1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Setoid_ring_theory.
Require Import Quote.
Set Implicit Arguments.
Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
Proof.
simple induction n; simple induction m; simpl;
try reflexivity || contradiction.
intros; rewrite (H i0); trivial.
intros; rewrite (H i0); trivial.
Qed.
Section setoid.
Variable A : Type.
Variable Aequiv : A -> A -> Prop.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Variable S : Setoid_Theory A Aequiv.
Add Setoid A Aequiv S as Asetoid.
Variable plus_morph :
forall a a0:A, Aequiv a a0 ->
forall a1 a2:A, Aequiv a1 a2 ->
Aequiv (Aplus a a1) (Aplus a0 a2).
Variable mult_morph :
forall a a0:A, Aequiv a a0 ->
forall a1 a2:A, Aequiv a1 a2 ->
Aequiv (Amult a a1) (Amult a0 a2).
Variable opp_morph : forall a a0:A, Aequiv a a0 -> Aequiv (Aopp a) (Aopp a0).
Add Morphism Aplus : Aplus_ext.
intros; apply plus_morph; assumption.
Qed.
Add Morphism Amult : Amult_ext.
intros; apply mult_morph; assumption.
Qed.
Add Morphism Aopp : Aopp_ext.
exact opp_morph.
Qed.
Let equiv_refl := Seq_refl A Aequiv S.
Let equiv_sym := Seq_sym A Aequiv S.
Let equiv_trans := Seq_trans A Aequiv S.
Hint Resolve equiv_refl equiv_trans.
Hint Immediate equiv_sym.
Section semi_setoid_rings.
(* Section definitions. *)
(******************************************)
(* Normal abtract Polynomials *)
(******************************************)
(* DEFINITIONS :
- A varlist is a sorted product of one or more variables : x, x*y*z
- A monom is a constant, a varlist or the product of a constant by a varlist
variables. 2*x*y, x*y*z, 3 are monoms : 2*3, x*3*y, 4*x*3 are NOT.
- A canonical sum is either a monom or an ordered sum of monoms
(the order on monoms is defined later)
- A normal polynomial it either a constant or a canonical sum or a constant
plus a canonical sum
*)
(* varlist is isomorphic to (list var), but we built a special inductive
for efficiency *)
Inductive varlist : Type :=
| Nil_var : varlist
| Cons_var : index -> varlist -> varlist.
Inductive canonical_sum : Type :=
| Nil_monom : canonical_sum
| Cons_monom : A -> varlist -> canonical_sum -> canonical_sum
| Cons_varlist : varlist -> canonical_sum -> canonical_sum.
(* Order on monoms *)
(* That's the lexicographic order on varlist, extended by :
- A constant is less than every monom
- The relation between two varlist is preserved by multiplication by a
constant.
Examples :
3 < x < y
x*y < x*y*y*z
2*x*y < x*y*y*z
x*y < 54*x*y*y*z
4*x*y < 59*x*y*y*z
*)
Fixpoint varlist_eq (x y:varlist) {struct y} : bool :=
match x, y with
| Nil_var, Nil_var => true
| Cons_var i xrest, Cons_var j yrest =>
andb (index_eq i j) (varlist_eq xrest yrest)
| _, _ => false
end.
Fixpoint varlist_lt (x y:varlist) {struct y} : bool :=
match x, y with
| Nil_var, Cons_var _ _ => true
| Cons_var i xrest, Cons_var j yrest =>
if index_lt i j
then true
else andb (index_eq i j) (varlist_lt xrest yrest)
| _, _ => false
end.
(* merges two variables lists *)
Fixpoint varlist_merge (l1:varlist) : varlist -> varlist :=
match l1 with
| Cons_var v1 t1 =>
(fix vm_aux (l2:varlist) : varlist :=
match l2 with
| Cons_var v2 t2 =>
if index_lt v1 v2
then Cons_var v1 (varlist_merge t1 l2)
else Cons_var v2 (vm_aux t2)
| Nil_var => l1
end)
| Nil_var => fun l2 => l2
end.
(* returns the sum of two canonical sums *)
Fixpoint canonical_sum_merge (s1:canonical_sum) :
canonical_sum -> canonical_sum :=
match s1 with
| Cons_monom c1 l1 t1 =>
(fix csm_aux (s2:canonical_sum) : canonical_sum :=
match s2 with
| Cons_monom c2 l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus c1 c2) l1 (canonical_sum_merge t1 t2)
else
if varlist_lt l1 l2
then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
else Cons_monom c2 l2 (csm_aux t2)
| Cons_varlist l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus c1 Aone) l1 (canonical_sum_merge t1 t2)
else
if varlist_lt l1 l2
then Cons_monom c1 l1 (canonical_sum_merge t1 s2)
else Cons_varlist l2 (csm_aux t2)
| Nil_monom => s1
end)
| Cons_varlist l1 t1 =>
(fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
match s2 with
| Cons_monom c2 l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus Aone c2) l1 (canonical_sum_merge t1 t2)
else
if varlist_lt l1 l2
then Cons_varlist l1 (canonical_sum_merge t1 s2)
else Cons_monom c2 l2 (csm_aux2 t2)
| Cons_varlist l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus Aone Aone) l1 (canonical_sum_merge t1 t2)
else
if varlist_lt l1 l2
then Cons_varlist l1 (canonical_sum_merge t1 s2)
else Cons_varlist l2 (csm_aux2 t2)
| Nil_monom => s1
end)
| Nil_monom => fun s2 => s2
end.
