1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export List.
Require Import Setoid.
Require Import BinPos.
Require Import BinList.
Require Import Znumtheory.
Require Export Morphisms Setoid Bool.
Require Import ZArith_base.
Require Export Algebra_syntax.
Require Export Ncring.
Require Export Ncring_initial.
Require Export Ncring_tac.
Class Cring {R:Type}`{Rr:Ring R} :=
cring_mul_comm: forall x y:R, x * y == y * x.
Ltac reify_goal lvar lexpr lterm:=
(*idtac lvar; idtac lexpr; idtac lterm;*)
match lexpr with
nil => idtac
| ?e1::?e2::_ =>
match goal with
|- (?op ?u1 ?u2) =>
change (op
(@Ring_polynom.PEeval
_ zero _+_ _*_ _-_ -_ Z Ncring_initial.gen_phiZ N (fun n:N => n)
(@Ring_theory.pow_N _ 1 multiplication) lvar e1)
(@Ring_polynom.PEeval
_ zero _+_ _*_ _-_ -_ Z Ncring_initial.gen_phiZ N (fun n:N => n)
(@Ring_theory.pow_N _ 1 multiplication) lvar e2))
end
end.
Section cring.
Context {R:Type}`{Rr:Cring R}.
Lemma cring_eq_ext: ring_eq_ext _+_ _*_ -_ _==_.
Proof.
intros. apply mk_reqe; solve_proper.
Defined.
Lemma cring_almost_ring_theory:
almost_ring_theory (R:=R) zero one _+_ _*_ _-_ -_ _==_.
intros. apply mk_art ;intros.
rewrite ring_add_0_l; reflexivity.
rewrite ring_add_comm; reflexivity.
rewrite ring_add_assoc; reflexivity.
rewrite ring_mul_1_l; reflexivity.
apply ring_mul_0_l.
rewrite cring_mul_comm; reflexivity.
rewrite ring_mul_assoc; reflexivity.
rewrite ring_distr_l; reflexivity.
rewrite ring_opp_mul_l; reflexivity.
apply ring_opp_add.
rewrite ring_sub_def ; reflexivity. Defined.
Lemma cring_morph:
ring_morph zero one _+_ _*_ _-_ -_ _==_
0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool
Ncring_initial.gen_phiZ.
intros. apply mkmorph ; intros; simpl; try reflexivity.
rewrite Ncring_initial.gen_phiZ_add; reflexivity.
rewrite ring_sub_def. unfold Z.sub. rewrite Ncring_initial.gen_phiZ_add.
rewrite Ncring_initial.gen_phiZ_opp; reflexivity.
rewrite Ncring_initial.gen_phiZ_mul; reflexivity.
rewrite Ncring_initial.gen_phiZ_opp; reflexivity.
rewrite (Zeqb_ok x y H). reflexivity. Defined.
Lemma cring_power_theory :
@Ring_theory.power_theory R one _*_ _==_ N (fun n:N => n)
(@Ring_theory.pow_N _ 1 multiplication).
intros; apply Ring_theory.mkpow_th. reflexivity. Defined.
Lemma cring_div_theory:
div_theory _==_ Z.add Z.mul Ncring_initial.gen_phiZ Z.quotrem.
intros. apply InitialRing.Ztriv_div_th. unfold Setoid_Theory.
simpl. apply ring_setoid. Defined.
End cring.
Ltac cring_gen :=
match goal with
|- ?g => let lterm := lterm_goal g in
match eval red in (list_reifyl (lterm:=lterm)) with
| (?fv, ?lexpr) =>
(*idtac "variables:";idtac fv;
idtac "terms:"; idtac lterm;
idtac "reifications:"; idtac lexpr; *)
reify_goal fv lexpr lterm;
match goal with
|- ?g =>
generalize
(@Ring_polynom.ring_correct _ 0 1 _+_ _*_ _-_ -_ _==_
ring_setoid
cring_eq_ext
cring_almost_ring_theory
Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool
Ncring_initial.gen_phiZ
cring_morph
N
(fun n:N => n)
(@Ring_theory.pow_N _ 1 multiplication)
cring_power_theory
Z.quotrem
cring_div_theory
O fv nil);
let rc := fresh "rc"in
intro rc; apply rc
end
end
end.
Ltac cring_compute:= vm_compute; reflexivity.
Ltac cring:=
intros;
cring_gen;
cring_compute.
Instance Zcri: (Cring (Rr:=Zr)).
red. exact Z.mul_comm. Defined.
