1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Ring.
Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List Morphisms.
Require Import ZArith_base.
(*Require Import Omega.*)
Set Implicit Arguments.
Section MakeFieldPol.
(* Field elements *)
Variable R:Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable (rdiv : R -> R -> R) (rinv : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y). Notation "x / y" := (rdiv x y).
Notation "- x" := (ropp x). Notation "/ x" := (rinv x).
Notation "x == y" := (req x y) (at level 70, no associativity).
(* Equality properties *)
Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable SRinv_ext : forall p q, p == q -> / p == / q.
(* Field properties *)
Record almost_field_theory : Prop := mk_afield {
AF_AR : almost_ring_theory rO rI radd rmul rsub ropp req;
AF_1_neq_0 : ~ 1 == 0;
AFdiv_def : forall p q, p / q == p * / q;
AFinv_l : forall p, ~ p == 0 -> / p * p == 1
}.
Section AlmostField.
Variable AFth : almost_field_theory.
Let ARth := AFth.(AF_AR).
Let rI_neq_rO := AFth.(AF_1_neq_0).
Let rdiv_def := AFth.(AFdiv_def).
Let rinv_l := AFth.(AFinv_l).
(* Coefficients *)
Variable C: Type.
Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
Lemma ceqb_rect : forall c1 c2 (A:Type) (x y:A) (P:A->Type),
(phi c1 == phi c2 -> P x) -> P y -> P (if ceqb c1 c2 then x else y).
Proof.
intros.
generalize (fun h => X (morph_eq CRmorph c1 c2 h)).
case (ceqb c1 c2); auto.
Qed.
(* C notations *)
Notation "x +! y" := (cadd x y) (at level 50).
Notation "x *! y " := (cmul x y) (at level 40).
Notation "x -! y " := (csub x y) (at level 50).
Notation "-! x" := (copp x) (at level 35).
Notation " x ?=! y" := (ceqb x y) (at level 70, no associativity).
Notation "[ x ]" := (phi x) (at level 0).
(* Useful tactics *)
Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
Add Morphism rinv : rinv_ext. exact SRinv_ext. Qed.
Let eq_trans := Setoid.Seq_trans _ _ Rsth.
Let eq_sym := Setoid.Seq_sym _ _ Rsth.
Let eq_refl := Setoid.Seq_refl _ _ Rsth.
Hint Resolve eq_refl rdiv_def rinv_l rI_neq_rO CRmorph.(morph1) .
Hint Resolve (Rmul_ext Reqe) (Rmul_ext Reqe) (Radd_ext Reqe)
(ARsub_ext Rsth Reqe ARth) (Ropp_ext Reqe) SRinv_ext.
Hint Resolve (ARadd_0_l ARth) (ARadd_comm ARth) (ARadd_assoc ARth)
(ARmul_1_l ARth) (ARmul_0_l ARth)
(ARmul_comm ARth) (ARmul_assoc ARth) (ARdistr_l ARth)
(ARopp_mul_l ARth) (ARopp_add ARth)
(ARsub_def ARth) .
(* Power coefficients *)
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
(* sign function *)
Variable get_sign : C -> option C.
Variable get_sign_spec : sign_theory copp ceqb get_sign.
Variable cdiv:C -> C -> C*C.
Variable cdiv_th : div_theory req cadd cmul phi cdiv.
Notation NPEeval := (PEeval rO radd rmul rsub ropp phi Cp_phi rpow).
Notation Nnorm:= (norm_subst cO cI cadd cmul csub copp ceqb cdiv).
Notation NPphi_dev := (Pphi_dev rO rI radd rmul rsub ropp cO cI ceqb phi get_sign).
Notation NPphi_pow := (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi rpow get_sign).
(* add abstract semi-ring to help with some proofs *)
Add Ring Rring : (ARth_SRth ARth).
Local Hint Extern 2 (_ == _) => f_equiv.
(* additional ring properties *)
Lemma rsub_0_l : forall r, 0 - r == - r.
intros; rewrite (ARsub_def ARth);ring.
Qed.
Lemma rsub_0_r : forall r, r - 0 == r.
intros; rewrite (ARsub_def ARth).
rewrite (ARopp_zero Rsth Reqe ARth); ring.
Qed.
(***************************************************************************
Properties of division
***************************************************************************)
Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p.
Proof.
intros p q H.
rewrite rdiv_def.
transitivity (/ q * q * p); [ ring | idtac ].
rewrite rinv_l; auto.
Qed.
Hint Resolve rdiv_simpl .
Instance SRdiv_ext: Proper (req ==> req ==> req) rdiv.
Proof.
intros p1 p2 Ep q1 q2 Eq.
transitivity (p1 * / q1); auto.
transitivity (p2 * / q2); auto.
Qed.
Hint Resolve SRdiv_ext.
Lemma rmul_reg_l : forall p q1 q2,
~ p == 0 -> p * q1 == p * q2 -> q1 == q2.
Proof.
intros p q1 q2 H EQ.
rewrite <- (@rdiv_simpl q1 p) by trivial.
rewrite <- (@rdiv_simpl q2 p) by trivial.
rewrite !rdiv_def, !(ARmul_assoc ARth).
now rewrite EQ.
Qed.
Theorem field_is_integral_domain : forall r1 r2,
~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0.
Proof.
intros r1 r2 H1 H2. contradict H2.
transitivity (1 * r2); auto.
transitivity (/ r1 * r1 * r2); auto.
rewrite <- (ARmul_assoc ARth).
rewrite H2.
apply ARmul_0_r with (1 := Rsth) (2 := ARth).
Qed.
Theorem ropp_neq_0 : forall r,
~ -(1) == 0 -> ~ r == 0 -> ~ -r == 0.
intros.
setoid_replace (- r) with (- (1) * r).
apply field_is_integral_domain; trivial.
rewrite <- (ARopp_mul_l ARth).
rewrite (ARmul_1_l ARth).
reflexivity.
Qed.
Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1.
intros.
rewrite (AFdiv_def AFth).
rewrite (ARmul_comm ARth).
apply (AFinv_l AFth).
trivial.
Qed.
Theorem rdiv1: forall r, r == r / 1.
intros r; transitivity (1 * (r / 1)); auto.
Qed.
Theorem rdiv2:
forall r1 r2 r3 r4,
~ r2 == 0 ->
~ r4 == 0 ->
r1 / r2 + r3 / r4 == (r1 * r4 + r3 * r2) / (r2 * r4).
Proof.
intros r1 r2 r3 r4 H H0.
assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
apply rmul_reg_l with (r2 * r4); trivial.
rewrite rdiv_simpl; trivial.
rewrite (ARdistr_r Rsth Reqe ARth).
apply (Radd_ext Reqe).
- transitivity (r2 * (r1 / r2) * r4); [ ring | auto ].
- transitivity (r2 * (r4 * (r3 / r4))); auto.
transitivity (r2 * r3); auto.
Qed.
Theorem rdiv2b:
forall r1 r2 r3 r4 r5,
~ (r2*r5) == 0 ->
~ (r4*r5) == 0 ->
r1 / (r2*r5) + r3 / (r4*r5) == (r1 * r4 + r3 * r2) / (r2 * (r4 * r5)).
Proof.
intros r1 r2 r3 r4 r5 H H0.
assert (HH1: ~ r2 == 0) by (intros HH; case H; rewrite HH; ring).
assert (HH2: ~ r5 == 0) by (intros HH; case H; rewrite HH; ring).
assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring).
assert (HH4: ~ r2 * (r4 * r5) == 0)
by (repeat apply field_is_integral_domain; trivial).
apply rmul_reg_l with (r2 * (r4 * r5)); trivial.
rewrite rdiv_simpl; trivial.
rewrite (ARdistr_r Rsth Reqe ARth).
apply (Radd_ext Reqe).
transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ].
transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ].
Qed.
Theorem rdiv5: forall r1 r2, - (r1 / r2) == - r1 / r2.
Proof.
intros r1 r2.
transitivity (- (r1 * / r2)); auto.
transitivity (- r1 * / r2); auto.
Qed.
Hint Resolve rdiv5 .
Theorem rdiv3 r1 r2 r3 r4 :
~ r2 == 0 ->
~ r4 == 0 ->
r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4).
Proof.
intros H2 H4.
assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
transitivity (r1 / r2 + - (r3 / r4)); auto.
transitivity (r1 / r2 + - r3 / r4); auto.
transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)).
apply rdiv2; auto.
f_equiv.
transitivity (r1 * r4 + - (r3 * r2)); auto.
Qed.
Theorem rdiv3b:
forall r1 r2 r3 r4 r5,
~ (r2 * r5) == 0 ->
~ (r4 * r5) == 0 ->
r1 / (r2*r5) - r3 / (r4*r5) == (r1 * r4 - r3 * r2) / (r2 * (r4 * r5)).
Proof.
intros r1 r2 r3 r4 r5 H H0.
transitivity (r1 / (r2 * r5) + - (r3 / (r4 * r5))); auto.
transitivity (r1 / (r2 * r5) + - r3 / (r4 * r5)); auto.
transitivity ((r1 * r4 + - r3 * r2) / (r2 * (r4 * r5))).
apply rdiv2b; auto; try ring.
apply (SRdiv_ext); auto.
transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto.
