1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export Bool.
Require Export Setoid.
Set Implicit Arguments.
Section Setoid_rings.
Variable A : Type.
Variable Aequiv : A -> A -> Prop.
Infix Local "==" := Aequiv (at level 70, no associativity).
Variable S : Setoid_Theory A Aequiv.
Add Setoid A Aequiv S as Asetoid.
Variable Aplus : A -> A -> A.
Variable Amult : A -> A -> A.
Variable Aone : A.
Variable Azero : A.
Variable Aopp : A -> A.
Variable Aeq : A -> A -> bool.
Infix "+" := Aplus (at level 50, left associativity).
Infix "*" := Amult (at level 40, left associativity).
Notation "0" := Azero.
Notation "1" := Aone.
Notation "- x" := (Aopp x).
Variable plus_morph :
forall a a0:A, a == a0 -> forall a1 a2:A, a1 == a2 -> a + a1 == a0 + a2.
Variable mult_morph :
forall a a0:A, a == a0 -> forall a1 a2:A, a1 == a2 -> a * a1 == a0 * a2.
Variable opp_morph : forall a a0:A, a == a0 -> - a == - a0.
Add Morphism Aplus : Aplus_ext.
intros; apply plus_morph; assumption.
Qed.
Add Morphism Amult : Amult_ext.
intros; apply mult_morph; assumption.
Qed.
Add Morphism Aopp : Aopp_ext.
exact opp_morph.
Qed.
Section Theory_of_semi_setoid_rings.
Record Semi_Setoid_Ring_Theory : Prop :=
{SSR_plus_comm : forall n m:A, n + m == m + n;
SSR_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
SSR_mult_comm : forall n m:A, n * m == m * n;
SSR_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
SSR_plus_zero_left : forall n:A, 0 + n == n;
SSR_mult_one_left : forall n:A, 1 * n == n;
SSR_mult_zero_left : forall n:A, 0 * n == 0;
SSR_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
SSR_plus_reg_left : forall n m p:A, n + m == n + p -> m == p;
SSR_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
Variable T : Semi_Setoid_Ring_Theory.
Let plus_comm := SSR_plus_comm T.
Let plus_assoc := SSR_plus_assoc T.
Let mult_comm := SSR_mult_comm T.
Let mult_assoc := SSR_mult_assoc T.
Let plus_zero_left := SSR_plus_zero_left T.
Let mult_one_left := SSR_mult_one_left T.
Let mult_zero_left := SSR_mult_zero_left T.
Let distr_left := SSR_distr_left T.
Let plus_reg_left := SSR_plus_reg_left T.
Let equiv_refl := Seq_refl A Aequiv S.
Let equiv_sym := Seq_sym A Aequiv S.
Let equiv_trans := Seq_trans A Aequiv S.
Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
mult_one_left mult_zero_left distr_left plus_reg_left
equiv_refl (*equiv_sym*).
Hint Immediate equiv_sym.
(* Lemmas whose form is x=y are also provided in form y=x because
Auto does not symmetry *)
Lemma SSR_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
auto. Qed.
Lemma SSR_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
auto. Qed.
Lemma SSR_plus_zero_left2 : forall n:A, n == 0 + n.
auto. Qed.
Lemma SSR_mult_one_left2 : forall n:A, n == 1 * n.
auto. Qed.
Lemma SSR_mult_zero_left2 : forall n:A, 0 == 0 * n.
auto. Qed.
Lemma SSR_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
auto. Qed.
Lemma SSR_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
intros.
rewrite (plus_assoc n m p).
rewrite (plus_comm n m).
rewrite <- (plus_assoc m n p).
trivial.
Qed.
Lemma SSR_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
intros.
rewrite (mult_assoc n m p).
rewrite (mult_comm n m).
rewrite <- (mult_assoc m n p).
trivial.
Qed.
Hint Resolve SSR_plus_permute SSR_mult_permute.
Lemma SSR_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
intros.
rewrite (mult_comm n (m + p)).
rewrite (mult_comm n m).
rewrite (mult_comm n p).
auto.
Qed.
Lemma SSR_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
intros.
apply equiv_sym.
apply SSR_distr_right.
Qed.
Lemma SSR_mult_zero_right : forall n:A, n * 0 == 0.
intro; rewrite (mult_comm n 0); auto.
Qed.
Lemma SSR_mult_zero_right2 : forall n:A, 0 == n * 0.
intro; rewrite (mult_comm n 0); auto.
Qed.
