1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export List.
Require Export BinPos.
Require Arith.EqNat.
Open Scope positive_scope.
Ltac clean := try (simpl; congruence).
Lemma Gt_Psucc: forall p q,
(p ?= Pos.succ q) = Gt -> (p ?= q) = Gt.
Proof.
intros. rewrite <- Pos.compare_succ_succ.
now apply Pos.lt_gt, Pos.lt_lt_succ, Pos.gt_lt.
Qed.
Lemma Psucc_Gt : forall p,
(Pos.succ p ?= p) = Gt.
Proof.
intros. apply Pos.lt_gt, Pos.lt_succ_diag_r.
Qed.
Fixpoint Lget (A:Set) (n:nat) (l:list A) {struct l}:option A :=
match l with nil => None
| x::q =>
match n with O => Some x
| S m => Lget A m q
end end .
Arguments Lget [A] n l.
Lemma map_app : forall (A B:Set) (f:A -> B) l m,
List.map f (l ++ m) = List.map f l ++ List.map f m.
induction l.
reflexivity.
simpl.
intro m ; apply f_equal;apply IHl.
Qed.
Lemma length_map : forall (A B:Set) (f:A -> B) l,
length (List.map f l) = length l.
induction l.
reflexivity.
simpl; apply f_equal;apply IHl.
Qed.
Lemma Lget_map : forall (A B:Set) (f:A -> B) i l,
Lget i (List.map f l) =
match Lget i l with Some a =>
Some (f a) | None => None end.
induction i;intros [ | x l ] ;trivial.
simpl;auto.
Qed.
Lemma Lget_app : forall (A:Set) (a:A) l i,
Lget i (l ++ a :: nil) = if Arith.EqNat.beq_nat i (length l) then Some a else Lget i l.
Proof.
induction l;simpl Lget;simpl length.
intros [ | i];simpl;reflexivity.
intros [ | i];simpl.
reflexivity.
auto.
Qed.
Lemma Lget_app_Some : forall (A:Set) l delta i (a: A),
Lget i l = Some a ->
Lget i (l ++ delta) = Some a.
induction l;destruct i;simpl;try congruence;auto.
Qed.
Section Store.
Variable A:Type.
Inductive Poption : Type:=
PSome : A -> Poption
| PNone : Poption.
Inductive Tree : Type :=
Tempty : Tree
| Branch0 : Tree -> Tree -> Tree
| Branch1 : A -> Tree -> Tree -> Tree.
Fixpoint Tget (p:positive) (T:Tree) {struct p} : Poption :=
match T with
Tempty => PNone
| Branch0 T1 T2 =>
match p with
xI pp => Tget pp T2
| xO pp => Tget pp T1
| xH => PNone
end
| Branch1 a T1 T2 =>
match p with
xI pp => Tget pp T2
| xO pp => Tget pp T1
| xH => PSome a
end
end.
Fixpoint Tadd (p:positive) (a:A) (T:Tree) {struct p}: Tree :=
match T with
| Tempty =>
match p with
| xI pp => Branch0 Tempty (Tadd pp a Tempty)
| xO pp => Branch0 (Tadd pp a Tempty) Tempty
| xH => Branch1 a Tempty Tempty
end
| Branch0 T1 T2 =>
match p with
| xI pp => Branch0 T1 (Tadd pp a T2)
| xO pp => Branch0 (Tadd pp a T1) T2
| xH => Branch1 a T1 T2
end
| Branch1 b T1 T2 =>
match p with
| xI pp => Branch1 b T1 (Tadd pp a T2)
| xO pp => Branch1 b (Tadd pp a T1) T2
| xH => Branch1 a T1 T2
end
end.
Definition mkBranch0 (T1 T2:Tree) :=
match T1,T2 with
Tempty ,Tempty => Tempty
| _,_ => Branch0 T1 T2
end.
Fixpoint Tremove (p:positive) (T:Tree) {struct p}: Tree :=
match T with
| Tempty => Tempty
| Branch0 T1 T2 =>
match p with
| xI pp => mkBranch0 T1 (Tremove pp T2)
| xO pp => mkBranch0 (Tremove pp T1) T2
| xH => T
end
| Branch1 b T1 T2 =>
match p with
| xI pp => Branch1 b T1 (Tremove pp T2)
| xO pp => Branch1 b (Tremove pp T1) T2
| xH => mkBranch0 T1 T2
end
end.
Theorem Tget_Tempty: forall (p : positive), Tget p (Tempty) = PNone.
destruct p;reflexivity.
Qed.
Theorem Tget_Tadd: forall i j a T,
Tget i (Tadd j a T) =
match (i ?= j) with
Eq => PSome a
| Lt => Tget i T
| Gt => Tget i T
end.
Proof.
intros i j.
case_eq (i ?= j).
intro H;rewrite (Pos.compare_eq _ _ H);intros a;clear i H.
induction j;destruct T;simpl;try (apply IHj);congruence.
unfold Pos.compare.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
unfold Pos.compare.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
Qed.
Record Store : Type :=
mkStore {index:positive;contents:Tree}.
Definition empty := mkStore xH Tempty.
Definition push a S :=
mkStore (Pos.succ (index S)) (Tadd (index S) a (contents S)).
Definition get i S := Tget i (contents S).
Lemma get_empty : forall i, get i empty = PNone.
intro i; case i; unfold empty,get; simpl;reflexivity.
Qed.
Inductive Full : Store -> Type:=
F_empty : Full empty
| F_push : forall a S, Full S -> Full (push a S).