Qed.
Theorem rdiv6:
forall r1 r2,
~ r1 == 0 -> ~ r2 == 0 -> / (r1 / r2) == r2 / r1.
intros r1 r2 H H0.
assert (~ r1 / r2 == 0) as Hk.
intros H1; case H.
transitivity (r2 * (r1 / r2)); auto.
rewrite H1; ring.
apply rmul_reg_l with (r1 / r2); auto.
transitivity (/ (r1 / r2) * (r1 / r2)); auto.
transitivity 1; auto.
repeat rewrite rdiv_def.
transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ].
repeat rewrite rinv_l; auto.
Qed.
Hint Resolve rdiv6 .
Theorem rdiv4:
forall r1 r2 r3 r4,
~ r2 == 0 ->
~ r4 == 0 ->
(r1 / r2) * (r3 / r4) == (r1 * r3) / (r2 * r4).
Proof.
intros r1 r2 r3 r4 H H0.
assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
apply rmul_reg_l with (r2 * r4); trivial.
rewrite rdiv_simpl; trivial.
transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ].
repeat rewrite rdiv_simpl; trivial.
Qed.
Theorem rdiv4b:
forall r1 r2 r3 r4 r5 r6,
~ r2 * r5 == 0 ->
~ r4 * r6 == 0 ->
((r1 * r6) / (r2 * r5)) * ((r3 * r5) / (r4 * r6)) == (r1 * r3) / (r2 * r4).
Proof.
intros r1 r2 r3 r4 r5 r6 H H0.
rewrite rdiv4; auto.
transitivity ((r5 * r6) * (r1 * r3) / ((r5 * r6) * (r2 * r4))).
apply SRdiv_ext; ring.
assert (HH: ~ r5*r6 == 0).
apply field_is_integral_domain.
intros H1; case H; rewrite H1; ring.
intros H1; case H0; rewrite H1; ring.
rewrite <- rdiv4 ; auto.
rewrite rdiv_r_r; auto.
apply field_is_integral_domain.
intros H1; case H; rewrite H1; ring.
intros H1; case H0; rewrite H1; ring.
Qed.
Theorem rdiv7:
forall r1 r2 r3 r4,
~ r2 == 0 ->
~ r3 == 0 ->
~ r4 == 0 ->
(r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3).
Proof.
intros.
rewrite (rdiv_def (r1 / r2)).
rewrite rdiv6; trivial.
apply rdiv4; trivial.
Qed.
Theorem rdiv7b:
forall r1 r2 r3 r4 r5 r6,
~ r2 * r6 == 0 ->
~ r3 * r5 == 0 ->
~ r4 * r6 == 0 ->
((r1 * r5) / (r2 * r6)) / ((r3 * r5) / (r4 * r6)) == (r1 * r4) / (r2 * r3).
Proof.
intros.
rewrite rdiv7; auto.
transitivity ((r5 * r6) * (r1 * r4) / ((r5 * r6) * (r2 * r3))).
apply SRdiv_ext; ring.
assert (HH: ~ r5*r6 == 0).
apply field_is_integral_domain.
intros H2; case H0; rewrite H2; ring.
intros H2; case H1; rewrite H2; ring.
rewrite <- rdiv4 ; auto.
rewrite rdiv_r_r; auto.
apply field_is_integral_domain.
intros H2; case H; rewrite H2; ring.
intros H2; case H0; rewrite H2; ring.
Qed.
Theorem rdiv8: forall r1 r2, ~ r2 == 0 -> r1 == 0 -> r1 / r2 == 0.
intros r1 r2 H H0.
transitivity (r1 * / r2); auto.
transitivity (0 * / r2); auto.
Qed.
Theorem cross_product_eq : forall r1 r2 r3 r4,
~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4.
intros.
transitivity (r1 / r2 * (r4 / r4)).
rewrite rdiv_r_r; trivial.
symmetry .
apply (ARmul_1_r Rsth ARth).
rewrite rdiv4; trivial.
rewrite H1.
rewrite (ARmul_comm ARth r2 r4).
rewrite <- rdiv4; trivial.
rewrite rdiv_r_r by trivial.
apply (ARmul_1_r Rsth ARth).
Qed.
(***************************************************************************
Some equality test
***************************************************************************)
(* equality test *)
Fixpoint PExpr_eq (e1 e2 : PExpr C) {struct e1} : bool :=
match e1, e2 with
PEc c1, PEc c2 => ceqb c1 c2
| PEX p1, PEX p2 => Pos.eqb p1 p2
| PEadd e3 e5, PEadd e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEsub e3 e5, PEsub e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEmul e3 e5, PEmul e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEopp e3, PEopp e4 => PExpr_eq e3 e4
| PEpow e3 n3, PEpow e4 n4 => if N.eqb n3 n4 then PExpr_eq e3 e4 else false
| _, _ => false
end.
Add Morphism (pow_pos rmul) with signature req ==> eq ==> req as pow_morph.
intros x y H p;induction p as [p IH| p IH|];simpl;auto;ring[IH].
Qed.
Add Morphism (pow_N rI rmul) with signature req ==> eq ==> req as pow_N_morph.
intros x y H [|p];simpl;auto. apply pow_morph;trivial.
Qed.
Theorem PExpr_eq_semi_correct:
forall l e1 e2, PExpr_eq e1 e2 = true -> NPEeval l e1 == NPEeval l e2.
intros l e1; elim e1.
intros c1; intros e2; elim e2; simpl; (try (intros; discriminate)).
intros c2; apply (morph_eq CRmorph).
intros p1; intros e2; elim e2; simpl; (try (intros; discriminate)).
intros p2; case Pos.eqb_spec; intros; now subst.
intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
(try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
(try (intros; discriminate)); auto.
intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
(try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
(try (intros; discriminate)); auto.
intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
(try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
(try (intros; discriminate)); auto.
intros e3 rec e2; (case e2; simpl; (try (intros; discriminate))).
intros e4; generalize (rec e4); case (PExpr_eq e3 e4);
(try (intros; discriminate)); auto.
intros e3 rec n3 e2;(case e2;simpl;(try (intros;discriminate))).
intros e4 n4; case N.eqb_spec; try discriminate; intros EQ H; subst.
repeat rewrite pow_th.(rpow_pow_N). rewrite (rec _ H);auto.
Qed.
(* add *)
Definition NPEadd e1 e2 :=
match e1, e2 with
PEc c1, PEc c2 => PEc (cadd c1 c2)
| PEc c, _ => if ceqb c cO then e2 else PEadd e1 e2
| _, PEc c => if ceqb c cO then e1 else PEadd e1 e2
(* Peut t'on factoriser ici ??? *)
| _, _ => PEadd e1 e2
end.
Theorem NPEadd_correct:
forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2).
Proof.
intros l e1 e2.
destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect;
try (intro eq_c; rewrite eq_c); simpl;try apply eq_refl;
try (ring [(morph0 CRmorph)]).
apply (morph_add CRmorph).
Qed.
Definition NPEpow x n :=
match n with
| N0 => PEc cI
| Npos p =>
if Pos.eqb p xH then x else
match x with
| PEc c =>
if ceqb c cI then PEc cI else if ceqb c cO then PEc cO else PEc (pow_pos cmul c p)
| _ => PEpow x n
end
end.
Theorem NPEpow_correct : forall l e n,
NPEeval l (NPEpow e n) == NPEeval l (PEpow e n).
Proof.
destruct n;simpl.
rewrite pow_th.(rpow_pow_N);simpl;auto.
fold (p =? 1)%positive.
case Pos.eqb_spec; intros H; (rewrite H || clear H).
now rewrite pow_th.(rpow_pow_N).
destruct e;simpl;auto.
repeat apply ceqb_rect;simpl;intros;rewrite pow_th.(rpow_pow_N);simpl.
symmetry;induction p;simpl;trivial; ring [IHp H CRmorph.(morph1)].
symmetry; induction p;simpl;trivial;ring [IHp CRmorph.(morph0)].
induction p;simpl;auto;repeat rewrite CRmorph.(morph_mul);ring [IHp].
Qed.
(* mul *)
Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C :=
match x, y with
PEc c1, PEc c2 => PEc (cmul c1 c2)
| PEc c, _ =>
if ceqb c cI then y else if ceqb c cO then PEc cO else PEmul x y
| _, PEc c =>
if ceqb c cI then x else if ceqb c cO then PEc cO else PEmul x y
| PEpow e1 n1, PEpow e2 n2 =>
if N.eqb n1 n2 then NPEpow (NPEmul e1 e2) n1 else PEmul x y
| _, _ => PEmul x y
end.
Lemma pow_pos_mul : forall x y p, pow_pos rmul (x * y) p == pow_pos rmul x p * pow_pos rmul y p.
induction p;simpl;auto;try ring [IHp].
Qed.
Theorem NPEmul_correct : forall l e1 e2,
NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2).
induction e1;destruct e2; simpl;try reflexivity;
repeat apply ceqb_rect;
try (intro eq_c; rewrite eq_c); simpl; try reflexivity;
try ring [(morph0 CRmorph) (morph1 CRmorph)].
apply (morph_mul CRmorph).
case N.eqb_spec; intros H; try rewrite <- H; clear H.
rewrite NPEpow_correct. simpl.
repeat rewrite pow_th.(rpow_pow_N).
rewrite IHe1; destruct n;simpl;try ring.
apply pow_pos_mul.
simpl;auto.
