1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import ZArith_base.
Require Import Zpow_def.
Require Import BinInt.
Require Import BinNat.
Require Import Setoid.
Require Import Ring_theory.
Require Import Ring_polynom.
Import List.
Set Implicit Arguments.
Import RingSyntax.
(* An object to return when an expression is not recognized as a constant *)
Definition NotConstant := false.
(** Z is a ring and a setoid*)
Lemma Zsth : Setoid_Theory Z (@eq Z).
Proof (Eqsth Z).
Lemma Zeqe : ring_eq_ext Z.add Z.mul Z.opp (@eq Z).
Proof (Eq_ext Z.add Z.mul Z.opp).
Lemma Zth : ring_theory Z0 (Zpos xH) Z.add Z.mul Z.sub Z.opp (@eq Z).
Proof.
constructor. exact Z.add_0_l. exact Z.add_comm. exact Z.add_assoc.
exact Z.mul_1_l. exact Z.mul_comm. exact Z.mul_assoc.
exact Z.mul_add_distr_r. trivial. exact Z.sub_diag.
Qed.
(** Two generic morphisms from Z to (abrbitrary) rings, *)
(**second one is more convenient for proofs but they are ext. equal*)
Section ZMORPHISM.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
Notation "x == y" := (req x y).
Variable Rsth : Setoid_Theory R req.
Add Setoid R req Rsth as R_setoid3.
Ltac rrefl := gen_reflexivity Rsth.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Add Morphism radd : radd_ext3. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext3. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext3. exact (Ropp_ext Reqe). Qed.
Fixpoint gen_phiPOS1 (p:positive) : R :=
match p with
| xH => 1
| xO p => (1 + 1) * (gen_phiPOS1 p)
| xI p => 1 + ((1 + 1) * (gen_phiPOS1 p))
end.
Fixpoint gen_phiPOS (p:positive) : R :=
match p with
| xH => 1
| xO xH => (1 + 1)
| xO p => (1 + 1) * (gen_phiPOS p)
| xI xH => 1 + (1 +1)
| xI p => 1 + ((1 + 1) * (gen_phiPOS p))
end.
Definition gen_phiZ1 z :=
match z with
| Zpos p => gen_phiPOS1 p
| Z0 => 0
| Zneg p => -(gen_phiPOS1 p)
end.
Definition gen_phiZ z :=
match z with
| Zpos p => gen_phiPOS p
| Z0 => 0
| Zneg p => -(gen_phiPOS p)
end.
Notation "[ x ]" := (gen_phiZ x).
Definition get_signZ z :=
match z with
| Zneg p => Some (Zpos p)
| _ => None
end.
Lemma get_signZ_th : sign_theory Z.opp Zeq_bool get_signZ.
Proof.
constructor.
destruct c;intros;try discriminate.
injection H;clear H;intros H1;subst c'.
simpl. unfold Zeq_bool. rewrite Z.compare_refl. trivial.
Qed.
Section ALMOST_RING.
Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
Add Morphism rsub : rsub_ext3. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac norm := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x.
Proof.
induction x;simpl.
rewrite IHx;destruct x;simpl;norm.
rewrite IHx;destruct x;simpl;norm.
rrefl.
Qed.
Lemma ARgen_phiPOS_Psucc : forall x,
gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x).
Proof.
induction x;simpl;norm.
rewrite IHx;norm.
add_push 1;rrefl.
Qed.
Lemma ARgen_phiPOS_add : forall x y,
gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
Proof.
induction x;destruct y;simpl;norm.
rewrite Pos.add_carry_spec.
rewrite ARgen_phiPOS_Psucc.
rewrite IHx;norm.
add_push (gen_phiPOS1 y);add_push 1;rrefl.
rewrite IHx;norm;add_push (gen_phiPOS1 y);rrefl.
rewrite ARgen_phiPOS_Psucc;norm;add_push 1;rrefl.
rewrite IHx;norm;add_push(gen_phiPOS1 y); add_push 1;rrefl.
rewrite IHx;norm;add_push(gen_phiPOS1 y);rrefl.
add_push 1;rrefl.
rewrite ARgen_phiPOS_Psucc;norm;add_push 1;rrefl.
