist_lt l1 l2
then Cons_varlist l1 s2
else Cons_monom c2 l2 (varlist_insert l1 t2)
| Cons_varlist l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus Aone Aone) l1 t2
else
if varlist_lt l1 l2
then Cons_varlist l1 s2
else Cons_varlist l2 (varlist_insert l1 t2)
| Nil_monom => Cons_varlist l1 Nil_monom
end.
(* Computes c0*s *)
Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
canonical_sum :=
match s with
| Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
| Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
| Nil_monom => Nil_monom
end.
(* Computes l0*s *)
Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
canonical_sum :=
match s with
| Cons_monom c l t =>
monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
| Cons_varlist l t =>
varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
| Nil_monom => Nil_monom
end.
(* Computes c0*l0*s *)
Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
(s:canonical_sum) {struct s} : canonical_sum :=
match s with
| Cons_monom c l t =>
monom_insert (Amult c0 c) (varlist_merge l0 l)
(canonical_sum_scalar3 c0 l0 t)
| Cons_varlist l t =>
monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
| Nil_monom => Nil_monom
end.
(* returns the product of two canonical sums *)
Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
canonical_sum :=
match s1 with
| Cons_monom c1 l1 t1 =>
canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
(canonical_sum_prod t1 s2)
| Cons_varlist l1 t1 =>
canonical_sum_merge (canonical_sum_scalar2 l1 s2)
(canonical_sum_prod t1 s2)
| Nil_monom => Nil_monom
end.
(* The type to represent concrete semi-ring polynomials *)
Inductive spolynomial : Type :=
| SPvar : index -> spolynomial
| SPconst : A -> spolynomial
| SPplus : spolynomial -> spolynomial -> spolynomial
| SPmult : spolynomial -> spolynomial -> spolynomial.
Fixpoint spolynomial_normalize (p:spolynomial) : canonical_sum :=
match p with
| SPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
| SPconst c => Cons_monom c Nil_var Nil_monom
| SPplus l r =>
canonical_sum_merge (spolynomial_normalize l) (spolynomial_normalize r)
| SPmult l r =>
canonical_sum_prod (spolynomial_normalize l) (spolynomial_normalize r)
end.
(* Deletion of useless 0 and 1 in canonical sums *)
Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
match s with
| Cons_monom c l t =>
if Aeq c Azero
then canonical_sum_simplify t
else
if Aeq c Aone
then Cons_varlist l (canonical_sum_simplify t)
else Cons_monom c l (canonical_sum_simplify t)
| Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
| Nil_monom => Nil_monom
end.
Definition spolynomial_simplify (x:spolynomial) :=
canonical_sum_simplify (spolynomial_normalize x).
(* End definitions. *)
(* Section interpretation. *)
(*** Here a variable map is defined and the interpetation of a spolynom
acording to a certain variables map. Once again the choosen definition
is generic and could be changed ****)
Variable vm : varmap A.
(* Interpretation of list of variables
* [x1; ... ; xn ] is interpreted as (find v x1)* ... *(find v xn)
* The unbound variables are mapped to 0. Normally this case sould
* never occur. Since we want only to prove correctness theorems, which form
* is : for any varmap and any spolynom ... this is a safe and pain-saving
* choice *)
Definition interp_var (i:index) := varmap_find Azero i vm.
(* Local *) Definition ivl_aux :=
(fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
match t with
| Nil_var => interp_var x
| Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
end).
Definition interp_vl (l:varlist) :=
match l with
| Nil_var => Aone
| Cons_var x t => ivl_aux x t
end.
(* Local *) Definition interp_m (c:A) (l:varlist) :=
match l with
| Nil_var => c
| Cons_var x t => Amult c (ivl_aux x t)
end.
(* Local *) Definition ics_aux :=
(fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
match s with
| Nil_monom => a
| Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
| Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
end).
(* Interpretation of a canonical sum *)
Definition interp_cs (s:canonical_sum) : A :=
match s with
| Nil_monom => Azero
| Cons_varlist l t => ics_aux (interp_vl l) t
| Cons_monom c l t => ics_aux (interp_m c l) t
end.