Qed.
(* sub *)
Definition NPEsub e1 e2 :=
match e1, e2 with
PEc c1, PEc c2 => PEc (csub c1 c2)
| PEc c, _ => if ceqb c cO then PEopp e2 else PEsub e1 e2
| _, PEc c => if ceqb c cO then e1 else PEsub e1 e2
(* Peut-on factoriser ici *)
| _, _ => PEsub e1 e2
end.
Theorem NPEsub_correct:
forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2).
intros l e1 e2.
destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect;
try (intro eq_c; rewrite eq_c); simpl;
try rewrite (morph0 CRmorph); try reflexivity;
try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r).
apply (morph_sub CRmorph).
Qed.
(* opp *)
Definition NPEopp e1 :=
match e1 with PEc c1 => PEc (copp c1) | _ => PEopp e1 end.
Theorem NPEopp_correct:
forall l e1, NPEeval l (NPEopp e1) == NPEeval l (PEopp e1).
intros l e1; case e1; simpl; auto.
intros; apply (morph_opp CRmorph).
Qed.
(* simplification *)
Fixpoint PExpr_simp (e : PExpr C) : PExpr C :=
match e with
PEadd e1 e2 => NPEadd (PExpr_simp e1) (PExpr_simp e2)
| PEmul e1 e2 => NPEmul (PExpr_simp e1) (PExpr_simp e2)
| PEsub e1 e2 => NPEsub (PExpr_simp e1) (PExpr_simp e2)
| PEopp e1 => NPEopp (PExpr_simp e1)
| PEpow e1 n1 => NPEpow (PExpr_simp e1) n1
| _ => e
end.
Theorem PExpr_simp_correct:
forall l e, NPEeval l (PExpr_simp e) == NPEeval l e.
intros l e; elim e; simpl; auto.
intros e1 He1 e2 He2.
transitivity (NPEeval l (PEadd (PExpr_simp e1) (PExpr_simp e2))); auto.
apply NPEadd_correct.
simpl; auto.
intros e1 He1 e2 He2.
transitivity (NPEeval l (PEsub (PExpr_simp e1) (PExpr_simp e2))); auto.
apply NPEsub_correct.
simpl; auto.
intros e1 He1 e2 He2.
transitivity (NPEeval l (PEmul (PExpr_simp e1) (PExpr_simp e2))); auto.
apply NPEmul_correct.
simpl; auto.
intros e1 He1.
transitivity (NPEeval l (PEopp (PExpr_simp e1))); auto.
apply NPEopp_correct.
simpl; auto.
intros e1 He1 n;simpl.
rewrite NPEpow_correct;simpl.
repeat rewrite pow_th.(rpow_pow_N).
rewrite He1;auto.
Qed.
(****************************************************************************
Datastructure
***************************************************************************)
(* The input: syntax of a field expression *)
Inductive FExpr : Type :=
FEc: C -> FExpr
| FEX: positive -> FExpr
| FEadd: FExpr -> FExpr -> FExpr
| FEsub: FExpr -> FExpr -> FExpr
| FEmul: FExpr -> FExpr -> FExpr
| FEopp: FExpr -> FExpr
| FEinv: FExpr -> FExpr
| FEdiv: FExpr -> FExpr -> FExpr
| FEpow: FExpr -> N -> FExpr .
Fixpoint FEeval (l : list R) (pe : FExpr) {struct pe} : R :=
match pe with
| FEc c => phi c
| FEX x => BinList.nth 0 x l
| FEadd x y => FEeval l x + FEeval l y
| FEsub x y => FEeval l x - FEeval l y
| FEmul x y => FEeval l x * FEeval l y
| FEopp x => - FEeval l x
| FEinv x => / FEeval l x
| FEdiv x y => FEeval l x / FEeval l y
| FEpow x n => rpow (FEeval l x) (Cp_phi n)
end.
Strategy expand [FEeval].
(* The result of the normalisation *)
Record linear : Type := mk_linear {
num : PExpr C;
denum : PExpr C;
condition : list (PExpr C) }.
(***************************************************************************
Semantics and properties of side condition
***************************************************************************)
Fixpoint PCond (l : list R) (le : list (PExpr C)) {struct le} : Prop :=
match le with
| nil => True
| e1 :: nil => ~ req (NPEeval l e1) rO
| e1 :: l1 => ~ req (NPEeval l e1) rO /\ PCond l l1
end.
Theorem PCond_cons_inv_l :
forall l a l1, PCond l (a::l1) -> ~ NPEeval l a == 0.
intros l a l1 H.
destruct l1; simpl in H |- *; trivial.
destruct H; trivial.
Qed.
Theorem PCond_cons_inv_r : forall l a l1, PCond l (a :: l1) -> PCond l l1.
intros l a l1 H.
destruct l1; simpl in H |- *; trivial.
destruct H; trivial.
Qed.
Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1.
intros l l1 l2; elim l1; simpl app.
simpl; auto.
destruct l0; simpl in *.
destruct l2; firstorder.
firstorder.
Qed.
Theorem PCond_app_inv_r: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l2.
intros l l1 l2; elim l1; simpl app; auto.
intros a l0 H H0; apply H; apply PCond_cons_inv_r with ( 1 := H0 ).
Qed.
(* An unsatisfiable condition: issued when a division by zero is detected *)
Definition absurd_PCond := cons (PEc cO) nil.
Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond.
unfold absurd_PCond; simpl.
red; intros.
apply H.
apply (morph0 CRmorph).
Qed.
(***************************************************************************
Normalisation
***************************************************************************)
Fixpoint isIn (e1:PExpr C) (p1:positive)
(e2:PExpr C) (p2:positive) {struct e2}: option (N * PExpr C) :=
match e2 with
| PEmul e3 e4 =>
match isIn e1 p1 e3 p2 with
| Some (N0, e5) => Some (N0, NPEmul e5 (NPEpow e4 (Npos p2)))
| Some (Npos p, e5) =>
match isIn e1 p e4 p2 with
| Some (n, e6) => Some (n, NPEmul e5 e6)
| None => Some (Npos p, NPEmul e5 (NPEpow e4 (Npos p2)))
end
| None =>
match isIn e1 p1 e4 p2 with
| Some (n, e5) => Some (n,NPEmul (NPEpow e3 (Npos p2)) e5)
| None => None
end
end
| PEpow e3 N0 => None
| PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pos.mul p3 p2)
| _ =>
if PExpr_eq e1 e2 then
match Z.pos_sub p1 p2 with
| Zpos p => Some (Npos p, PEc cI)
| Z0 => Some (N0, PEc cI)
| Zneg p => Some (N0, NPEpow e2 (Npos p))
end
else None
end.
Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end.
Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end.
Notation pow_pos_add :=
(Ring_theory.pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)).
Lemma Z_pos_sub_gt p q : (p > q)%positive ->
Z.pos_sub p q = Zpos (p - q).
Proof. intros; now apply Z.pos_sub_gt, Pos.gt_lt. Qed.
Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption.
Lemma isIn_correct_aux : forall l e1 e2 p1 p2,
match
(if PExpr_eq e1 e2 then
match Z.sub (Zpos p1) (Zpos p2) with
| Zpos p => Some (Npos p, PEc cI)
| Z0 => Some (N0, PEc cI)
| Zneg p => Some (N0, NPEpow e2 (Npos p))
end
else None)
with
| Some(n, e3) =>
NPEeval l (PEpow e2 (Npos p2)) ==
NPEeval l (PEmul (PEpow e1 (ZtoN (Zpos p1 - NtoZ n))) e3) /\
(Zpos p1 > NtoZ n)%Z
| _ => True
end.
Proof.
intros l e1 e2 p1 p2; generalize (PExpr_eq_semi_correct l e1 e2);
case (PExpr_eq e1 e2); simpl; auto; intros H.
rewrite Z.pos_sub_spec.
case Pos.compare_spec;intros;simpl.
- repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:reflexivity.
subst. rewrite H by trivial. ring [ (morph1 CRmorph)].
- fold (p2 - p1 =? 1)%positive.
fold (NPEpow e2 (Npos (p2 - p1))).
rewrite NPEpow_correct;simpl.
repeat rewrite pow_th.(rpow_pow_N);simpl.
rewrite H;trivial. split. 2:reflexivity.
rewrite <- pow_pos_add. now rewrite Pos.add_comm, Pos.sub_add.
- repeat rewrite pow_th.(rpow_pow_N);simpl.
rewrite H;trivial.
rewrite Z.pos_sub_gt by now apply Pos.sub_decr.
replace (p1 - (p1 - p2))%positive with p2;
[| rewrite Pos.sub_sub_distr, Pos.add_comm;
auto using Pos.add_sub, Pos.sub_decr ].
split.
simpl. ring [ (morph1 CRmorph)].
now apply Z.lt_gt, Pos.sub_decr.
Qed.
Lemma pow_pos_pow_pos : forall x p1 p2, pow_pos rmul (pow_pos rmul x p1) p2 == pow_pos rmul x (p1*p2).
induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_add;simpl.
ring [(IHp1 p2)]. ring [(IHp1 p2)]. auto.