Qed.
Lemma ARgen_phiPOS_mult :
forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y.
Proof.
induction x;intros;simpl;norm.
rewrite ARgen_phiPOS_add;simpl;rewrite IHx;norm.
rewrite IHx;rrefl.
Qed.
End ALMOST_RING.
Variable Rth : ring_theory 0 1 radd rmul rsub ropp req.
Let ARth := Rth_ARth Rsth Reqe Rth.
Add Morphism rsub : rsub_ext4. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac norm := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
(*morphisms are extensionaly equal*)
Lemma same_genZ : forall x, [x] == gen_phiZ1 x.
Proof.
destruct x;simpl; try rewrite (same_gen ARth);rrefl.
Qed.
Lemma gen_Zeqb_ok : forall x y,
Zeq_bool x y = true -> [x] == [y].
Proof.
intros x y H.
assert (H1 := Zeq_bool_eq x y H);unfold IDphi in H1.
rewrite H1;rrefl.
Qed.
Lemma gen_phiZ1_pos_sub : forall x y,
gen_phiZ1 (Z.pos_sub x y) == gen_phiPOS1 x + -gen_phiPOS1 y.
Proof.
intros x y.
rewrite Z.pos_sub_spec.
case Pos.compare_spec; intros H; simpl.
rewrite H. rewrite (Ropp_def Rth);rrefl.
rewrite <- (Pos.sub_add y x H) at 2. rewrite Pos.add_comm.
rewrite (ARgen_phiPOS_add ARth);simpl;norm.
rewrite (Ropp_def Rth);norm.
rewrite <- (Pos.sub_add x y H) at 2.
rewrite (ARgen_phiPOS_add ARth);simpl;norm.
add_push (gen_phiPOS1 (x-y));rewrite (Ropp_def Rth); norm.
Qed.
Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
Proof.
intros x y; repeat rewrite same_genZ; generalize x y;clear x y.
destruct x, y; simpl; norm.
apply (ARgen_phiPOS_add ARth).
apply gen_phiZ1_pos_sub.
rewrite gen_phiZ1_pos_sub. apply (Radd_comm Rth).
rewrite (ARgen_phiPOS_add ARth); norm.
Qed.
Lemma gen_phiZ_mul : forall x y, [x * y] == [x] * [y].
Proof.
intros x y;repeat rewrite same_genZ.
destruct x;destruct y;simpl;norm;
rewrite (ARgen_phiPOS_mult ARth);try (norm;fail).
rewrite (Ropp_opp Rsth Reqe Rth);rrefl.
Qed.
Lemma gen_phiZ_ext : forall x y : Z, x = y -> [x] == [y].
Proof. intros;subst;rrefl. Qed.
(*proof that [.] satisfies morphism specifications*)
Lemma gen_phiZ_morph :
ring_morph 0 1 radd rmul rsub ropp req Z0 (Zpos xH)
Z.add Z.mul Z.sub Z.opp Zeq_bool gen_phiZ.
Proof.
assert ( SRmorph : semi_morph 0 1 radd rmul req Z0 (Zpos xH)
Z.add Z.mul Zeq_bool gen_phiZ).
apply mkRmorph;simpl;try rrefl.
apply gen_phiZ_add. apply gen_phiZ_mul. apply gen_Zeqb_ok.
apply (Smorph_morph Rsth Reqe Rth Zth SRmorph gen_phiZ_ext).
Qed.
End ZMORPHISM.
(** N is a semi-ring and a setoid*)
Lemma Nsth : Setoid_Theory N (@eq N).
Proof (Eqsth N).
Lemma Nseqe : sring_eq_ext N.add N.mul (@eq N).
Proof (Eq_s_ext N.add N.mul).