Fixpoint interp_sp (p:spolynomial) : A :=
match p with
| SPconst c => c
| SPvar i => interp_var i
| SPplus p1 p2 => Aplus (interp_sp p1) (interp_sp p2)
| SPmult p1 p2 => Amult (interp_sp p1) (interp_sp p2)
end.
(* End interpretation. *)
Unset Implicit Arguments.
(* Section properties. *)
Variable T : Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
Hint Resolve (SR_plus_comm T).
Hint Resolve (SR_plus_assoc T).
Hint Resolve (SR_plus_assoc2 T).
Hint Resolve (SR_mult_comm T).
Hint Resolve (SR_mult_assoc T).
Hint Resolve (SR_mult_assoc2 T).
Hint Resolve (SR_plus_zero_left T).
Hint Resolve (SR_plus_zero_left2 T).
Hint Resolve (SR_mult_one_left T).
Hint Resolve (SR_mult_one_left2 T).
Hint Resolve (SR_mult_zero_left T).
Hint Resolve (SR_mult_zero_left2 T).
Hint Resolve (SR_distr_left T).
Hint Resolve (SR_distr_left2 T).
(*Hint Resolve (SR_plus_reg_left T).*)
Hint Resolve (SR_plus_permute T).
Hint Resolve (SR_mult_permute T).
Hint Resolve (SR_distr_right T).
Hint Resolve (SR_distr_right2 T).
Hint Resolve (SR_mult_zero_right T).
Hint Resolve (SR_mult_zero_right2 T).
Hint Resolve (SR_plus_zero_right T).
Hint Resolve (SR_plus_zero_right2 T).
Hint Resolve (SR_mult_one_right T).
Hint Resolve (SR_mult_one_right2 T).
(*Hint Resolve (SR_plus_reg_right T).*)
Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
simple induction x; simple induction y; contradiction || (try reflexivity).
simpl; intros.
generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
Qed.
Remark ivl_aux_ok :
forall (v:varlist) (i:index),
ivl_aux i v = Amult (interp_var i) (interp_vl v).
Proof.
simple induction v; simpl; intros.
trivial.
rewrite H; trivial.
Qed.
Lemma varlist_merge_ok :
forall x y:varlist,
interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y).
Proof.
simple induction x.
simpl; trivial.
simple induction y.
simpl; trivial.
simpl; intros.
elim (index_lt i i0); simpl; intros.
repeat rewrite ivl_aux_ok.
rewrite H. simpl.
rewrite ivl_aux_ok.
eauto.
repeat rewrite ivl_aux_ok.
rewrite H0.
rewrite ivl_aux_ok.
eauto.
Qed.
Remark ics_aux_ok :
forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s).
Proof.
simple induction s; simpl; intros.
trivial.
reflexivity.
reflexivity.
Qed.
Remark interp_m_ok :
forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l).
Proof.
destruct l as [| i v].
simpl; trivial.
reflexivity.
Qed.
Lemma canonical_sum_merge_ok :
forall x y:canonical_sum,
interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y).
simple induction x; simpl.
trivial.
simple induction y; simpl; intros.
(* monom and nil *)
eauto.
(* monom and monom *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
trivial.
elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
rewrite H; simpl; rewrite ics_aux_ok; eauto.
rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
(* monom and varlist *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
rewrite (SR_mult_one_left T).
trivial.
elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
rewrite H; simpl; rewrite ics_aux_ok; eauto.
rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
simple induction y; simpl; intros.
(* varlist and nil *)
trivial.
(* varlist and monom *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_one_left T).
apply f_equal with (f := Aplus (interp_vl v0)).
trivial.
elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
rewrite H; simpl; rewrite ics_aux_ok; eauto.
rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
(* varlist and varlist *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_one_left T).
apply f_equal with (f := Aplus (interp_vl v0)).
trivial.
elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
rewrite H; simpl; rewrite ics_aux_ok; eauto.
rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
Qed.
Lemma monom_insert_ok :
forall (a:A) (l:varlist) (s:canonical_sum),
interp_cs (monom_insert a l s) =
Aplus (Amult a (interp_vl l)) (interp_cs s).
intros; generalize s; simple induction s0.
simpl; rewrite interp_m_ok; trivial.
simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
eauto.
elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
Qed.