Qed.
Theorem isIn_correct: forall l e1 p1 e2 p2,
match isIn e1 p1 e2 p2 with
| Some(n, e3) =>
NPEeval l (PEpow e2 (Npos p2)) ==
NPEeval l (PEmul (PEpow e1 (ZtoN (Zpos p1 - NtoZ n))) e3) /\
(Zpos p1 > NtoZ n)%Z
| _ => True
end.
Proof.
Opaque NPEpow.
intros l e1 p1 e2; generalize p1;clear p1;elim e2; intros;
try (refine (isIn_correct_aux l e1 _ p1 p2);fail);simpl isIn.
generalize (H p1 p2);clear H;destruct (isIn e1 p1 p p2). destruct p3.
destruct n.
simpl. rewrite NPEmul_correct. simpl; rewrite NPEpow_correct;simpl.
repeat rewrite pow_th.(rpow_pow_N);simpl.
rewrite pow_pos_mul;intros (H,H1);split;[ring[H]|trivial].
generalize (H0 p4 p2);clear H0;destruct (isIn e1 p4 p0 p2). destruct p5.
destruct n;simpl.
rewrite NPEmul_correct;repeat rewrite pow_th.(rpow_pow_N);simpl.
intros (H1,H2) (H3,H4).
simpl_pos_sub. simpl in H3.
rewrite pow_pos_mul. rewrite H1;rewrite H3.
assert (pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 *
(pow_pos rmul (NPEeval l e1) p4 * NPEeval l p5) ==
pow_pos rmul (NPEeval l e1) p4 * pow_pos rmul (NPEeval l e1) (p1 - p4) *
NPEeval l p3 *NPEeval l p5) by ring. rewrite H;clear H.
rewrite <- pow_pos_add.
rewrite Pos.add_comm, Pos.sub_add by (now apply Z.gt_lt in H4).
split. symmetry;apply ARth.(ARmul_assoc). reflexivity.
repeat rewrite pow_th.(rpow_pow_N);simpl.
intros (H1,H2) (H3,H4).
simpl_pos_sub. simpl in H1, H3.
assert (Zpos p1 > Zpos p6)%Z.
apply Zgt_trans with (Zpos p4). exact H4. exact H2.
simpl_pos_sub.
split. 2:exact H.
rewrite pow_pos_mul. simpl;rewrite H1;rewrite H3.
assert (pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 *
(pow_pos rmul (NPEeval l e1) (p4 - p6) * NPEeval l p5) ==
pow_pos rmul (NPEeval l e1) (p1 - p4) * pow_pos rmul (NPEeval l e1) (p4 - p6) *
NPEeval l p3 * NPEeval l p5) by ring. rewrite H0;clear H0.
rewrite <- pow_pos_add.
replace (p1 - p4 + (p4 - p6))%positive with (p1 - p6)%positive.
rewrite NPEmul_correct. simpl;ring.
assert
(Zpos p1 - Zpos p6 = Zpos p1 - Zpos p4 + (Zpos p4 - Zpos p6))%Z.
change ((Zpos p1 - Zpos p6)%Z = (Zpos p1 + (- Zpos p4) + (Zpos p4 +(- Zpos p6)))%Z).
rewrite <- Z.add_assoc. rewrite (Z.add_assoc (- Zpos p4)).
simpl. rewrite Z.pos_sub_diag. simpl. reflexivity.
unfold Z.sub, Z.opp in H0. simpl in H0.
simpl_pos_sub. inversion H0; trivial.
simpl. repeat rewrite pow_th.(rpow_pow_N).
intros H1 (H2,H3). simpl_pos_sub.
rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl.
simpl in H2. rewrite pow_th.(rpow_pow_N);simpl.
rewrite pow_pos_mul. split. ring [H2]. exact H3.
generalize (H0 p1 p2);clear H0;destruct (isIn e1 p1 p0 p2). destruct p3.
destruct n;simpl. rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl.
repeat rewrite pow_th.(rpow_pow_N);simpl.
intros (H1,H2);split;trivial. rewrite pow_pos_mul;ring [H1].
rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl.
repeat rewrite pow_th.(rpow_pow_N);simpl. rewrite pow_pos_mul.
intros (H1, H2);rewrite H1;split.
simpl_pos_sub. simpl in H1;ring [H1]. trivial.
trivial.
destruct n. trivial.
generalize (H p1 (p0*p2)%positive);clear H;destruct (isIn e1 p1 p (p0*p2)). destruct p3.
destruct n;simpl. repeat rewrite pow_th.(rpow_pow_N). simpl.
intros (H1,H2);split. rewrite pow_pos_pow_pos. trivial. trivial.
repeat rewrite pow_th.(rpow_pow_N). simpl.
intros (H1,H2);split;trivial.
rewrite pow_pos_pow_pos;trivial.
trivial.
Qed.
Record rsplit : Type := mk_rsplit {
rsplit_left : PExpr C;
rsplit_common : PExpr C;
rsplit_right : PExpr C}.
(* Stupid name clash *)
Notation left := rsplit_left.
Notation right := rsplit_right.
Notation common := rsplit_common.
Fixpoint split_aux (e1: PExpr C) (p:positive) (e2:PExpr C) {struct e1}: rsplit :=
match e1 with
| PEmul e3 e4 =>
let r1 := split_aux e3 p e2 in
let r2 := split_aux e4 p (right r1) in
mk_rsplit (NPEmul (left r1) (left r2))
(NPEmul (common r1) (common r2))
(right r2)
| PEpow e3 N0 => mk_rsplit (PEc cI) (PEc cI) e2
| PEpow e3 (Npos p3) => split_aux e3 (Pos.mul p3 p) e2
| _ =>
match isIn e1 p e2 xH with
| Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3
| Some (Npos q, e3) => mk_rsplit (NPEpow e1 (Npos q)) (NPEpow e1 (Npos (p - q))) e3
| None => mk_rsplit (NPEpow e1 (Npos p)) (PEc cI) e2
end
end.
Lemma split_aux_correct_1 : forall l e1 p e2,
let res := match isIn e1 p e2 xH with
| Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3
| Some (Npos q, e3) => mk_rsplit (NPEpow e1 (Npos q)) (NPEpow e1 (Npos (p - q))) e3
| None => mk_rsplit (NPEpow e1 (Npos p)) (PEc cI) e2
end in
NPEeval l (PEpow e1 (Npos p)) == NPEeval l (NPEmul (left res) (common res))
/\
NPEeval l e2 == NPEeval l (NPEmul (right res) (common res)).
Proof.
intros. unfold res;clear res; generalize (isIn_correct l e1 p e2 xH).
destruct (isIn e1 p e2 1). destruct p0.
Opaque NPEpow NPEmul.
destruct n;simpl;
(repeat rewrite NPEmul_correct;simpl;
repeat rewrite NPEpow_correct;simpl;
repeat rewrite pow_th.(rpow_pow_N);simpl).
intros (H, Hgt);split;try ring [H CRmorph.(morph1)].
intros (H, Hgt). simpl_pos_sub. simpl in H;split;try ring [H].
apply Z.gt_lt in Hgt.
now rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add.
simpl;intros. repeat rewrite NPEmul_correct;simpl.
rewrite NPEpow_correct;simpl. split;ring [CRmorph.(morph1)].
Qed.
Theorem split_aux_correct: forall l e1 p e2,
NPEeval l (PEpow e1 (Npos p)) ==
NPEeval l (NPEmul (left (split_aux e1 p e2)) (common (split_aux e1 p e2)))
/\
NPEeval l e2 == NPEeval l (NPEmul (right (split_aux e1 p e2))
(common (split_aux e1 p e2))).
Proof.
intros l; induction e1;intros k e2; try refine (split_aux_correct_1 l _ k e2);simpl.
generalize (IHe1_1 k e2); clear IHe1_1.
generalize (IHe1_2 k (rsplit_right (split_aux e1_1 k e2))); clear IHe1_2.
simpl. repeat (rewrite NPEmul_correct;simpl).
repeat rewrite pow_th.(rpow_pow_N);simpl.
intros (H1,H2) (H3,H4);split.
rewrite pow_pos_mul. rewrite H1;rewrite H3. ring.
rewrite H4;rewrite H2;ring.
destruct n;simpl.
split. repeat rewrite pow_th.(rpow_pow_N);simpl.
rewrite NPEmul_correct. simpl.
induction k;simpl;try ring [CRmorph.(morph1)]; ring [IHk CRmorph.(morph1)].
rewrite NPEmul_correct;simpl. ring [CRmorph.(morph1)].
generalize (IHe1 (p*k)%positive e2);clear IHe1;simpl.
repeat rewrite NPEmul_correct;simpl.
repeat rewrite pow_th.(rpow_pow_N);simpl.
rewrite pow_pos_pow_pos. intros [H1 H2];split;ring [H1 H2].
Qed.
Definition split e1 e2 := split_aux e1 xH e2.
Theorem split_correct_l: forall l e1 e2,
NPEeval l e1 == NPEeval l (NPEmul (left (split e1 e2))
(common (split e1 e2))).
Proof.
intros l e1 e2; case (split_aux_correct l e1 xH e2);simpl.
rewrite pow_th.(rpow_pow_N);simpl;auto.