Lemma Nth : semi_ring_theory 0%N 1%N N.add N.mul (@eq N).
Proof.
constructor. exact N.add_0_l. exact N.add_comm. exact N.add_assoc.
exact N.mul_1_l. exact N.mul_0_l. exact N.mul_comm. exact N.mul_assoc.
exact N.mul_add_distr_r.
Qed.
Definition Nsub := SRsub N.add.
Definition Nopp := (@SRopp N).
Lemma Neqe : ring_eq_ext N.add N.mul Nopp (@eq N).
Proof (SReqe_Reqe Nseqe).
Lemma Nath :
almost_ring_theory 0%N 1%N N.add N.mul Nsub Nopp (@eq N).
Proof (SRth_ARth Nsth Nth).
Lemma Neqb_ok : forall x y, N.eqb x y = true -> x = y.
Proof. exact (fun x y => proj1 (N.eqb_eq x y)). Qed.
(**Same as above : definition of two,extensionaly equal, generic morphisms *)
(**from N to any semi-ring*)
Section NMORPHISM.
Variable R : Type.
Variable (rO rI : R) (radd rmul: R->R->R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
Variable Rsth : Setoid_Theory R req.
Add Setoid R req Rsth as R_setoid4.
Ltac rrefl := gen_reflexivity Rsth.
Variable SReqe : sring_eq_ext radd rmul req.
Variable SRth : semi_ring_theory 0 1 radd rmul req.
Let ARth := SRth_ARth Rsth SRth.
Let Reqe := SReqe_Reqe SReqe.
Let ropp := (@SRopp R).
Let rsub := (@SRsub R radd).
Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
Notation "x == y" := (req x y).
Add Morphism radd : radd_ext4. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext4. exact (Rmul_ext Reqe). Qed.
Ltac norm := gen_srewrite_sr Rsth Reqe ARth.
Definition gen_phiN1 x :=
match x with
| N0 => 0
| Npos x => gen_phiPOS1 1 radd rmul x
end.
Definition gen_phiN x :=
match x with
| N0 => 0
| Npos x => gen_phiPOS 1 radd rmul x
end.
Notation "[ x ]" := (gen_phiN x).
Lemma same_genN : forall x, [x] == gen_phiN1 x.
Proof.
destruct x;simpl. reflexivity.
now rewrite (same_gen Rsth Reqe ARth).
Qed.
Lemma gen_phiN_add : forall x y, [x + y] == [x] + [y].
Proof.
intros x y;repeat rewrite same_genN.
destruct x;destruct y;simpl;norm.
apply (ARgen_phiPOS_add Rsth Reqe ARth).
Qed.
Lemma gen_phiN_mult : forall x y, [x * y] == [x] * [y].
Proof.
intros x y;repeat rewrite same_genN.
destruct x;destruct y;simpl;norm.
apply (ARgen_phiPOS_mult Rsth Reqe ARth).
Qed.
Lemma gen_phiN_sub : forall x y, [Nsub x y] == [x] - [y].
Proof. exact gen_phiN_add. Qed.
(*gen_phiN satisfies morphism specifications*)
Lemma gen_phiN_morph : ring_morph 0 1 radd rmul rsub ropp req
0%N 1%N N.add N.mul Nsub Nopp N.eqb gen_phiN.
Proof.
constructor; simpl; try reflexivity.
apply gen_phiN_add. apply gen_phiN_sub. apply gen_phiN_mult.
intros x y EQ. apply N.eqb_eq in EQ. now subst.
Qed.
End NMORPHISM.
(* Words on N : initial structure for almost-rings. *)
Definition Nword := list N.
Definition NwO : Nword := nil.
Definition NwI : Nword := 1%N :: nil.
Definition Nwcons n (w : Nword) : Nword :=
match w, n with
| nil, 0%N => nil
| _, _ => n :: w
end.