Lemma SSR_plus_zero_right : forall n:A, n + 0 == n.
intro; rewrite (plus_comm n 0); auto.
Qed.
Lemma SSR_plus_zero_right2 : forall n:A, n == n + 0.
intro; rewrite (plus_comm n 0); auto.
Qed.
Lemma SSR_mult_one_right : forall n:A, n * 1 == n.
intro; rewrite (mult_comm n 1); auto.
Qed.
Lemma SSR_mult_one_right2 : forall n:A, n == n * 1.
intro; rewrite (mult_comm n 1); auto.
Qed.
Lemma SSR_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
intros n m p; rewrite (plus_comm m n); rewrite (plus_comm p n).
intro; apply plus_reg_left with n; trivial.
Qed.
End Theory_of_semi_setoid_rings.
Section Theory_of_setoid_rings.
Record Setoid_Ring_Theory : Prop :=
{STh_plus_comm : forall n m:A, n + m == m + n;
STh_plus_assoc : forall n m p:A, n + (m + p) == n + m + p;
STh_mult_comm : forall n m:A, n * m == m * n;
STh_mult_assoc : forall n m p:A, n * (m * p) == n * m * p;
STh_plus_zero_left : forall n:A, 0 + n == n;
STh_mult_one_left : forall n:A, 1 * n == n;
STh_opp_def : forall n:A, n + - n == 0;
STh_distr_left : forall n m p:A, (n + m) * p == n * p + m * p;
STh_eq_prop : forall x y:A, Is_true (Aeq x y) -> x == y}.
Variable T : Setoid_Ring_Theory.
Let plus_comm := STh_plus_comm T.
Let plus_assoc := STh_plus_assoc T.
Let mult_comm := STh_mult_comm T.
Let mult_assoc := STh_mult_assoc T.
Let plus_zero_left := STh_plus_zero_left T.
Let mult_one_left := STh_mult_one_left T.
Let opp_def := STh_opp_def T.
Let distr_left := STh_distr_left T.
Let equiv_refl := Seq_refl A Aequiv S.
Let equiv_sym := Seq_sym A Aequiv S.
Let equiv_trans := Seq_trans A Aequiv S.
Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
mult_one_left opp_def distr_left equiv_refl equiv_sym.
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma STh_mult_assoc2 : forall n m p:A, n * m * p == n * (m * p).
auto. Qed.
Lemma STh_plus_assoc2 : forall n m p:A, n + m + p == n + (m + p).
auto. Qed.
Lemma STh_plus_zero_left2 : forall n:A, n == 0 + n.
auto. Qed.
Lemma STh_mult_one_left2 : forall n:A, n == 1 * n.
auto. Qed.
Lemma STh_distr_left2 : forall n m p:A, n * p + m * p == (n + m) * p.
auto. Qed.
Lemma STh_opp_def2 : forall n:A, 0 == n + - n.
auto. Qed.
Lemma STh_plus_permute : forall n m p:A, n + (m + p) == m + (n + p).
intros.
rewrite (plus_assoc n m p).
rewrite (plus_comm n m).
rewrite <- (plus_assoc m n p).
trivial.
Qed.
Lemma STh_mult_permute : forall n m p:A, n * (m * p) == m * (n * p).
intros.
rewrite (mult_assoc n m p).
rewrite (mult_comm n m).
rewrite <- (mult_assoc m n p).
trivial.
Qed.
Hint Resolve STh_plus_permute STh_mult_permute.
Lemma Saux1 : forall a:A, a + a == a -> a == 0.
intros.
rewrite <- (plus_zero_left a).
rewrite (plus_comm 0 a).
setoid_replace (a + 0) with (a + (a + - a)) by auto.
rewrite (plus_assoc a a (- a)).
rewrite H.
apply opp_def.
Qed.
Lemma STh_mult_zero_left : forall n:A, 0 * n == 0.
intros.
apply Saux1.
rewrite <- (distr_left 0 0 n).
rewrite (plus_zero_left 0).
trivial.
Qed.
Hint Resolve STh_mult_zero_left.
Lemma STh_mult_zero_left2 : forall n:A, 0 == 0 * n.
auto.
Qed.
Lemma Saux2 : forall x y z:A, x + y == 0 -> x + z == 0 -> y == z.
intros.
rewrite <- (plus_zero_left y).
rewrite <- H0.
rewrite <- (plus_assoc x z y).
rewrite (plus_comm z y).
rewrite (plus_assoc x y z).
rewrite H.
auto.
Qed.