(* Insertion of a monom in a canonical sum *)
Fixpoint monom_insert (c1:A) (l1:varlist) (s2:canonical_sum) {struct s2} :
canonical_sum :=
match s2 with
| Cons_monom c2 l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus c1 c2) l1 t2
else
if varlist_lt l1 l2
then Cons_monom c1 l1 s2
else Cons_monom c2 l2 (monom_insert c1 l1 t2)
| Cons_varlist l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus c1 Aone) l1 t2
else
if varlist_lt l1 l2
then Cons_monom c1 l1 s2
else Cons_varlist l2 (monom_insert c1 l1 t2)
| Nil_monom => Cons_monom c1 l1 Nil_monom
end.
Fixpoint varlist_insert (l1:varlist) (s2:canonical_sum) {struct s2} :
canonical_sum :=
match s2 with
| Cons_monom c2 l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus Aone c2) l1 t2
else
if varlist_lt l1 l2
then Cons_varlist l1 s2
else Cons_monom c2 l2 (varlist_insert l1 t2)
| Cons_varlist l2 t2 =>
if varlist_eq l1 l2
then Cons_monom (Aplus Aone Aone) l1 t2
else
if varlist_lt l1 l2
then Cons_varlist l1 s2
else Cons_varlist l2 (varlist_insert l1 t2)
| Nil_monom => Cons_varlist l1 Nil_monom
end.
(* Computes c0*s *)
Fixpoint canonical_sum_scalar (c0:A) (s:canonical_sum) {struct s} :
canonical_sum :=
match s with
| Cons_monom c l t => Cons_monom (Amult c0 c) l (canonical_sum_scalar c0 t)
| Cons_varlist l t => Cons_monom c0 l (canonical_sum_scalar c0 t)
| Nil_monom => Nil_monom
end.
(* Computes l0*s *)
Fixpoint canonical_sum_scalar2 (l0:varlist) (s:canonical_sum) {struct s} :
canonical_sum :=
match s with
| Cons_monom c l t =>
monom_insert c (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
| Cons_varlist l t =>
varlist_insert (varlist_merge l0 l) (canonical_sum_scalar2 l0 t)
| Nil_monom => Nil_monom
end.
(* Computes c0*l0*s *)
Fixpoint canonical_sum_scalar3 (c0:A) (l0:varlist)
(s:canonical_sum) {struct s} : canonical_sum :=
match s with
| Cons_monom c l t =>
monom_insert (Amult c0 c) (varlist_merge l0 l)
(canonical_sum_scalar3 c0 l0 t)
| Cons_varlist l t =>
monom_insert c0 (varlist_merge l0 l) (canonical_sum_scalar3 c0 l0 t)
| Nil_monom => Nil_monom
end.
(* returns the product of two canonical sums *)
Fixpoint canonical_sum_prod (s1 s2:canonical_sum) {struct s1} :
canonical_sum :=
match s1 with
| Cons_monom c1 l1 t1 =>
canonical_sum_merge (canonical_sum_scalar3 c1 l1 s2)
(canonical_sum_prod t1 s2)
| Cons_varlist l1 t1 =>
canonical_sum_merge (canonical_sum_scalar2 l1 s2)
(canonical_sum_prod t1 s2)
| Nil_monom => Nil_monom
end.
(* The type to represent concrete semi-setoid-ring polynomials *)
Inductive setspolynomial : Type :=
| SetSPvar : index -> setspolynomial
| SetSPconst : A -> setspolynomial
| SetSPplus : setspolynomial -> setspolynomial -> setspolynomial
| SetSPmult : setspolynomial -> setspolynomial -> setspolynomial.
Fixpoint setspolynomial_normalize (p:setspolynomial) : canonical_sum :=
match p with
| SetSPplus l r =>
canonical_sum_merge (setspolynomial_normalize l)
(setspolynomial_normalize r)
| SetSPmult l r =>
canonical_sum_prod (setspolynomial_normalize l)
(setspolynomial_normalize r)
| SetSPconst c => Cons_monom c Nil_var Nil_monom
| SetSPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
end.