Qed.
Theorem split_correct_r: forall l e1 e2,
NPEeval l e2 == NPEeval l (NPEmul (right (split e1 e2))
(common (split e1 e2))).
Proof.
intros l e1 e2; case (split_aux_correct l e1 xH e2);simpl;auto.
Qed.
Fixpoint Fnorm (e : FExpr) : linear :=
match e with
| FEc c => mk_linear (PEc c) (PEc cI) nil
| FEX x => mk_linear (PEX C x) (PEc cI) nil
| FEadd e1 e2 =>
let x := Fnorm e1 in
let y := Fnorm e2 in
let s := split (denum x) (denum y) in
mk_linear
(NPEadd (NPEmul (num x) (right s)) (NPEmul (num y) (left s)))
(NPEmul (left s) (NPEmul (right s) (common s)))
(condition x ++ condition y)
| FEsub e1 e2 =>
let x := Fnorm e1 in
let y := Fnorm e2 in
let s := split (denum x) (denum y) in
mk_linear
(NPEsub (NPEmul (num x) (right s)) (NPEmul (num y) (left s)))
(NPEmul (left s) (NPEmul (right s) (common s)))
(condition x ++ condition y)
| FEmul e1 e2 =>
let x := Fnorm e1 in
let y := Fnorm e2 in
let s1 := split (num x) (denum y) in
let s2 := split (num y) (denum x) in
mk_linear (NPEmul (left s1) (left s2))
(NPEmul (right s2) (right s1))
(condition x ++ condition y)
| FEopp e1 =>
let x := Fnorm e1 in
mk_linear (NPEopp (num x)) (denum x) (condition x)
| FEinv e1 =>
let x := Fnorm e1 in
mk_linear (denum x) (num x) (num x :: condition x)
| FEdiv e1 e2 =>
let x := Fnorm e1 in
let y := Fnorm e2 in
let s1 := split (num x) (num y) in
let s2 := split (denum x) (denum y) in
mk_linear (NPEmul (left s1) (right s2))
(NPEmul (left s2) (right s1))
(num y :: condition x ++ condition y)
| FEpow e1 n =>
let x := Fnorm e1 in
mk_linear (NPEpow (num x) n) (NPEpow (denum x) n) (condition x)
end.
(* Example *)
(*
Eval compute
in (Fnorm
(FEdiv
(FEc cI)
(FEadd (FEinv (FEX xH%positive)) (FEinv (FEX (xO xH)%positive))))).
*)
Lemma pow_pos_not_0 : forall x, ~x==0 -> forall p, ~pow_pos rmul x p == 0.
Proof.
induction p;simpl.
intro Hp;assert (H1 := @rmul_reg_l _ (pow_pos rmul x p * pow_pos rmul x p) 0 H).
apply IHp.
rewrite (@rmul_reg_l _ (pow_pos rmul x p) 0 IHp).
reflexivity.
rewrite H1. ring. rewrite Hp;ring.
intro Hp;apply IHp. rewrite (@rmul_reg_l _ (pow_pos rmul x p) 0 IHp).
reflexivity. rewrite Hp;ring. trivial.
Qed.
Theorem Pcond_Fnorm:
forall l e,
PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0.
intros l e; elim e.
simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
simpl denum.
rewrite NPEmul_correct.
simpl.
apply field_is_integral_domain.
intros HH; case Hrec1; auto.
apply PCond_app_inv_l with (1 := Hcond).
rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
rewrite NPEmul_correct; simpl; rewrite HH; ring.
intros HH; case Hrec2; auto.
apply PCond_app_inv_r with (1 := Hcond).
rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
simpl denum.
rewrite NPEmul_correct.
simpl.
apply field_is_integral_domain.
intros HH; case Hrec1; auto.
apply PCond_app_inv_l with (1 := Hcond).
rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
rewrite NPEmul_correct; simpl; rewrite HH; ring.
intros HH; case Hrec2; auto.
apply PCond_app_inv_r with (1 := Hcond).
rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
simpl denum.
rewrite NPEmul_correct.
simpl.
apply field_is_integral_domain.
intros HH; apply Hrec1.
apply PCond_app_inv_l with (1 := Hcond).
rewrite (split_correct_r l (num (Fnorm e2)) (denum (Fnorm e1))).
rewrite NPEmul_correct; simpl; rewrite HH; ring.
intros HH; apply Hrec2.
apply PCond_app_inv_r with (1 := Hcond).
rewrite (split_correct_r l (num (Fnorm e1)) (denum (Fnorm e2))).
rewrite NPEmul_correct; simpl; rewrite HH; ring.
intros e1 Hrec1 Hcond.
simpl condition in Hcond.
simpl denum.
auto.
intros e1 Hrec1 Hcond.
simpl condition in Hcond.
simpl denum.
apply PCond_cons_inv_l with (1:=Hcond).
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
simpl denum.
rewrite NPEmul_correct.
simpl.
apply field_is_integral_domain.
intros HH; apply Hrec1.
specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1.
apply PCond_app_inv_l with (1 := Hcond1).
rewrite (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2))).
rewrite NPEmul_correct; simpl; rewrite HH; ring.
intros HH; apply PCond_cons_inv_l with (1:=Hcond).
rewrite (split_correct_r l (num (Fnorm e1)) (num (Fnorm e2))).
rewrite NPEmul_correct; simpl; rewrite HH; ring.
simpl;intros e1 Hrec1 n Hcond.
rewrite NPEpow_correct.
simpl;rewrite pow_th.(rpow_pow_N).
destruct n;simpl;intros.
apply AFth.(AF_1_neq_0). apply pow_pos_not_0;auto.
Qed.
Hint Resolve Pcond_Fnorm.
(***************************************************************************
Main theorem
***************************************************************************)
Theorem Fnorm_FEeval_PEeval:
forall l fe,
PCond l (condition (Fnorm fe)) ->
FEeval l fe == NPEeval l (num (Fnorm fe)) / NPEeval l (denum (Fnorm fe)).
Proof.
intros l fe; elim fe; simpl.
intros c H; rewrite CRmorph.(morph1); apply rdiv1.
intros p H; rewrite CRmorph.(morph1); apply rdiv1.
intros e1 He1 e2 He2 HH.
assert (HH1: PCond l (condition (Fnorm e1))).
apply PCond_app_inv_l with ( 1 := HH ).
assert (HH2: PCond l (condition (Fnorm e2))).
apply PCond_app_inv_r with ( 1 := HH ).
rewrite (He1 HH1); rewrite (He2 HH2).
rewrite NPEadd_correct; simpl.
repeat rewrite NPEmul_correct; simpl.
generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2)))
(split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))).
repeat rewrite NPEmul_correct; simpl.
intros U1 U2; rewrite U1; rewrite U2.
apply rdiv2b; auto.
rewrite <- U1; auto.
rewrite <- U2; auto.
intros e1 He1 e2 He2 HH.
assert (HH1: PCond l (condition (Fnorm e1))).
apply PCond_app_inv_l with ( 1 := HH ).
assert (HH2: PCond l (condition (Fnorm e2))).
apply PCond_app_inv_r with ( 1 := HH ).
rewrite (He1 HH1); rewrite (He2 HH2).
rewrite NPEsub_correct; simpl.
repeat rewrite NPEmul_correct; simpl.
generalize (split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2)))
(split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))).
repeat rewrite NPEmul_correct; simpl.
intros U1 U2; rewrite U1; rewrite U2.
apply rdiv3b; auto.
rewrite <- U1; auto.
rewrite <- U2; auto.
intros e1 He1 e2 He2 HH.
assert (HH1: PCond l (condition (Fnorm e1))).
apply PCond_app_inv_l with ( 1 := HH ).
assert (HH2: PCond l (condition (Fnorm e2))).
apply PCond_app_inv_r with ( 1 := HH ).
rewrite (He1 HH1); rewrite (He2 HH2).
repeat rewrite NPEmul_correct; simpl.
generalize (split_correct_l l (num (Fnorm e1)) (denum (Fnorm e2)))
(split_correct_r l (num (Fnorm e1)) (denum (Fnorm e2)))
(split_correct_l l (num (Fnorm e2)) (denum (Fnorm e1)))
(split_correct_r l (num (Fnorm e2)) (denum (Fnorm e1))).
repeat rewrite NPEmul_correct; simpl.
intros U1 U2 U3 U4; rewrite U1; rewrite U2; rewrite U3;
rewrite U4; simpl.
apply rdiv4b; auto.
rewrite <- U4; auto.
rewrite <- U2; auto.
intros e1 He1 HH.
rewrite NPEopp_correct; simpl; rewrite (He1 HH); apply rdiv5; auto.
intros e1 He1 HH.
assert (HH1: PCond l (condition (Fnorm e1))).
apply PCond_cons_inv_r with ( 1 := HH ).
rewrite (He1 HH1); apply rdiv6; auto.
apply PCond_cons_inv_l with ( 1 := HH ).
intros e1 He1 e2 He2 HH.
assert (HH1: PCond l (condition (Fnorm e1))).
apply PCond_app_inv_l with (condition (Fnorm e2)).
apply PCond_cons_inv_r with ( 1 := HH ).
assert (HH2: PCond l (condition (Fnorm e2))).