Fixpoint Nwadd (w1 w2 : Nword) {struct w1} : Nword :=
match w1, w2 with
| n1::w1', n2:: w2' => (n1+n2)%N :: Nwadd w1' w2'
| nil, _ => w2
| _, nil => w1
end.
Definition Nwopp (w:Nword) : Nword := Nwcons 0%N w.
Definition Nwsub w1 w2 := Nwadd w1 (Nwopp w2).
Fixpoint Nwscal (n : N) (w : Nword) {struct w} : Nword :=
match w with
| m :: w' => (n*m)%N :: Nwscal n w'
| nil => nil
end.
Fixpoint Nwmul (w1 w2 : Nword) {struct w1} : Nword :=
match w1 with
| 0%N::w1' => Nwopp (Nwmul w1' w2)
| n1::w1' => Nwsub (Nwscal n1 w2) (Nwmul w1' w2)
| nil => nil
end.
Fixpoint Nw_is0 (w : Nword) : bool :=
match w with
| nil => true
| 0%N :: w' => Nw_is0 w'
| _ => false
end.
Fixpoint Nweq_bool (w1 w2 : Nword) {struct w1} : bool :=
match w1, w2 with
| n1::w1', n2::w2' =>
if N.eqb n1 n2 then Nweq_bool w1' w2' else false
| nil, _ => Nw_is0 w2
| _, nil => Nw_is0 w1
end.
Section NWORDMORPHISM.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
Notation "x == y" := (req x y).
Variable Rsth : Setoid_Theory R req.
Add Setoid R req Rsth as R_setoid5.
Ltac rrefl := gen_reflexivity Rsth.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Add Morphism radd : radd_ext5. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext5. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext5. exact (Ropp_ext Reqe). Qed.
Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
Add Morphism rsub : rsub_ext7. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac norm := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Fixpoint gen_phiNword (w : Nword) : R :=
match w with
| nil => 0
| n :: nil => gen_phiN rO rI radd rmul n
| N0 :: w' => - gen_phiNword w'
| n::w' => gen_phiN rO rI radd rmul n - gen_phiNword w'
end.
Lemma gen_phiNword0_ok : forall w, Nw_is0 w = true -> gen_phiNword w == 0.
Proof.
induction w; simpl; intros; auto.
reflexivity.
destruct a.
destruct w.
reflexivity.
rewrite IHw; trivial.
apply (ARopp_zero Rsth Reqe ARth).
discriminate.
Qed.
Lemma gen_phiNword_cons : forall w n,
gen_phiNword (n::w) == gen_phiN rO rI radd rmul n - gen_phiNword w.
induction w.
destruct n; simpl; norm.
intros.
destruct n; norm.
Qed.
Lemma gen_phiNword_Nwcons : forall w n,
gen_phiNword (Nwcons n w) == gen_phiN rO rI radd rmul n - gen_phiNword w.
destruct w; intros.
destruct n; norm.
unfold Nwcons.
rewrite gen_phiNword_cons.
reflexivity.
Qed.
Lemma gen_phiNword_ok : forall w1 w2,
Nweq_bool w1 w2 = true -> gen_phiNword w1 == gen_phiNword w2.
induction w1; intros.
simpl.
rewrite (gen_phiNword0_ok _ H).
reflexivity.
rewrite gen_phiNword_cons.
destruct w2.
simpl in H.
destruct a; try discriminate.
rewrite (gen_phiNword0_ok _ H).
norm.
simpl in H.
rewrite gen_phiNword_cons.
case_eq (N.eqb a n); intros H0.
rewrite H0 in H.
apply N.eqb_eq in H0. rewrite <- H0.
rewrite (IHw1 _ H).
reflexivity.
rewrite H0 in H; discriminate H.
Qed.
Lemma Nwadd_ok : forall x y,
gen_phiNword (Nwadd x y) == gen_phiNword x + gen_phiNword y.
induction x; intros.
simpl.
norm.
destruct y.
simpl Nwadd; norm.
simpl Nwadd.
repeat rewrite gen_phiNword_cons.
rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) by
(destruct Reqe; constructor; trivial).
rewrite IHx.
norm.
add_push (- gen_phiNword x); reflexivity.