Theorem get_Full_Gt : forall S, Full S ->
forall i, (i ?= index S) = Gt -> get i S = PNone.
Proof.
intros S W;induction W.
unfold empty,index,get,contents;intros;apply Tget_Tempty.
unfold index,get,push;simpl contents.
intros i e;rewrite Tget_Tadd.
rewrite (Gt_Psucc _ _ e).
unfold get in IHW.
apply IHW;apply Gt_Psucc;assumption.
Qed.
Theorem get_Full_Eq : forall S, Full S -> get (index S) S = PNone.
intros [index0 contents0] F.
case F.
unfold empty,index,get,contents;intros;apply Tget_Tempty.
unfold index,get,push;simpl contents.
intros a S.
rewrite Tget_Tadd.
rewrite Psucc_Gt.
intro W.
change (get (Pos.succ (index S)) S =PNone).
apply get_Full_Gt; auto.
apply Psucc_Gt.
Qed.
Theorem get_push_Full :
forall i a S, Full S ->
get i (push a S) =
match (i ?= index S) with
Eq => PSome a
| Lt => get i S
| Gt => PNone
end.
Proof.
intros i a S F.
case_eq (i ?= index S).
intro e;rewrite (Pos.compare_eq _ _ e).
destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
rewrite Pos.compare_refl;reflexivity.
intros;destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
simpl index in H;rewrite H;reflexivity.
intro H;generalize H;clear H.
unfold get,push;simpl index;simpl contents.
rewrite Tget_Tadd;intro e;rewrite e.
change (get i S=PNone).
apply get_Full_Gt;auto.
Qed.
Lemma Full_push_compat : forall i a S, Full S ->
forall x, get i S = PSome x ->
get i (push a S) = PSome x.
Proof.
intros i a S F x H.
case_eq (i ?= index S);intro test.
rewrite (Pos.compare_eq _ _ test) in H.
rewrite (get_Full_Eq _ F) in H;congruence.
rewrite <- H.
rewrite (get_push_Full i a).
rewrite test;reflexivity.
assumption.
rewrite (get_Full_Gt _ F) in H;congruence.
Qed.
Lemma Full_index_one_empty : forall S, Full S -> index S = 1 -> S=empty.
intros [ind cont] F one; inversion F.
reflexivity.
simpl index in one;assert (h:=Pos.succ_not_1 (index S)).
congruence.
Qed.
Lemma push_not_empty: forall a S, (push a S) <> empty.
intros a [ind cont];unfold push,empty.
simpl;intro H;injection H; intros _ ; apply Pos.succ_not_1.
Qed.
Fixpoint In (x:A) (S:Store) (F:Full S) {struct F}: Prop :=
match F with
F_empty => False
| F_push a SS FF => x=a \/ In x SS FF
end.
Lemma get_In : forall (x:A) (S:Store) (F:Full S) i ,
get i S = PSome x -> In x S F.
induction F.
intro i;rewrite get_empty; congruence.
intro i;rewrite get_push_Full;trivial.
case_eq (i ?= index S);simpl.
left;congruence.
right;eauto.
congruence.
Qed.
End Store.
Arguments PNone [A].
Arguments PSome [A] _.
Arguments Tempty [A].
Arguments Branch0 [A] _ _.
Arguments Branch1 [A] _ _ _.
Arguments Tget [A] p T.
Arguments Tadd [A] p a T.
Arguments Tget_Tempty [A] p.
Arguments Tget_Tadd [A] i j a T.
Arguments mkStore [A] index contents.
Arguments index [A] s.
Arguments contents [A] s.
Arguments empty [A].
Arguments get [A] i S.
Arguments push [A] a S.
Arguments get_empty [A] i.
Arguments get_push_Full [A] i a S _.
Arguments Full [A] _.
Arguments F_empty [A].
Arguments F_push [A] a S _.
Arguments In [A] x S F.
Section Map.
Variables A B:Set.
Variable f: A -> B.
Fixpoint Tmap (T: Tree A) : Tree B :=
match T with
Tempty => Tempty
| Branch0 t1 t2 => Branch0 (Tmap t1) (Tmap t2)
| Branch1 a t1 t2 => Branch1 (f a) (Tmap t1) (Tmap t2)
end.
Lemma Tget_Tmap: forall T i,
Tget i (Tmap T)= match Tget i T with PNone => PNone
| PSome a => PSome (f a) end.
induction T;intro i;case i;simpl;auto.
Defined.
Lemma Tmap_Tadd: forall i a T,
Tmap (Tadd i a T) = Tadd i (f a) (Tmap T).
induction i;intros a T;case T;simpl;intros;try (rewrite IHi);simpl;reflexivity.
Defined.
Definition map (S:Store A) : Store B :=
mkStore (index S) (Tmap (contents S)).
Lemma get_map: forall i S,
get i (map S)= match get i S with PNone => PNone
| PSome a => PSome (f a) end.
destruct S;unfold get,map,contents,index;apply Tget_Tmap.
Defined.
Lemma map_push: forall a S,
map (push a S) = push (f a) (map S).
intros a S.
case S.
unfold push,map,contents,index.
intros;rewrite Tmap_Tadd;reflexivity.
Defined.
Theorem Full_map : forall S, Full S -> Full (map S).
intros S F.
induction F.
exact F_empty.
rewrite map_push;constructor 2;assumption.
Defined.
End Map.
Arguments Tmap [A B] f T.
Arguments map [A B] f S.
Arguments Full_map [A B f] S _.
Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).
|