apply PCond_app_inv_r with (condition (Fnorm e1)).
apply PCond_cons_inv_r with ( 1 := HH ).
rewrite (He1 HH1); rewrite (He2 HH2).
repeat rewrite NPEmul_correct;simpl.
generalize (split_correct_l l (num (Fnorm e1)) (num (Fnorm e2)))
(split_correct_r l (num (Fnorm e1)) (num (Fnorm e2)))
(split_correct_l l (denum (Fnorm e1)) (denum (Fnorm e2)))
(split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))).
repeat rewrite NPEmul_correct; simpl.
intros U1 U2 U3 U4; rewrite U1; rewrite U2; rewrite U3;
rewrite U4; simpl.
apply rdiv7b; auto.
rewrite <- U3; auto.
rewrite <- U2; auto.
apply PCond_cons_inv_l with ( 1 := HH ).
rewrite <- U4; auto.
intros e1 He1 n Hcond;assert (He1' := He1 Hcond);clear He1.
repeat rewrite NPEpow_correct;simpl;repeat rewrite pow_th.(rpow_pow_N).
rewrite He1';clear He1'.
destruct n;simpl. apply rdiv1.
generalize (NPEeval l (num (Fnorm e1))) (NPEeval l (denum (Fnorm e1)))
(Pcond_Fnorm _ _ Hcond).
intros r r0 Hdiff;induction p;simpl.
repeat (rewrite <- rdiv4;trivial).
rewrite IHp. reflexivity.
apply pow_pos_not_0;trivial.
apply pow_pos_not_0;trivial.
intro Hp. apply (pow_pos_not_0 Hdiff p).
rewrite (@rmul_reg_l (pow_pos rmul r0 p) (pow_pos rmul r0 p) 0).
reflexivity. apply pow_pos_not_0;trivial. ring [Hp].
rewrite <- rdiv4;trivial.
rewrite IHp;reflexivity.
apply pow_pos_not_0;trivial. apply pow_pos_not_0;trivial.
reflexivity.
Qed.
Theorem Fnorm_crossproduct:
forall l fe1 fe2,
let nfe1 := Fnorm fe1 in
let nfe2 := Fnorm fe2 in
NPEeval l (PEmul (num nfe1) (denum nfe2)) ==
NPEeval l (PEmul (num nfe2) (denum nfe1)) ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2.
rewrite Fnorm_FEeval_PEeval by
apply PCond_app_inv_l with (1 := Hcond).
rewrite Fnorm_FEeval_PEeval by
apply PCond_app_inv_r with (1 := Hcond).
apply cross_product_eq; trivial.
apply Pcond_Fnorm.
apply PCond_app_inv_l with (1 := Hcond).
apply Pcond_Fnorm.
apply PCond_app_inv_r with (1 := Hcond).
Qed.
(* Correctness lemmas of reflexive tactics *)
Notation Ninterp_PElist := (interp_PElist rO radd rmul rsub ropp req phi Cp_phi rpow).
Notation Nmk_monpol_list := (mk_monpol_list cO cI cadd cmul csub copp ceqb cdiv).
Theorem Fnorm_correct:
forall n l lpe fe,
Ninterp_PElist l lpe ->
Peq ceqb (Nnorm n (Nmk_monpol_list lpe) (num (Fnorm fe))) (Pc cO) = true ->
PCond l (condition (Fnorm fe)) -> FEeval l fe == 0.
intros n l lpe fe Hlpe H H1;
apply eq_trans with (1 := Fnorm_FEeval_PEeval l fe H1).
apply rdiv8; auto.
transitivity (NPEeval l (PEc cO)); auto.
rewrite (norm_subst_ok Rsth Reqe ARth CRmorph pow_th cdiv_th n l lpe);auto.
change (NPEeval l (PEc cO)) with (Pphi 0 radd rmul phi l (Pc cO)).
apply (Peq_ok Rsth Reqe CRmorph);auto.
simpl. apply (morph0 CRmorph); auto.
Qed.
(* simplify a field expression into a fraction *)
(* TODO: simplify when den is constant... *)
Definition display_linear l num den :=
NPphi_dev l num / NPphi_dev l den.
Definition display_pow_linear l num den :=
NPphi_pow l num / NPphi_pow l den.
Theorem Field_rw_correct :
forall n lpe l,
Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall fe nfe, Fnorm fe = nfe ->
PCond l (condition nfe) ->
FEeval l fe == display_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
Proof.
intros n lpe l Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
apply eq_trans with (1 := Fnorm_FEeval_PEeval _ _ H).
unfold display_linear; apply SRdiv_ext;
eapply (ring_rw_correct Rsth Reqe ARth CRmorph);eauto.
Qed.
Theorem Field_rw_pow_correct :
forall n lpe l,
Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall fe nfe, Fnorm fe = nfe ->
PCond l (condition nfe) ->
FEeval l fe == display_pow_linear l (Nnorm n lmp (num nfe)) (Nnorm n lmp (denum nfe)).
Proof.
intros n lpe l Hlpe lmp lmp_eq fe nfe eq_nfe H; subst nfe lmp.
apply eq_trans with (1 := Fnorm_FEeval_PEeval _ _ H).
unfold display_pow_linear; apply SRdiv_ext;
eapply (ring_rw_pow_correct Rsth Reqe ARth CRmorph);eauto.
Qed.
Theorem Field_correct :
forall n l lpe fe1 fe2, Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
Peq ceqb (Nnorm n lmp (PEmul (num nfe1) (denum nfe2)))
(Nnorm n lmp (PEmul (num nfe2) (denum nfe1))) = true ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
Proof.
intros n l lpe fe1 fe2 Hlpe lmp eq_lmp nfe1 eq1 nfe2 eq2 Hnorm Hcond; subst nfe1 nfe2 lmp.
apply Fnorm_crossproduct; trivial.
eapply (ring_correct Rsth Reqe ARth CRmorph); eauto.
Qed.
(* simplify a field equation : generate the crossproduct and simplify
polynomials *)
Theorem Field_simplify_eq_old_correct :
forall l fe1 fe2 nfe1 nfe2,
Fnorm fe1 = nfe1 ->
Fnorm fe2 = nfe2 ->
NPphi_dev l (Nnorm O nil (PEmul (num nfe1) (denum nfe2))) ==
NPphi_dev l (Nnorm O nil (PEmul (num nfe2) (denum nfe1))) ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
Proof.
intros l fe1 fe2 nfe1 nfe2 eq1 eq2 Hcrossprod Hcond; subst nfe1 nfe2.
apply Fnorm_crossproduct; trivial.
match goal with
[ |- NPEeval l ?x == NPEeval l ?y] =>
rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec
O nil l I Logic.eq_refl x Logic.eq_refl);
rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec
O nil l I Logic.eq_refl y Logic.eq_refl)
end.
trivial.
Qed.
Theorem Field_simplify_eq_correct :
forall n l lpe fe1 fe2,
Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
forall den, split (denum nfe1) (denum nfe2) = den ->
NPphi_dev l (Nnorm n lmp (PEmul (num nfe1) (right den))) ==
NPphi_dev l (Nnorm n lmp (PEmul (num nfe2) (left den))) ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
subst nfe1 nfe2 den lmp.
apply Fnorm_crossproduct; trivial.
simpl.
rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
rewrite NPEmul_correct.
rewrite NPEmul_correct.
simpl.
repeat rewrite (ARmul_assoc ARth).
rewrite <-(
let x := PEmul (num (Fnorm fe1))
(rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in
ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
Hlpe Logic.eq_refl
x Logic.eq_refl) in Hcrossprod.
rewrite <-(
let x := (PEmul (num (Fnorm fe2))
(rsplit_left
(split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in
ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
Hlpe Logic.eq_refl
x Logic.eq_refl) in Hcrossprod.
simpl in Hcrossprod.
rewrite Hcrossprod.
reflexivity.
Qed.
Theorem Field_simplify_eq_pow_correct :
forall n l lpe fe1 fe2,
Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
forall den, split (denum nfe1) (denum nfe2) = den ->
NPphi_pow l (Nnorm n lmp (PEmul (num nfe1) (right den))) ==
NPphi_pow l (Nnorm n lmp (PEmul (num nfe2) (left den))) ->
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
subst nfe1 nfe2 den lmp.
apply Fnorm_crossproduct; trivial.
simpl.
rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
rewrite NPEmul_correct.
rewrite NPEmul_correct.
simpl.
repeat rewrite (ARmul_assoc ARth).
rewrite <-(
let x := PEmul (num (Fnorm fe1))
(rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in
ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
Hlpe Logic.eq_refl
x Logic.eq_refl) in Hcrossprod.
rewrite <-(
let x := (PEmul (num (Fnorm fe2))
(rsplit_left
(split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in
ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
Hlpe Logic.eq_refl
x Logic.eq_refl) in Hcrossprod.
simpl in Hcrossprod.
rewrite Hcrossprod.
reflexivity.
Qed.
Theorem Field_simplify_eq_pow_in_correct :
forall n l lpe fe1 fe2,
Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
forall den, split (denum nfe1) (denum nfe2) = den ->
forall np1, Nnorm n lmp (PEmul (num nfe1) (right den)) = np1 ->
forall np2, Nnorm n lmp (PEmul (num nfe2) (left den)) = np2 ->
FEeval l fe1 == FEeval l fe2 ->
PCond l (condition nfe1 ++ condition nfe2) ->
NPphi_pow l np1 ==
NPphi_pow l np2.