Fixpoint canonical_sum_simplify (s:canonical_sum) : canonical_sum :=
match s with
| Cons_monom c l t =>
if Aeq c Azero
then canonical_sum_simplify t
else
if Aeq c Aone
then Cons_varlist l (canonical_sum_simplify t)
else Cons_monom c l (canonical_sum_simplify t)
| Cons_varlist l t => Cons_varlist l (canonical_sum_simplify t)
| Nil_monom => Nil_monom
end.
Definition setspolynomial_simplify (x:setspolynomial) :=
canonical_sum_simplify (setspolynomial_normalize x).
Variable vm : varmap A.
Definition interp_var (i:index) := varmap_find Azero i vm.
Definition ivl_aux :=
(fix ivl_aux (x:index) (t:varlist) {struct t} : A :=
match t with
| Nil_var => interp_var x
| Cons_var x' t' => Amult (interp_var x) (ivl_aux x' t')
end).
Definition interp_vl (l:varlist) :=
match l with
| Nil_var => Aone
| Cons_var x t => ivl_aux x t
end.
Definition interp_m (c:A) (l:varlist) :=
match l with
| Nil_var => c
| Cons_var x t => Amult c (ivl_aux x t)
end.
Definition ics_aux :=
(fix ics_aux (a:A) (s:canonical_sum) {struct s} : A :=
match s with
| Nil_monom => a
| Cons_varlist l t => Aplus a (ics_aux (interp_vl l) t)
| Cons_monom c l t => Aplus a (ics_aux (interp_m c l) t)
end).
Definition interp_setcs (s:canonical_sum) : A :=
match s with
| Nil_monom => Azero
| Cons_varlist l t => ics_aux (interp_vl l) t
| Cons_monom c l t => ics_aux (interp_m c l) t
end.
Fixpoint interp_setsp (p:setspolynomial) : A :=
match p with
| SetSPconst c => c
| SetSPvar i => interp_var i
| SetSPplus p1 p2 => Aplus (interp_setsp p1) (interp_setsp p2)
| SetSPmult p1 p2 => Amult (interp_setsp p1) (interp_setsp p2)
end.
(* End interpretation. *)
Unset Implicit Arguments.
(* Section properties. *)
Variable T : Semi_Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aeq.
Hint Resolve (SSR_plus_comm T).
Hint Resolve (SSR_plus_assoc T).
Hint Resolve (SSR_plus_assoc2 S T).
Hint Resolve (SSR_mult_comm T).
Hint Resolve (SSR_mult_assoc T).
Hint Resolve (SSR_mult_assoc2 S T).
Hint Resolve (SSR_plus_zero_left T).
Hint Resolve (SSR_plus_zero_left2 S T).
Hint Resolve (SSR_mult_one_left T).
Hint Resolve (SSR_mult_one_left2 S T).
Hint Resolve (SSR_mult_zero_left T).
Hint Resolve (SSR_mult_zero_left2 S T).
Hint Resolve (SSR_distr_left T).
Hint Resolve (SSR_distr_left2 S T).
Hint Resolve (SSR_plus_reg_left T).
Hint Resolve (SSR_plus_permute S plus_morph T).
Hint Resolve (SSR_mult_permute S mult_morph T).
Hint Resolve (SSR_distr_right S plus_morph T).
Hint Resolve (SSR_distr_right2 S plus_morph T).
Hint Resolve (SSR_mult_zero_right S T).
Hint Resolve (SSR_mult_zero_right2 S T).
Hint Resolve (SSR_plus_zero_right S T).
Hint Resolve (SSR_plus_zero_right2 S T).
Hint Resolve (SSR_mult_one_right S T).
Hint Resolve (SSR_mult_one_right2 S T).
Hint Resolve (SSR_plus_reg_right S T).
Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
simple induction x; simple induction y; contradiction || (try reflexivity).
simpl; intros.
generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
Qed.
Remark ivl_aux_ok :
forall (v:varlist) (i:index),
Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)).
Proof.
simple induction v; simpl; intros.
trivial.
rewrite (H i); trivial.
Qed.
Lemma varlist_merge_ok :
forall x y:varlist,
Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)).
Proof.
simple induction x.
simpl; trivial.
simple induction y.
simpl; trivial.
simpl; intros.
elim (index_lt i i0); simpl; intros.
rewrite (ivl_aux_ok v i).
rewrite (ivl_aux_ok v0 i0).
rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
rewrite (H (Cons_var i0 v0)).
simpl.
rewrite (ivl_aux_ok v0 i0).
eauto.
rewrite (ivl_aux_ok v i).
rewrite (ivl_aux_ok v0 i0).
rewrite
(ivl_aux_ok
((fix vm_aux (l2:varlist) : varlist :=
match l2 with
| Nil_var => Cons_var i v
| Cons_var v2 t2 =>
if index_lt i v2
then Cons_var i (varlist_merge v l2)
else Cons_var v2 (vm_aux t2)
end) v0) i0).
rewrite H0.
rewrite (ivl_aux_ok v i).
eauto.