(* Cring_simplify *)
Ltac cring_simplify_aux lterm fv lexpr hyp :=
match lterm with
| ?t0::?lterm =>
match lexpr with
| ?e::?le =>
let t := constr:(@Ring_polynom.norm_subst
Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool Z.quotrem O nil e) in
let te :=
constr:(@Ring_polynom.Pphi_dev
_ 0 1 _+_ _*_ _-_ -_
Z 0%Z 1%Z Zeq_bool
Ncring_initial.gen_phiZ
get_signZ fv t) in
let eq1 := fresh "ring" in
let nft := eval vm_compute in t in
let t':= fresh "t" in
pose (t' := nft);
assert (eq1 : t = t');
[vm_cast_no_check (eq_refl t')|
let eq2 := fresh "ring" in
assert (eq2:(@Ring_polynom.PEeval
_ zero _+_ _*_ _-_ -_ Z Ncring_initial.gen_phiZ N (fun n:N => n)
(@Ring_theory.pow_N _ 1 multiplication) fv e) == te);
[let eq3 := fresh "ring" in
generalize (@ring_rw_correct _ 0 1 _+_ _*_ _-_ -_ _==_
ring_setoid
cring_eq_ext
cring_almost_ring_theory
Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool
Ncring_initial.gen_phiZ
cring_morph
N
(fun n:N => n)
(@Ring_theory.pow_N _ 1 multiplication)
cring_power_theory
Z.quotrem
cring_div_theory
get_signZ get_signZ_th
O nil fv I nil (eq_refl nil) );
intro eq3; apply eq3; reflexivity|
match hyp with
| 1%nat => rewrite eq2
| ?H => try rewrite eq2 in H
end];
let P:= fresh "P" in
match hyp with
| 1%nat =>
rewrite eq1;
pattern (@Ring_polynom.Pphi_dev
_ 0 1 _+_ _*_ _-_ -_
Z 0%Z 1%Z Zeq_bool
Ncring_initial.gen_phiZ
get_signZ fv t');
match goal with
|- (?p ?t) => set (P:=p)
end;
unfold t' in *; clear t' eq1 eq2;
unfold Pphi_dev, Pphi_avoid; simpl;
repeat (unfold mkmult1, mkmultm1, mkmult_c_pos, mkmult_c,
mkadd_mult, mkmult_c_pos, mkmult_pow, mkadd_mult,
mkpow;simpl)
| ?H =>
rewrite eq1 in H;
pattern (@Ring_polynom.Pphi_dev
_ 0 1 _+_ _*_ _-_ -_
Z 0%Z 1%Z Zeq_bool
Ncring_initial.gen_phiZ
get_signZ fv t') in H;
match type of H with
| (?p ?t) => set (P:=p) in H
end;
unfold t' in *; clear t' eq1 eq2;
unfold Pphi_dev, Pphi_avoid in H; simpl in H;
repeat (unfold mkmult1, mkmultm1, mkmult_c_pos, mkmult_c,
mkadd_mult, mkmult_c_pos, mkmult_pow, mkadd_mult,
mkpow in H;simpl in H)
end; unfold P in *; clear P
]; cring_simplify_aux lterm fv le hyp
| nil => idtac
end
| nil => idtac
end.
Ltac set_variables fv :=
match fv with
| nil => idtac
| ?t::?fv =>
let v := fresh "X" in
set (v:=t) in *; set_variables fv
end.
Ltac deset n:=
match n with
| 0%nat => idtac
| S ?n1 =>
match goal with
| h:= ?v : ?t |- ?g => unfold h in *; clear h; deset n1
end
end.
(* a est soit un terme de l'anneau, soit une liste de termes.
J'ai pas réussi à un décomposer les Vlists obtenues avec ne_constr_list
dans Tactic Notation *)
Ltac cring_simplify_gen a hyp :=
let lterm :=
match a with
| _::_ => a
| _ => constr:(a::nil)
end in
match eval red in (list_reifyl (lterm:=lterm)) with
| (?fv, ?lexpr) => idtac lterm; idtac fv; idtac lexpr;
let n := eval compute in (length fv) in
idtac n;
let lt:=fresh "lt" in
set (lt:= lterm);
let lv:=fresh "fv" in
set (lv:= fv);
(* les termes de fv sont remplacés par des variables
pour pouvoir utiliser simpl ensuite sans risquer
des simplifications indésirables *)
set_variables fv;
let lterm1 := eval unfold lt in lt in
let lv1 := eval unfold lv in lv in
idtac lterm1; idtac lv1;
cring_simplify_aux lterm1 lv1 lexpr hyp;
clear lt lv;
(* on remet les termes de fv *)
deset n
end.
Tactic Notation "cring_simplify" constr(lterm):=
cring_simplify_gen lterm 1%nat.
Tactic Notation "cring_simplify" constr(lterm) "in" ident(H):=
cring_simplify_gen lterm H.
|