Proof.
intros. subst nfe1 nfe2 lmp np1 np2.
repeat rewrite (Pphi_pow_ok Rsth Reqe ARth CRmorph pow_th get_sign_spec).
repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). simpl.
assert (N1 := Pcond_Fnorm _ _ (PCond_app_inv_l _ _ _ H7)).
assert (N2 := Pcond_Fnorm _ _ (PCond_app_inv_r _ _ _ H7)).
apply (@rmul_reg_l (NPEeval l (rsplit_common den))).
intro Heq;apply N1.
rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
rewrite H3. rewrite NPEmul_correct. simpl. ring [Heq].
repeat rewrite (ARth.(ARmul_comm) (NPEeval l (rsplit_common den))).
repeat rewrite <- ARth.(ARmul_assoc).
change (NPEeval l (rsplit_right den) * NPEeval l (rsplit_common den)) with
(NPEeval l (PEmul (rsplit_right den) (rsplit_common den))).
change (NPEeval l (rsplit_left den) * NPEeval l (rsplit_common den)) with
(NPEeval l (PEmul (rsplit_left den) (rsplit_common den))).
repeat rewrite <- NPEmul_correct. rewrite <- H3. rewrite <- split_correct_l.
rewrite <- split_correct_r.
apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe2)))).
intro Heq; apply AFth.(AF_1_neq_0).
rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe2))));trivial.
ring [Heq]. rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))).
repeat rewrite <- (ARth.(ARmul_assoc)).
rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial.
apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe1)))).
intro Heq; apply AFth.(AF_1_neq_0).
rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe1))));trivial.
ring [Heq]. repeat rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe1)))).
repeat rewrite <- (ARth.(ARmul_assoc)).
repeat rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial.
rewrite (AFth.(AFdiv_def)). ring_simplify. unfold SRopp.
rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))).
repeat rewrite <- (AFth.(AFdiv_def)).
repeat rewrite <- Fnorm_FEeval_PEeval ; trivial.
apply (PCond_app_inv_r _ _ _ H7). apply (PCond_app_inv_l _ _ _ H7).
Qed.
Theorem Field_simplify_eq_in_correct :
forall n l lpe fe1 fe2,
Ninterp_PElist l lpe ->
forall lmp, Nmk_monpol_list lpe = lmp ->
forall nfe1, Fnorm fe1 = nfe1 ->
forall nfe2, Fnorm fe2 = nfe2 ->
forall den, split (denum nfe1) (denum nfe2) = den ->
forall np1, Nnorm n lmp (PEmul (num nfe1) (right den)) = np1 ->
forall np2, Nnorm n lmp (PEmul (num nfe2) (left den)) = np2 ->
FEeval l fe1 == FEeval l fe2 ->
PCond l (condition nfe1 ++ condition nfe2) ->
NPphi_dev l np1 ==
NPphi_dev l np2.
Proof.
intros. subst nfe1 nfe2 lmp np1 np2.
repeat rewrite (Pphi_dev_ok Rsth Reqe ARth CRmorph get_sign_spec).
repeat (rewrite <- (norm_subst_ok Rsth Reqe ARth CRmorph pow_th);trivial). simpl.
assert (N1 := Pcond_Fnorm _ _ (PCond_app_inv_l _ _ _ H7)).
assert (N2 := Pcond_Fnorm _ _ (PCond_app_inv_r _ _ _ H7)).
apply (@rmul_reg_l (NPEeval l (rsplit_common den))).
intro Heq;apply N1.
rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
rewrite H3. rewrite NPEmul_correct. simpl. ring [Heq].
repeat rewrite (ARth.(ARmul_comm) (NPEeval l (rsplit_common den))).
repeat rewrite <- ARth.(ARmul_assoc).
change (NPEeval l (rsplit_right den) * NPEeval l (rsplit_common den)) with
(NPEeval l (PEmul (rsplit_right den) (rsplit_common den))).
change (NPEeval l (rsplit_left den) * NPEeval l (rsplit_common den)) with
(NPEeval l (PEmul (rsplit_left den) (rsplit_common den))).
repeat rewrite <- NPEmul_correct;rewrite <- H3. rewrite <- split_correct_l.
rewrite <- split_correct_r.
apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe2)))).
intro Heq; apply AFth.(AF_1_neq_0).
rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe2))));trivial.
ring [Heq]. rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))).
repeat rewrite <- (ARth.(ARmul_assoc)).
rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial.
apply (@rmul_reg_l (/NPEeval l (denum (Fnorm fe1)))).
intro Heq; apply AFth.(AF_1_neq_0).
rewrite <- (@AFinv_l AFth (NPEeval l (denum (Fnorm fe1))));trivial.
ring [Heq]. repeat rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe1)))).
repeat rewrite <- (ARth.(ARmul_assoc)).
repeat rewrite <- (AFth.(AFdiv_def)). rewrite rdiv_r_r by trivial.
rewrite (AFth.(AFdiv_def)). ring_simplify. unfold SRopp.
rewrite (ARth.(ARmul_comm) (/ NPEeval l (denum (Fnorm fe2)))).
repeat rewrite <- (AFth.(AFdiv_def)).
repeat rewrite <- Fnorm_FEeval_PEeval;trivial.
apply (PCond_app_inv_r _ _ _ H7). apply (PCond_app_inv_l _ _ _ H7).
Qed.
Section Fcons_impl.
Variable Fcons : PExpr C -> list (PExpr C) -> list (PExpr C).
Hypothesis PCond_fcons_inv : forall l a l1,
PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) :=
match l with
| nil => m
| cons a l1 => Fcons a (Fapp l1 m)
end.
Lemma fcons_correct : forall l l1,
(forall lock, lock = PCond l -> lock (Fapp l1 nil)) -> PCond l l1.
Proof.
intros l l1 h1; assert (H := h1 (PCond l) (refl_equal _));clear h1.
induction l1; simpl; intros.
trivial.
elim PCond_fcons_inv with (1 := H); intros.
destruct l1; trivial. split; trivial. apply IHl1; trivial.
Qed.
End Fcons_impl.
Section Fcons_simpl.
(* Some general simpifications of the condition: eliminate duplicates,
split multiplications *)
Fixpoint Fcons (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
match l with
nil => cons e nil
| cons a l1 => if PExpr_eq e a then l else cons a (Fcons e l1)
end.
Theorem PFcons_fcons_inv:
forall l a l1, PCond l (Fcons a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
intros l a l1; elim l1; simpl Fcons; auto.
simpl; auto.
intros a0 l0.
generalize (PExpr_eq_semi_correct l a a0); case (PExpr_eq a a0).
intros H H0 H1; split; auto.
rewrite H; auto.
generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
intros H H0 H1;
assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)).
split.
generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
apply H0.
generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto.
generalize Hp; case l0; simpl; intuition.
Qed.
(* equality of normal forms rather than syntactic equality *)
Fixpoint Fcons0 (e:PExpr C) (l:list (PExpr C)) {struct l} : list (PExpr C) :=
match l with
nil => cons e nil
| cons a l1 =>
if Peq ceqb (Nnorm O nil e) (Nnorm O nil a) then l
else cons a (Fcons0 e l1)
end.
Theorem PFcons0_fcons_inv:
forall l a l1, PCond l (Fcons0 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
intros l a l1; elim l1; simpl Fcons0; auto.
simpl; auto.
intros a0 l0.
generalize (ring_correct Rsth Reqe ARth CRmorph pow_th cdiv_th O l nil a a0). simpl.
case (Peq ceqb (Nnorm O nil a) (Nnorm O nil a0)).
intros H H0 H1; split; auto.
rewrite H; auto.
generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
intros H H0 H1;
assert (Hp: ~ NPEeval l a0 == 0 /\ (~ NPEeval l a == 0 /\ PCond l l0)).
split.
generalize (PCond_cons_inv_l _ _ _ H1); simpl; auto.
apply H0.
generalize (PCond_cons_inv_r _ _ _ H1); simpl; auto.
clear get_sign get_sign_spec.
generalize Hp; case l0; simpl; intuition.
Qed.
(* split factorized denominators *)
Fixpoint Fcons00 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
match e with
PEmul e1 e2 => Fcons00 e1 (Fcons00 e2 l)
| PEpow e1 _ => Fcons00 e1 l
| _ => Fcons0 e l
end.
Theorem PFcons00_fcons_inv:
forall l a l1, PCond l (Fcons00 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
intros p H p0 H0 l1 H1.
simpl in H1.
case (H _ H1); intros H2 H3.
case (H0 _ H3); intros H4 H5; split; auto.
simpl.
apply field_is_integral_domain; trivial.
simpl;intros. rewrite pow_th.(rpow_pow_N).
destruct (H _ H0);split;auto.
destruct n;simpl. apply AFth.(AF_1_neq_0).
apply pow_pos_not_0;trivial.
Qed.
Definition Pcond_simpl_gen :=
fcons_correct _ PFcons00_fcons_inv.