Qed.
Remark ics_aux_ok :
forall (x:A) (s:canonical_sum),
Aequiv (ics_aux x s) (Aplus x (interp_setcs s)).
Proof.
simple induction s; simpl; intros; trivial.
Qed.
Remark interp_m_ok :
forall (x:A) (l:varlist), Aequiv (interp_m x l) (Amult x (interp_vl l)).
Proof.
destruct l as [| i v]; trivial.
Qed.
Hint Resolve ivl_aux_ok.
Hint Resolve ics_aux_ok.
Hint Resolve interp_m_ok.
(* Hints Resolve ivl_aux_ok ics_aux_ok interp_m_ok. *)
Lemma canonical_sum_merge_ok :
forall x y:canonical_sum,
Aequiv (interp_setcs (canonical_sum_merge x y))
(Aplus (interp_setcs x) (interp_setcs y)).
Proof.
simple induction x; simpl.
trivial.
simple induction y; simpl; intros.
eauto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
simpl.
rewrite (ics_aux_ok (interp_m a v0) c).
rewrite (ics_aux_ok (interp_m a0 v0) c0).
rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)).
rewrite (H c0).
rewrite (interp_m_ok (Aplus a a0) v0).
rewrite (interp_m_ok a v0).
rewrite (interp_m_ok a0 v0).
setoid_replace (Amult (Aplus a a0) (interp_vl v0)) with
(Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)));
[ idtac | trivial ].
setoid_replace
(Aplus (Aplus (Amult a (interp_vl v0)) (Amult a0 (interp_vl v0)))
(Aplus (interp_setcs c) (interp_setcs c0))) with
(Aplus (Amult a (interp_vl v0))
(Aplus (Amult a0 (interp_vl v0))
(Aplus (interp_setcs c) (interp_setcs c0))));
[ idtac | trivial ].
setoid_replace
(Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
(Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))) with
(Aplus (Amult a (interp_vl v0))
(Aplus (interp_setcs c)
(Aplus (Amult a0 (interp_vl v0)) (interp_setcs c0))));
[ idtac | trivial ].
auto.
elim (varlist_lt v v0); simpl.
intro.
rewrite
(ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0)))
.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (ics_aux_ok (interp_m a0 v0) c0).
rewrite (H (Cons_monom a0 v0 c0)); simpl.
rewrite (ics_aux_ok (interp_m a0 v0) c0); auto.
intro.
rewrite
(ics_aux_ok (interp_m a0 v0)
((fix csm_aux (s2:canonical_sum) : canonical_sum :=
match s2 with
| Nil_monom => Cons_monom a v c
| Cons_monom c2 l2 t2 =>
if varlist_eq v l2
then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
else
if varlist_lt v l2
then Cons_monom a v (canonical_sum_merge c s2)
else Cons_monom c2 l2 (csm_aux t2)
| Cons_varlist l2 t2 =>
if varlist_eq v l2
then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
else
if varlist_lt v l2
then Cons_monom a v (canonical_sum_merge c s2)
else Cons_varlist l2 (csm_aux t2)
end) c0)).
rewrite H0.
rewrite (ics_aux_ok (interp_m a v) c);
rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl;
auto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
simpl.
rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0));
rewrite (ics_aux_ok (interp_m a v0) c);
rewrite (ics_aux_ok (interp_vl v0) c0).
rewrite (H c0).
rewrite (interp_m_ok (Aplus a Aone) v0).
rewrite (interp_m_ok a v0).
setoid_replace (Amult (Aplus a Aone) (interp_vl v0)) with
(Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)));
[ idtac | trivial ].
setoid_replace
(Aplus (Aplus (Amult a (interp_vl v0)) (Amult Aone (interp_vl v0)))
(Aplus (interp_setcs c) (interp_setcs c0))) with
(Aplus (Amult a (interp_vl v0))
(Aplus (Amult Aone (interp_vl v0))
(Aplus (interp_setcs c) (interp_setcs c0))));
[ idtac | trivial ].
setoid_replace
(Aplus (Aplus (Amult a (interp_vl v0)) (interp_setcs c))
(Aplus (interp_vl v0) (interp_setcs c0))) with
(Aplus (Amult a (interp_vl v0))
(Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0))));
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0);
[ idtac | trivial ].
auto.
elim (varlist_lt v v0); simpl.
intro.
rewrite
(ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0)))
; rewrite (ics_aux_ok (interp_m a v) c);
rewrite (ics_aux_ok (interp_vl v0) c0).
rewrite (H (Cons_varlist v0 c0)); simpl.
rewrite (ics_aux_ok (interp_vl v0) c0).
auto.
intro.