Lemma varlist_insert_ok :
forall (l:varlist) (s:canonical_sum),
interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s).
intros; generalize s; simple induction s0.
simpl; trivial.
simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
Qed.
Lemma canonical_sum_scalar_ok :
forall (a:A) (s:canonical_sum),
interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s).
simple induction s.
simpl; eauto.
simpl; intros.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
reflexivity.
simpl; intros.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
reflexivity.
Qed.
Lemma canonical_sum_scalar2_ok :
forall (l:varlist) (s:canonical_sum),
interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s).
simple induction s.
simpl; trivial.
simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
rewrite varlist_merge_ok.
repeat rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
reflexivity.
simpl; intros.
rewrite varlist_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
rewrite varlist_merge_ok.
repeat rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
repeat rewrite <- (SR_plus_assoc T).
reflexivity.
Qed.
Lemma canonical_sum_scalar3_ok :
forall (c:A) (l:varlist) (s:canonical_sum),
interp_cs (canonical_sum_scalar3 c l s) =
Amult c (Amult (interp_vl l) (interp_cs s)).
simple induction s.
simpl; repeat rewrite (SR_mult_zero_right T); reflexivity.
simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
rewrite varlist_merge_ok.
repeat rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
reflexivity.
simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
rewrite varlist_merge_ok.
repeat rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T c (interp_vl l) (interp_vl v)).
reflexivity.
Qed.
Lemma canonical_sum_prod_ok :
forall x y:canonical_sum,
interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y).
simple induction x; simpl; intros.
trivial.
rewrite canonical_sum_merge_ok.
rewrite canonical_sum_scalar3_ok.
rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
symmetry .
eauto.
rewrite canonical_sum_merge_ok.
rewrite canonical_sum_scalar2_ok.
rewrite ics_aux_ok.
rewrite H.
trivial.
Qed.
Theorem spolynomial_normalize_ok :
forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p.
simple induction p; simpl; intros.
reflexivity.
reflexivity.
rewrite canonical_sum_merge_ok.
rewrite H; rewrite H0.
reflexivity.
rewrite canonical_sum_prod_ok.
rewrite H; rewrite H0.
reflexivity.
Qed.
Lemma canonical_sum_simplify_ok :
forall s:canonical_sum, interp_cs (canonical_sum_simplify s) = interp_cs s.
simple induction s.
reflexivity.
(* cons_monom *)
simpl; intros.
generalize (SR_eq_prop T a Azero).
elim (Aeq a Azero).
intro Heq; rewrite (Heq I).
rewrite H.
rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite (SR_mult_zero_left T).
trivial.
intros; simpl.
generalize (SR_eq_prop T a Aone).
elim (Aeq a Aone).
intro Heq; rewrite (Heq I).
simpl.
repeat rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
rewrite (SR_mult_one_left T).
reflexivity.
simpl.
repeat rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
reflexivity.
(* cons_varlist *)
simpl; intros.
repeat rewrite ics_aux_ok.
rewrite H.
reflexivity.
Qed.
Theorem spolynomial_simplify_ok :
forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p.
intro.
unfold spolynomial_simplify.
rewrite canonical_sum_simplify_ok.
apply spolynomial_normalize_ok.
Qed.
(* End properties. *)
End semi_rings.
Arguments Cons_varlist : default implicits.
Arguments Cons_monom : default implicits.
Arguments SPconst : default implicits.
Arguments SPplus : default implicits.
Arguments SPmult : default implicits.
Section rings.
(* Here the coercion between Ring and Semi-Ring will be useful *)
Set Implicit Arguments.
Variable A : Type.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Variable vm : varmap A.
Variable T : Ring_Theory Aplus Amult Aone Azero Aopp Aeq.
Hint Resolve (Th_plus_comm T).
Hint Resolve (Th_plus_assoc T).
Hint Resolve (Th_plus_assoc2 T).
Hint Resolve (Th_mult_comm T).
Hint Resolve (Th_mult_assoc T).
Hint Resolve (Th_mult_assoc2 T).
Hint Resolve (Th_plus_zero_left T).
Hint Resolve (Th_plus_zero_left2 T).