(* Specific case when the equality test of coefs is complete w.r.t. the
field equality: non-zero coefs can be eliminated, and opposite can
be simplified (if -1 <> 0) *)
Hypothesis ceqb_complete : forall c1 c2, phi c1 == phi c2 -> ceqb c1 c2 = true.
Lemma ceqb_rect_complete : forall c1 c2 (A:Type) (x y:A) (P:A->Type),
(phi c1 == phi c2 -> P x) ->
(~ phi c1 == phi c2 -> P y) ->
P (if ceqb c1 c2 then x else y).
Proof.
intros.
generalize (fun h => X (morph_eq CRmorph c1 c2 h)).
generalize (@ceqb_complete c1 c2).
case (c1 ?=! c2); auto; intros.
apply X0.
red; intro.
absurd (false = true); auto; discriminate.
Qed.
Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
match e with
PEmul e1 e2 => Fcons1 e1 (Fcons1 e2 l)
| PEpow e _ => Fcons1 e l
| PEopp e => if ceqb (copp cI) cO then absurd_PCond else Fcons1 e l
| PEc c => if ceqb c cO then absurd_PCond else l
| _ => Fcons0 e l
end.
Theorem PFcons1_fcons_inv:
forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
simpl; intros c l1.
apply ceqb_rect_complete; intros.
elim (@absurd_PCond_bottom l H0).
split; trivial.
rewrite <- (morph0 CRmorph); trivial.
intros p H p0 H0 l1 H1.
simpl in H1.
case (H _ H1); intros H2 H3.
case (H0 _ H3); intros H4 H5; split; auto.
simpl.
apply field_is_integral_domain; trivial.
simpl; intros p H l1.
apply ceqb_rect_complete; intros.
elim (@absurd_PCond_bottom l H1).
destruct (H _ H1).
split; trivial.
apply ropp_neq_0; trivial.
rewrite (morph_opp CRmorph) in H0.
rewrite (morph1 CRmorph) in H0.
rewrite (morph0 CRmorph) in H0.
trivial.
intros;simpl. destruct (H _ H0);split;trivial.
rewrite pow_th.(rpow_pow_N). destruct n;simpl.
apply AFth.(AF_1_neq_0). apply pow_pos_not_0;trivial.
Qed.
Definition Fcons2 e l := Fcons1 (PExpr_simp e) l.
Theorem PFcons2_fcons_inv:
forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
unfold Fcons2; intros l a l1 H; split;
case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto.
intros H1 H2 H3; case H1.
transitivity (NPEeval l a); trivial.
apply PExpr_simp_correct.
Qed.
Definition Pcond_simpl_complete :=
fcons_correct _ PFcons2_fcons_inv.
End Fcons_simpl.
End AlmostField.
Section FieldAndSemiField.
Record field_theory : Prop := mk_field {
F_R : ring_theory rO rI radd rmul rsub ropp req;
F_1_neq_0 : ~ 1 == 0;
Fdiv_def : forall p q, p / q == p * / q;
Finv_l : forall p, ~ p == 0 -> / p * p == 1
}.
Definition F2AF f :=
mk_afield
(Rth_ARth Rsth Reqe f.(F_R)) f.(F_1_neq_0) f.(Fdiv_def) f.(Finv_l).
Record semi_field_theory : Prop := mk_sfield {
SF_SR : semi_ring_theory rO rI radd rmul req;
SF_1_neq_0 : ~ 1 == 0;
SFdiv_def : forall p q, p / q == p * / q;
SFinv_l : forall p, ~ p == 0 -> / p * p == 1
}.
End FieldAndSemiField.
End MakeFieldPol.
Definition SF2AF R (rO rI:R) radd rmul rdiv rinv req Rsth
(sf:semi_field_theory rO rI radd rmul rdiv rinv req) :=
mk_afield _ _
(SRth_ARth Rsth sf.(SF_SR))
sf.(SF_1_neq_0)
sf.(SFdiv_def)
sf.(SFinv_l).
Section Complete.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable (rdiv : R -> R -> R) (rinv : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
Notation "x / y " := (rdiv x y). Notation "/ x" := (rinv x).
Notation "x == y" := (req x y) (at level 70, no associativity).
Variable Rsth : Setoid_Theory R req.
Add Setoid R req Rsth as R_setoid3.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Add Morphism radd : radd_ext3. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext3. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext3. exact (Ropp_ext Reqe). Qed.
Section AlmostField.
Variable AFth : almost_field_theory rO rI radd rmul rsub ropp rdiv rinv req.
Let ARth := AFth.(AF_AR).
Let rI_neq_rO := AFth.(AF_1_neq_0).
Let rdiv_def := AFth.(AFdiv_def).
Let rinv_l := AFth.(AFinv_l).
Hypothesis S_inj : forall x y, 1+x==1+y -> x==y.
Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
Lemma add_inj_r : forall p x y,
gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y.
intros p x y.
elim p using Pos.peano_ind; simpl; intros.
apply S_inj; trivial.
apply H.
apply S_inj.
repeat rewrite (ARadd_assoc ARth).
rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial.
Qed.
Lemma gen_phiPOS_inj : forall x y,
gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y ->
x = y.
intros x y.
repeat rewrite <- (same_gen Rsth Reqe ARth).
case (Pos.compare_spec x y).
intros.
trivial.
intros.
elim gen_phiPOS_not_0 with (y - x)%positive.
apply add_inj_r with x.
symmetry.
rewrite (ARadd_0_r Rsth ARth).
rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth).
now rewrite Pos.add_comm, Pos.sub_add.
intros.
elim gen_phiPOS_not_0 with (x - y)%positive.
apply add_inj_r with y.
rewrite (ARadd_0_r Rsth ARth).
rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth).
now rewrite Pos.add_comm, Pos.sub_add.
Qed.
Lemma gen_phiN_inj : forall x y,
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
x = y.
destruct x; destruct y; simpl; intros; trivial.
elim gen_phiPOS_not_0 with p.
symmetry .
rewrite (same_gen Rsth Reqe ARth); trivial.
elim gen_phiPOS_not_0 with p.
rewrite (same_gen Rsth Reqe ARth); trivial.
rewrite gen_phiPOS_inj with (1 := H); trivial.
Qed.
Lemma gen_phiN_complete : forall x y,
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
N.eqb x y = true.
Proof.
intros. now apply N.eqb_eq, gen_phiN_inj.
Qed.
End AlmostField.
Section Field.
Variable Fth : field_theory rO rI radd rmul rsub ropp rdiv rinv req.
Let Rth := Fth.(F_R).
Let rI_neq_rO := Fth.(F_1_neq_0).
Let rdiv_def := Fth.(Fdiv_def).
Let rinv_l := Fth.(Finv_l).
Let AFth := F2AF Rsth Reqe Fth.
Let ARth := Rth_ARth Rsth Reqe Rth.
Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y.
intros.
transitivity (x + (1 + - (1))).
rewrite (Ropp_def Rth).
symmetry .
apply (ARadd_0_r Rsth ARth).
transitivity (y + (1 + - (1))).
repeat rewrite <- (ARplus_assoc ARth).
repeat rewrite (ARadd_assoc ARth).
apply (Radd_ext Reqe).
repeat rewrite <- (ARadd_comm ARth 1).
trivial.
reflexivity.
rewrite (Ropp_def Rth).
apply (ARadd_0_r Rsth ARth).
Qed.
Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
Let gen_phiPOS_inject :=
gen_phiPOS_inj AFth ring_S_inj gen_phiPOS_not_0.
Lemma gen_phiPOS_discr_sgn : forall x y,
~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y.
red; intros.
apply gen_phiPOS_not_0 with (y + x)%positive.
rewrite (ARgen_phiPOS_add Rsth Reqe ARth).
transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y).
apply (Radd_ext Reqe); trivial.
reflexivity.
rewrite (same_gen Rsth Reqe ARth).
rewrite (same_gen Rsth Reqe ARth).
trivial.
apply (Ropp_def Rth).
Qed.
Lemma gen_phiZ_inj : forall x y,
gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
x = y.
destruct x; destruct y; simpl; intros.
trivial.
elim gen_phiPOS_not_0 with p.
rewrite (same_gen Rsth Reqe ARth).
symmetry ; trivial.
elim gen_phiPOS_not_0 with p.
rewrite (same_gen Rsth Reqe ARth).
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
rewrite <- H.
apply (ARopp_zero Rsth Reqe ARth).
elim gen_phiPOS_not_0 with p.
rewrite (same_gen Rsth Reqe ARth).
trivial.
rewrite gen_phiPOS_inject with (1 := H); trivial.
elim gen_phiPOS_discr_sgn with (1 := H).
elim gen_phiPOS_not_0 with p.
rewrite (same_gen Rsth Reqe ARth).
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
rewrite H.
apply (ARopp_zero Rsth Reqe ARth).
elim gen_phiPOS_discr_sgn with p0 p.
symmetry ; trivial.
replace p0 with p; trivial.
apply gen_phiPOS_inject.
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)).
rewrite H; trivial.
reflexivity.
Qed.
Lemma gen_phiZ_complete : forall x y,
gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
Zeq_bool x y = true.
intros.
replace y with x.
unfold Zeq_bool.
rewrite Z.compare_refl; trivial.
apply gen_phiZ_inj; trivial.
Qed.
End Field.
End Complete.
|