rewrite
(ics_aux_ok (interp_vl v0)
((fix csm_aux (s2:canonical_sum) : canonical_sum :=
match s2 with
| Nil_monom => Cons_monom a v c
| Cons_monom c2 l2 t2 =>
if varlist_eq v l2
then Cons_monom (Aplus a c2) v (canonical_sum_merge c t2)
else
if varlist_lt v l2
then Cons_monom a v (canonical_sum_merge c s2)
else Cons_monom c2 l2 (csm_aux t2)
| Cons_varlist l2 t2 =>
if varlist_eq v l2
then Cons_monom (Aplus a Aone) v (canonical_sum_merge c t2)
else
if varlist_lt v l2
then Cons_monom a v (canonical_sum_merge c s2)
else Cons_varlist l2 (csm_aux t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
simpl.
auto.
simple induction y; simpl; intros.
trivial.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0));
rewrite (ics_aux_ok (interp_vl v0) c);
rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0).
rewrite (interp_m_ok (Aplus Aone a) v0); rewrite (interp_m_ok a v0).
setoid_replace (Amult (Aplus Aone a) (interp_vl v0)) with
(Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)));
[ idtac | trivial ].
setoid_replace
(Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult a (interp_vl v0)))
(Aplus (interp_setcs c) (interp_setcs c0))) with
(Aplus (Amult Aone (interp_vl v0))
(Aplus (Amult a (interp_vl v0))
(Aplus (interp_setcs c) (interp_setcs c0))));
[ idtac | trivial ].
setoid_replace
(Aplus (Aplus (interp_vl v0) (interp_setcs c))
(Aplus (Amult a (interp_vl v0)) (interp_setcs c0))) with
(Aplus (interp_vl v0)
(Aplus (interp_setcs c)
(Aplus (Amult a (interp_vl v0)) (interp_setcs c0))));
[ idtac | trivial ].
auto.
elim (varlist_lt v v0); simpl; intros.
rewrite
(ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0)))
; rewrite (ics_aux_ok (interp_vl v) c);
rewrite (ics_aux_ok (interp_m a v0) c0).
rewrite (H (Cons_monom a v0 c0)); simpl.
rewrite (ics_aux_ok (interp_m a v0) c0); auto.
rewrite
(ics_aux_ok (interp_m a v0)
((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
match s2 with
| Nil_monom => Cons_varlist v c
| Cons_monom c2 l2 t2 =>
if varlist_eq v l2
then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
else
if varlist_lt v l2
then Cons_varlist v (canonical_sum_merge c s2)
else Cons_monom c2 l2 (csm_aux2 t2)
| Cons_varlist l2 t2 =>
if varlist_eq v l2
then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
else
if varlist_lt v l2
then Cons_varlist v (canonical_sum_merge c s2)
else Cons_varlist l2 (csm_aux2 t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0);
simpl; auto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0); intros.
rewrite (H1 I); simpl.
rewrite
(ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0))
; rewrite (ics_aux_ok (interp_vl v0) c);
rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H c0).
rewrite (interp_m_ok (Aplus Aone Aone) v0).
setoid_replace (Amult (Aplus Aone Aone) (interp_vl v0)) with
(Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)));
[ idtac | trivial ].
setoid_replace
(Aplus (Aplus (Amult Aone (interp_vl v0)) (Amult Aone (interp_vl v0)))
(Aplus (interp_setcs c) (interp_setcs c0))) with
(Aplus (Amult Aone (interp_vl v0))
(Aplus (Amult Aone (interp_vl v0))
(Aplus (interp_setcs c) (interp_setcs c0))));
[ idtac | trivial ].
setoid_replace
(Aplus (Aplus (interp_vl v0) (interp_setcs c))
(Aplus (interp_vl v0) (interp_setcs c0))) with
(Aplus (interp_vl v0)
(Aplus (interp_setcs c) (Aplus (interp_vl v0) (interp_setcs c0))));
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto.
elim (varlist_lt v v0); simpl.
rewrite
(ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0)))
; rewrite (ics_aux_ok (interp_vl v) c);
rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0));
simpl.
rewrite (ics_aux_ok (interp_vl v0) c0); auto.
rewrite
(ics_aux_ok (interp_vl v0)
((fix csm_aux2 (s2:canonical_sum) : canonical_sum :=
match s2 with
| Nil_monom => Cons_varlist v c
| Cons_monom c2 l2 t2 =>
if varlist_eq v l2
then Cons_monom (Aplus Aone c2) v (canonical_sum_merge c t2)
else
if varlist_lt v l2
then Cons_varlist v (canonical_sum_merge c s2)
else Cons_monom c2 l2 (csm_aux2 t2)
| Cons_varlist l2 t2 =>
if varlist_eq v l2
then Cons_monom (Aplus Aone Aone) v (canonical_sum_merge c t2)
else
if varlist_lt v l2
then Cons_varlist v (canonical_sum_merge c s2)
else Cons_varlist l2 (csm_aux2 t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
simpl; auto.