Qed.
Lemma Nwopp_ok : forall x, gen_phiNword (Nwopp x) == - gen_phiNword x.
simpl.
unfold Nwopp; simpl.
intros.
rewrite gen_phiNword_Nwcons; norm.
Qed.
Lemma Nwscal_ok : forall n x,
gen_phiNword (Nwscal n x) == gen_phiN rO rI radd rmul n * gen_phiNword x.
induction x; intros.
norm.
simpl Nwscal.
repeat rewrite gen_phiNword_cons.
rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth))
by (destruct Reqe; constructor; trivial).
rewrite IHx.
norm.
Qed.
Lemma Nwmul_ok : forall x y,
gen_phiNword (Nwmul x y) == gen_phiNword x * gen_phiNword y.
induction x; intros.
norm.
destruct a.
simpl Nwmul.
rewrite Nwopp_ok.
rewrite IHx.
rewrite gen_phiNword_cons.
norm.
simpl Nwmul.
unfold Nwsub.
rewrite Nwadd_ok.
rewrite Nwscal_ok.
rewrite Nwopp_ok.
rewrite IHx.
rewrite gen_phiNword_cons.
norm.
Qed.
(* Proof that [.] satisfies morphism specifications *)
Lemma gen_phiNword_morph :
ring_morph 0 1 radd rmul rsub ropp req
NwO NwI Nwadd Nwmul Nwsub Nwopp Nweq_bool gen_phiNword.
constructor.
reflexivity.
reflexivity.
exact Nwadd_ok.
intros.
unfold Nwsub.
rewrite Nwadd_ok.
rewrite Nwopp_ok.
norm.
exact Nwmul_ok.
exact Nwopp_ok.
exact gen_phiNword_ok.
Qed.
End NWORDMORPHISM.
Section GEN_DIV.
Variables (R : Type) (rO : R) (rI : R) (radd : R -> R -> R)
(rmul : R -> R -> R) (rsub : R -> R -> R) (ropp : R -> R)
(req : R -> R -> Prop) (C : Type) (cO : C) (cI : C)
(cadd : C -> C -> C) (cmul : C -> C -> C) (csub : C -> C -> C)
(copp : C -> C) (ceqb : C -> C -> bool) (phi : C -> R).
Variable Rsth : Setoid_Theory R req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
Variable morph : ring_morph rO rI radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi.
(* Useful tactics *)
Add Setoid R req Rsth as R_set1.
Ltac rrefl := gen_reflexivity Rsth.
Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
Definition triv_div x y :=
if ceqb x y then (cI, cO)
else (cO, x).
Ltac Esimpl :=repeat (progress (
match goal with
| |- context [phi cO] => rewrite (morph0 morph)
| |- context [phi cI] => rewrite (morph1 morph)
| |- context [phi (cadd ?x ?y)] => rewrite ((morph_add morph) x y)
| |- context [phi (cmul ?x ?y)] => rewrite ((morph_mul morph) x y)
| |- context [phi (csub ?x ?y)] => rewrite ((morph_sub morph) x y)
| |- context [phi (copp ?x)] => rewrite ((morph_opp morph) x)
end)).
Lemma triv_div_th : Ring_theory.div_theory req cadd cmul phi triv_div.
Proof.
constructor.
intros a b;unfold triv_div.
assert (X:= morph.(morph_eq) a b);destruct (ceqb a b).
Esimpl.
rewrite X; trivial.
rsimpl.
Esimpl; rsimpl.
Qed.
Variable zphi : Z -> R.
Lemma Ztriv_div_th : div_theory req Z.add Z.mul zphi Z.quotrem.
Proof.
constructor.
intros; generalize (Z.quotrem_eq a b); case Z.quotrem; intros; subst.
rewrite Z.mul_comm; rsimpl.
Qed.