Hint Resolve (Th_mult_one_left T).
Hint Resolve (Th_mult_one_left2 T).
Hint Resolve (Th_mult_zero_left T).
Hint Resolve (Th_mult_zero_left2 T).
Hint Resolve (Th_distr_left T).
Hint Resolve (Th_distr_left2 T).
(*Hint Resolve (Th_plus_reg_left T).*)
Hint Resolve (Th_plus_permute T).
Hint Resolve (Th_mult_permute T).
Hint Resolve (Th_distr_right T).
Hint Resolve (Th_distr_right2 T).
Hint Resolve (Th_mult_zero_right T).
Hint Resolve (Th_mult_zero_right2 T).
Hint Resolve (Th_plus_zero_right T).
Hint Resolve (Th_plus_zero_right2 T).
Hint Resolve (Th_mult_one_right T).
Hint Resolve (Th_mult_one_right2 T).
(*Hint Resolve (Th_plus_reg_right T).*)
Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
(*** Definitions *)
Inductive polynomial : Type :=
| Pvar : index -> polynomial
| Pconst : A -> polynomial
| Pplus : polynomial -> polynomial -> polynomial
| Pmult : polynomial -> polynomial -> polynomial
| Popp : polynomial -> polynomial.
Fixpoint polynomial_normalize (x:polynomial) : canonical_sum A :=
match x with
| Pplus l r =>
canonical_sum_merge Aplus Aone (polynomial_normalize l)
(polynomial_normalize r)
| Pmult l r =>
canonical_sum_prod Aplus Amult Aone (polynomial_normalize l)
(polynomial_normalize r)
| Pconst c => Cons_monom c Nil_var (Nil_monom A)
| Pvar i => Cons_varlist (Cons_var i Nil_var) (Nil_monom A)
| Popp p =>
canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
(polynomial_normalize p)
end.
Definition polynomial_simplify (x:polynomial) :=
canonical_sum_simplify Aone Azero Aeq (polynomial_normalize x).
Fixpoint spolynomial_of (x:polynomial) : spolynomial A :=
match x with
| Pplus l r => SPplus (spolynomial_of l) (spolynomial_of r)
| Pmult l r => SPmult (spolynomial_of l) (spolynomial_of r)
| Pconst c => SPconst c
| Pvar i => SPvar A i
| Popp p => SPmult (SPconst (Aopp Aone)) (spolynomial_of p)
end.
(*** Interpretation *)
Fixpoint interp_p (p:polynomial) : A :=
match p with
| Pconst c => c
| Pvar i => varmap_find Azero i vm
| Pplus p1 p2 => Aplus (interp_p p1) (interp_p p2)
| Pmult p1 p2 => Amult (interp_p p1) (interp_p p2)
| Popp p1 => Aopp (interp_p p1)
end.
(*** Properties *)
Unset Implicit Arguments.
Lemma spolynomial_of_ok :
forall p:polynomial,
interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p).
simple induction p; reflexivity || (simpl; intros).
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
rewrite H.
rewrite (Th_opp_mult_left2 T).
rewrite (Th_mult_one_left T).
reflexivity.
Qed.
Theorem polynomial_normalize_ok :
forall p:polynomial,
polynomial_normalize p =
spolynomial_normalize Aplus Amult Aone (spolynomial_of p).
simple induction p; reflexivity || (simpl; intros).
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
rewrite H; simpl.
elim
(canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
(spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
[ reflexivity
| simpl; intros; rewrite H0; reflexivity
| simpl; intros; rewrite H0; reflexivity ].
Qed.
Theorem polynomial_simplify_ok :
forall p:polynomial,
interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p.
intro.
unfold polynomial_simplify.
rewrite spolynomial_of_ok.
rewrite polynomial_normalize_ok.
rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
rewrite (spolynomial_normalize_ok A Aplus Amult Aone Azero Aeq vm T).
reflexivity.
Qed.
End rings.
Infix "+" := Pplus : ring_scope.
Infix "*" := Pmult : ring_scope.
Notation "- x" := (Popp x) : ring_scope.
Notation "[ x ]" := (Pvar x) (at level 0) : ring_scope.
Delimit Scope ring_scope with ring.
|