Qed.
Lemma monom_insert_ok :
forall (a:A) (l:varlist) (s:canonical_sum),
Aequiv (interp_setcs (monom_insert a l s))
(Aplus (Amult a (interp_vl l)) (interp_setcs s)).
Proof.
simple induction s; intros.
simpl; rewrite (interp_m_ok a l); trivial.
simpl; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
rewrite (ics_aux_ok (interp_m a0 v) c).
rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v).
setoid_replace (Amult (Aplus a a0) (interp_vl v)) with
(Aplus (Amult a (interp_vl v)) (Amult a0 (interp_vl v)));
[ idtac | trivial ].
auto.
elim (varlist_lt l v); simpl; intros.
rewrite (ics_aux_ok (interp_m a0 v) c).
rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l).
auto.
rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H.
auto.
simpl.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
rewrite (ics_aux_ok (interp_vl v) c).
rewrite (interp_m_ok (Aplus a Aone) v).
setoid_replace (Amult (Aplus a Aone) (interp_vl v)) with
(Aplus (Amult a (interp_vl v)) (Amult Aone (interp_vl v)));
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v);
[ idtac | trivial ].
auto.
elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H.
rewrite (ics_aux_ok (interp_vl v) c); auto.
Qed.
Lemma varlist_insert_ok :
forall (l:varlist) (s:canonical_sum),
Aequiv (interp_setcs (varlist_insert l s))
(Aplus (interp_vl l) (interp_setcs s)).
Proof.
simple induction s; simpl; intros.
trivial.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v).
setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with
(Aplus (Amult Aone (interp_vl v)) (Amult a (interp_vl v)));
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite H; auto.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
rewrite (ics_aux_ok (interp_vl v) c).
rewrite (interp_m_ok (Aplus Aone Aone) v).
setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with
(Aplus (Amult Aone (interp_vl v)) (Amult Aone (interp_vl v)));
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
rewrite H.
rewrite (ics_aux_ok (interp_vl v) c); auto.
Qed.
Lemma canonical_sum_scalar_ok :
forall (a:A) (s:canonical_sum),
Aequiv (interp_setcs (canonical_sum_scalar a s))
(Amult a (interp_setcs s)).
Proof.
simple induction s; simpl; intros.
trivial.
rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c));
rewrite (ics_aux_ok (interp_m a0 v) c).
rewrite (interp_m_ok (Amult a a0) v); rewrite (interp_m_ok a0 v).
rewrite H.
setoid_replace (Amult a (Aplus (Amult a0 (interp_vl v)) (interp_setcs c)))
with (Aplus (Amult a (Amult a0 (interp_vl v))) (Amult a (interp_setcs c)));
[ idtac | trivial ].
auto.
rewrite (ics_aux_ok (interp_m a v) (canonical_sum_scalar a c));
rewrite (ics_aux_ok (interp_vl v) c); rewrite H.
rewrite (interp_m_ok a v).
auto.
Qed.
Lemma canonical_sum_scalar2_ok :
forall (l:varlist) (s:canonical_sum),
Aequiv (interp_setcs (canonical_sum_scalar2 l s))
(Amult (interp_vl l) (interp_setcs s)).
Proof.
simple induction s; simpl; intros; auto.
rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)).
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite H.
rewrite (varlist_merge_ok l v).
setoid_replace
(Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c))) with
(Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
(Amult (interp_vl l) (interp_setcs c)));
[ idtac | trivial ].
auto.
rewrite (varlist_insert_ok (varlist_merge l v) (canonical_sum_scalar2 l c)).
rewrite (ics_aux_ok (interp_vl v) c).
rewrite H.
rewrite (varlist_merge_ok l v).
auto.
Qed.
Lemma canonical_sum_scalar3_ok :
forall (c:A) (l:varlist) (s:canonical_sum),
Aequiv (interp_setcs (canonical_sum_scalar3 c l s))
(Amult c (Amult (interp_vl l) (interp_setcs s))).