Lemma STh_opp_mult_left : forall x y:A, - (x * y) == - x * y.
intros.
apply Saux2 with (x * y); auto.
rewrite <- (distr_left x (- x) y).
rewrite (opp_def x).
auto.
Qed.
Hint Resolve STh_opp_mult_left.
Lemma STh_opp_mult_left2 : forall x y:A, - x * y == - (x * y).
auto.
Qed.
Lemma STh_mult_zero_right : forall n:A, n * 0 == 0.
intro; rewrite (mult_comm n 0); auto.
Qed.
Lemma STh_mult_zero_right2 : forall n:A, 0 == n * 0.
intro; rewrite (mult_comm n 0); auto.
Qed.
Lemma STh_plus_zero_right : forall n:A, n + 0 == n.
intro; rewrite (plus_comm n 0); auto.
Qed.
Lemma STh_plus_zero_right2 : forall n:A, n == n + 0.
intro; rewrite (plus_comm n 0); auto.
Qed.
Lemma STh_mult_one_right : forall n:A, n * 1 == n.
intro; rewrite (mult_comm n 1); auto.
Qed.
Lemma STh_mult_one_right2 : forall n:A, n == n * 1.
intro; rewrite (mult_comm n 1); auto.
Qed.
Lemma STh_opp_mult_right : forall x y:A, - (x * y) == x * - y.
intros.
rewrite (mult_comm x y).
rewrite (mult_comm x (- y)).
auto.
Qed.
Lemma STh_opp_mult_right2 : forall x y:A, x * - y == - (x * y).
intros.
rewrite (mult_comm x y).
rewrite (mult_comm x (- y)).
auto.
Qed.
Lemma STh_plus_opp_opp : forall x y:A, - x + - y == - (x + y).
intros.
apply Saux2 with (x + y); auto.
rewrite (STh_plus_permute (x + y) (- x) (- y)).
rewrite <- (plus_assoc x y (- y)).
rewrite (opp_def y); rewrite (STh_plus_zero_right x).
rewrite (STh_opp_def2 x); trivial.
Qed.
Lemma STh_plus_permute_opp : forall n m p:A, - m + (n + p) == n + (- m + p).
auto.
Qed.
Lemma STh_opp_opp : forall n:A, - - n == n.
intro.
apply Saux2 with (- n); auto.
rewrite (plus_comm (- n) n); auto.
Qed.
Hint Resolve STh_opp_opp.
Lemma STh_opp_opp2 : forall n:A, n == - - n.
auto.
Qed.
Lemma STh_mult_opp_opp : forall x y:A, - x * - y == x * y.
intros.
rewrite (STh_opp_mult_left2 x (- y)).
rewrite (STh_opp_mult_right2 x y).
trivial.
Qed.
Lemma STh_mult_opp_opp2 : forall x y:A, x * y == - x * - y.
intros.
apply equiv_sym.
apply STh_mult_opp_opp.
Qed.
Lemma STh_opp_zero : - 0 == 0.
rewrite <- (plus_zero_left (- 0)).
trivial.
Qed.
Lemma STh_plus_reg_left : forall n m p:A, n + m == n + p -> m == p.
intros.
rewrite <- (plus_zero_left m).
rewrite <- (plus_zero_left p).
rewrite <- (opp_def n).
rewrite (plus_comm n (- n)).
rewrite <- (plus_assoc (- n) n m).
rewrite <- (plus_assoc (- n) n p).
auto.
Qed.
Lemma STh_plus_reg_right : forall n m p:A, m + n == p + n -> m == p.
intros.
apply STh_plus_reg_left with n.
rewrite (plus_comm n m); rewrite (plus_comm n p); assumption.
Qed.
Lemma STh_distr_right : forall n m p:A, n * (m + p) == n * m + n * p.
intros.
rewrite (mult_comm n (m + p)).
rewrite (mult_comm n m).
rewrite (mult_comm n p).
trivial.
Qed.
Lemma STh_distr_right2 : forall n m p:A, n * m + n * p == n * (m + p).
intros.
apply equiv_sym.
apply STh_distr_right.
Qed.
End Theory_of_setoid_rings.
Hint Resolve STh_mult_zero_left STh_plus_reg_left: core.
Unset Implicit Arguments.
Definition Semi_Setoid_Ring_Theory_of :
Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
intros until 1; case H.
split; intros; simpl; eauto.
Defined.
Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >->
Semi_Setoid_Ring_Theory.
Section product_ring.
End product_ring.
Section power_ring.
End power_ring.
End Setoid_rings.
|