Variable nphi : N -> R.
Lemma Ntriv_div_th : div_theory req N.add N.mul nphi N.div_eucl.
constructor.
intros; generalize (N.div_eucl_spec a b); case N.div_eucl; intros; subst.
rewrite N.mul_comm; rsimpl.
Qed.
End GEN_DIV.
(* syntaxification of constants in an abstract ring:
the inverse of gen_phiPOS *)
Ltac inv_gen_phi_pos rI add mul t :=
let rec inv_cst t :=
match t with
rI => constr:1%positive
| (add rI rI) => constr:2%positive
| (add rI (add rI rI)) => constr:3%positive
| (mul (add rI rI) ?p) => (* 2p *)
match inv_cst p with
NotConstant => constr:NotConstant
| 1%positive => constr:NotConstant (* 2*1 is not convertible to 2 *)
| ?p => constr:(xO p)
end
| (add rI (mul (add rI rI) ?p)) => (* 1+2p *)
match inv_cst p with
NotConstant => constr:NotConstant
| 1%positive => constr:NotConstant
| ?p => constr:(xI p)
end
| _ => constr:NotConstant
end in
inv_cst t.
(* The (partial) inverse of gen_phiNword *)
Ltac inv_gen_phiNword rO rI add mul opp t :=
match t with
rO => constr:NwO
| _ =>
match inv_gen_phi_pos rI add mul t with
NotConstant => constr:NotConstant
| ?p => constr:(Npos p::nil)
end
end.
(* The inverse of gen_phiN *)
Ltac inv_gen_phiN rO rI add mul t :=
match t with
rO => constr:0%N
| _ =>
match inv_gen_phi_pos rI add mul t with
NotConstant => constr:NotConstant
| ?p => constr:(Npos p)
end
end.
(* The inverse of gen_phiZ *)
Ltac inv_gen_phiZ rO rI add mul opp t :=
match t with
rO => constr:0%Z
| (opp ?p) =>
match inv_gen_phi_pos rI add mul p with
NotConstant => constr:NotConstant
| ?p => constr:(Zneg p)
end
| _ =>
match inv_gen_phi_pos rI add mul t with
NotConstant => constr:NotConstant
| ?p => constr:(Zpos p)
end
end.
(* A simple tactic recognizing only 0 and 1. The inv_gen_phiX above
are only optimisations that directly returns the reifid constant
instead of resorting to the constant propagation of the simplification
algorithm. *)
Ltac inv_gen_phi rO rI cO cI t :=
match t with
| rO => cO
| rI => cI
end.
(* A simple tactic recognizing no constant *)
Ltac inv_morph_nothing t := constr:NotConstant.
Ltac coerce_to_almost_ring set ext rspec :=
match type of rspec with
| ring_theory _ _ _ _ _ _ _ => constr:(Rth_ARth set ext rspec)
| semi_ring_theory _ _ _ _ _ => constr:(SRth_ARth set rspec)
| almost_ring_theory _ _ _ _ _ _ _ => rspec
| _ => fail 1 "not a valid ring theory"
end.
Ltac coerce_to_ring_ext ext :=
match type of ext with
| ring_eq_ext _ _ _ _ => ext
| sring_eq_ext _ _ _ => constr:(SReqe_Reqe ext)
| _ => fail 1 "not a valid ring_eq_ext theory"
end.
Ltac abstract_ring_morphism set ext rspec :=
match type of rspec with
| ring_theory _ _ _ _ _ _ _ => constr:(gen_phiZ_morph set ext rspec)
| semi_ring_theory _ _ _ _ _ => constr:(gen_phiN_morph set ext rspec)
| almost_ring_theory _ _ _ _ _ _ _ =>
constr:(gen_phiNword_morph set ext rspec)
| _ => fail 1 "bad ring structure"
end.
Record hypo : Type := mkhypo {
hypo_type : Type;
hypo_proof : hypo_type
}.