Proof.
simple induction s; simpl; intros.
rewrite (SSR_mult_zero_right S T (interp_vl l)).
auto.
rewrite
(monom_insert_ok (Amult c a) (varlist_merge l v)
(canonical_sum_scalar3 c l c0)).
rewrite (ics_aux_ok (interp_m a v) c0).
rewrite (interp_m_ok a v).
rewrite H.
rewrite (varlist_merge_ok l v).
setoid_replace
(Amult (interp_vl l) (Aplus (Amult a (interp_vl v)) (interp_setcs c0))) with
(Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
(Amult (interp_vl l) (interp_setcs c0)));
[ idtac | trivial ].
setoid_replace
(Amult c
(Aplus (Amult (interp_vl l) (Amult a (interp_vl v)))
(Amult (interp_vl l) (interp_setcs c0)))) with
(Aplus (Amult c (Amult (interp_vl l) (Amult a (interp_vl v))))
(Amult c (Amult (interp_vl l) (interp_setcs c0))));
[ idtac | trivial ].
setoid_replace (Amult (Amult c a) (Amult (interp_vl l) (interp_vl v))) with
(Amult c (Amult a (Amult (interp_vl l) (interp_vl v))));
[ idtac | trivial ].
auto.
rewrite
(monom_insert_ok c (varlist_merge l v) (canonical_sum_scalar3 c l c0))
.
rewrite (ics_aux_ok (interp_vl v) c0).
rewrite H.
rewrite (varlist_merge_ok l v).
setoid_replace
(Aplus (Amult c (Amult (interp_vl l) (interp_vl v)))
(Amult c (Amult (interp_vl l) (interp_setcs c0)))) with
(Amult c
(Aplus (Amult (interp_vl l) (interp_vl v))
(Amult (interp_vl l) (interp_setcs c0))));
[ idtac | trivial ].
auto.
Qed.
Lemma canonical_sum_prod_ok :
forall x y:canonical_sum,
Aequiv (interp_setcs (canonical_sum_prod x y))
(Amult (interp_setcs x) (interp_setcs y)).
Proof.
simple induction x; simpl; intros.
trivial.
rewrite
(canonical_sum_merge_ok (canonical_sum_scalar3 a v y)
(canonical_sum_prod c y)).
rewrite (canonical_sum_scalar3_ok a v y).
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite (H y).
setoid_replace (Amult a (Amult (interp_vl v) (interp_setcs y))) with
(Amult (Amult a (interp_vl v)) (interp_setcs y));
[ idtac | trivial ].
setoid_replace
(Amult (Aplus (Amult a (interp_vl v)) (interp_setcs c)) (interp_setcs y))
with
(Aplus (Amult (Amult a (interp_vl v)) (interp_setcs y))
(Amult (interp_setcs c) (interp_setcs y)));
[ idtac | trivial ].
trivial.
rewrite
(canonical_sum_merge_ok (canonical_sum_scalar2 v y) (canonical_sum_prod c y))
.
rewrite (canonical_sum_scalar2_ok v y).
rewrite (ics_aux_ok (interp_vl v) c).
rewrite (H y).
trivial.
Qed.
Theorem setspolynomial_normalize_ok :
forall p:setspolynomial,
Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p).
Proof.
simple induction p; simpl; intros; trivial.
rewrite
(canonical_sum_merge_ok (setspolynomial_normalize s)
(setspolynomial_normalize s0)).
rewrite H; rewrite H0; trivial.
rewrite
(canonical_sum_prod_ok (setspolynomial_normalize s)
(setspolynomial_normalize s0)).
rewrite H; rewrite H0; trivial.
Qed.
Lemma canonical_sum_simplify_ok :
forall s:canonical_sum,
Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s).
Proof.
simple induction s; simpl; intros.
trivial.
generalize (SSR_eq_prop T a Azero).
elim (Aeq a Azero).
simpl.
intros.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite (H0 I).
setoid_replace (Amult Azero (interp_vl v)) with Azero;
[ idtac | trivial ].
rewrite H.
trivial.
intros; simpl.
generalize (SSR_eq_prop T a Aone).
elim (Aeq a Aone).
intros.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite (H1 I).
simpl.
rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
rewrite H.
auto.
simpl.
intros.
rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
rewrite (ics_aux_ok (interp_m a v) c).
rewrite H; trivial.
rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
rewrite H.
auto.
Qed.
Theorem setspolynomial_simplify_ok :
forall p:setspolynomial,
Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p).
Proof.
intro.
unfold setspolynomial_simplify.
rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
exact (setspolynomial_normalize_ok p).
Qed.
End semi_setoid_rings.
Arguments Cons_varlist : default implicits.
Arguments Cons_monom : default implicits.
Arguments SetSPconst : default implicits.
Arguments SetSPplus : default implicits.
Arguments SetSPmult : default implicits.
Section setoid_rings.
Set Implicit Arguments.
Variable vm : varmap A.
Variable T : Setoid_Ring_Theory Aequiv Aplus Amult Aone Azero Aopp Aeq.
Hint Resolve (STh_plus_comm T).
Hint Resolve (STh_plus_assoc T).
Hint Resolve (STh_plus_assoc2 S T).
Hint Resolve (STh_mult_comm T).
Hint Resolve (STh_mult_assoc T).
Hint Resolve (STh_mult_assoc2 S T).
Hint Resolve (STh_plus_zero_left T).
Hint Resolve (STh_plus_zero_left2 S T).
Hint Resolve (STh_mult_one_left T).
Hint Resolve (STh_mult_one_left2 S T).
Hint Resolve (STh_mult_zero_left S plus_morph mult_morph T).
Hint Resolve (STh_mult_zero_left2 S plus_morph mult_morph T).
Hint Resolve (STh_distr_left T).
Hint Resolve (STh_distr_left2 S T).
Hint Resolve (STh_plus_reg_left S plus_morph T).
Hint Resolve (STh_plus_permute S plus_morph T).
Hint Resolve (STh_mult_permute S mult_morph T).
Hint Resolve (STh_distr_right S plus_morph T).
Hint Resolve (STh_distr_right2 S plus_morph T).
Hint Resolve (STh_mult_zero_right S plus_morph mult_morph T).
Hint Resolve (STh_mult_zero_right2 S plus_morph mult_morph T).
Hint Resolve (STh_plus_zero_right S T).
Hint Resolve (STh_plus_zero_right2 S T).
Hint Resolve (STh_mult_one_right S T).
Hint Resolve (STh_mult_one_right2 S T).
Hint Resolve (STh_plus_reg_right S plus_morph T).
Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
(*** Definitions *)
Inductive setpolynomial : Type :=
| SetPvar : index -> setpolynomial
| SetPconst : A -> setpolynomial
| SetPplus : setpolynomial -> setpolynomial -> setpolynomial
| SetPmult : setpolynomial -> setpolynomial -> setpolynomial
| SetPopp : setpolynomial -> setpolynomial.
Fixpoint setpolynomial_normalize (x:setpolynomial) : canonical_sum :=
match x with
| SetPplus l r =>
canonical_sum_merge (setpolynomial_normalize l)
(setpolynomial_normalize r)
| SetPmult l r =>
canonical_sum_prod (setpolynomial_normalize l)
(setpolynomial_normalize r)
| SetPconst c => Cons_monom c Nil_var Nil_monom
| SetPvar i => Cons_varlist (Cons_var i Nil_var) Nil_monom
| SetPopp p =>
canonical_sum_scalar3 (Aopp Aone) Nil_var (setpolynomial_normalize p)
end.
Definition setpolynomial_simplify (x:setpolynomial) :=
canonical_sum_simplify (setpolynomial_normalize x).
Fixpoint setspolynomial_of (x:setpolynomial) : setspolynomial :=
match x with
| SetPplus l r => SetSPplus (setspolynomial_of l) (setspolynomial_of r)
| SetPmult l r => SetSPmult (setspolynomial_of l) (setspolynomial_of r)
| SetPconst c => SetSPconst c
| SetPvar i => SetSPvar i
| SetPopp p => SetSPmult (SetSPconst (Aopp Aone)) (setspolynomial_of p)
end.
(*** Interpretation *)
Fixpoint interp_setp (p:setpolynomial) : A :=
match p with
| SetPconst c => c
| SetPvar i => varmap_find Azero i vm
| SetPplus p1 p2 => Aplus (interp_setp p1) (interp_setp p2)
| SetPmult p1 p2 => Amult (interp_setp p1) (interp_setp p2)
| SetPopp p1 => Aopp (interp_setp p1)
end.
(*** Properties *)
Unset Implicit Arguments.
Lemma setspolynomial_of_ok :
forall p:setpolynomial,
Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)).
simple induction p; trivial; simpl; intros.
rewrite H; rewrite H0; trivial.
rewrite H; rewrite H0; trivial.
rewrite H.
rewrite
(STh_opp_mult_left2 S plus_morph mult_morph T Aone
(interp_setsp vm (setspolynomial_of s))).
rewrite (STh_mult_one_left T (interp_setsp vm (setspolynomial_of s))).
trivial.
Qed.
Theorem setpolynomial_normalize_ok :
forall p:setpolynomial,
setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p).
simple induction p; trivial; simpl; intros.
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
rewrite H; simpl.
elim
(canonical_sum_scalar3 (Aopp Aone) Nil_var
(setspolynomial_normalize (setspolynomial_of s)));
[ reflexivity
| simpl; intros; rewrite H0; reflexivity
| simpl; intros; rewrite H0; reflexivity ].
Qed.
Theorem setpolynomial_simplify_ok :
forall p:setpolynomial,
Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p).
intro.
unfold setpolynomial_simplify.
rewrite (setspolynomial_of_ok p).
rewrite setpolynomial_normalize_ok.
rewrite
(canonical_sum_simplify_ok vm
(Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
plus_morph mult_morph T)
(setspolynomial_normalize (setspolynomial_of p)))
.
rewrite
(setspolynomial_normalize_ok vm
(Semi_Setoid_Ring_Theory_of A Aequiv S Aplus Amult Aone Azero Aopp Aeq
plus_morph mult_morph T) (setspolynomial_of p))
.
trivial.
Qed.
End setoid_rings.
End setoid.
|