Ltac gen_ring_pow set arth pspec :=
match pspec with
| None =>
match type of arth with
| @almost_ring_theory ?R ?rO ?rI ?radd ?rmul ?rsub ?ropp ?req =>
constr:(mkhypo (@pow_N_th R rI rmul req set))
| _ => fail 1 "gen_ring_pow"
end
| Some ?t => constr:(t)
end.
Ltac gen_ring_sign morph sspec :=
match sspec with
| None =>
match type of morph with
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
Z ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceqb ?phi =>
constr:(@mkhypo (sign_theory copp ceqb get_signZ) get_signZ_th)
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceqb ?phi =>
constr:(mkhypo (@get_sign_None_th C copp ceqb))
| _ => fail 2 "ring anomaly : default_sign_spec"
end
| Some ?t => constr:(t)
end.
Ltac default_div_spec set reqe arth morph :=
match type of morph with
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
Z ?c0 ?c1 Z.add Z.mul ?csub ?copp ?ceq_b ?phi =>
constr:(mkhypo (Ztriv_div_th set phi))
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
N ?c0 ?c1 N.add N.mul ?csub ?copp ?ceq_b ?phi =>
constr:(mkhypo (Ntriv_div_th set phi))
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceq_b ?phi =>
constr:(mkhypo (triv_div_th set reqe arth morph))
| _ => fail 1 "ring anomaly : default_sign_spec"
end.
Ltac gen_ring_div set reqe arth morph dspec :=
match dspec with
| None => default_div_spec set reqe arth morph
| Some ?t => constr:(t)
end.
Ltac ring_elements set ext rspec pspec sspec dspec rk :=
let arth := coerce_to_almost_ring set ext rspec in
let ext_r := coerce_to_ring_ext ext in
let morph :=
match rk with
| Abstract => abstract_ring_morphism set ext rspec
| @Computational ?reqb_ok =>
match type of arth with
| almost_ring_theory ?rO ?rI ?add ?mul ?sub ?opp _ =>
constr:(IDmorph rO rI add mul sub opp set _ reqb_ok)
| _ => fail 2 "ring anomaly"
end
| @Morphism ?m =>
match type of m with
| ring_morph _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ => m
| @semi_morph _ _ _ _ _ _ _ _ _ _ _ _ _ =>
constr:(SRmorph_Rmorph set m)
| _ => fail 2 "ring anomaly"
end
| _ => fail 1 "ill-formed ring kind"
end in
let p_spec := gen_ring_pow set arth pspec in
let s_spec := gen_ring_sign morph sspec in
let d_spec := gen_ring_div set ext_r arth morph dspec in
fun f => f arth ext_r morph p_spec s_spec d_spec.
(* Given a ring structure and the kind of morphism,
returns 2 lemmas (one for ring, and one for ring_simplify). *)
Ltac ring_lemmas set ext rspec pspec sspec dspec rk :=
let gen_lemma2 :=
match pspec with
| None => constr:(ring_rw_correct)
| Some _ => constr:(ring_rw_pow_correct)
end in
ring_elements set ext rspec pspec sspec dspec rk
ltac:(fun arth ext_r morph p_spec s_spec d_spec =>
match type of morph with
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceq_b ?phi =>
let gen_lemma2_0 :=
constr:(gen_lemma2 R r0 rI radd rmul rsub ropp req set ext_r arth
C c0 c1 cadd cmul csub copp ceq_b phi morph) in
match p_spec with
| @mkhypo (power_theory _ _ _ ?Cp_phi ?rpow) ?pp_spec =>
let gen_lemma2_1 := constr:(gen_lemma2_0 _ Cp_phi rpow pp_spec) in
match d_spec with
| @mkhypo (div_theory _ _ _ _ ?cdiv) ?dd_spec =>
let gen_lemma2_2 := constr:(gen_lemma2_1 cdiv dd_spec) in
match s_spec with
| @mkhypo (sign_theory _ _ ?get_sign) ?ss_spec =>
let lemma2 := constr:(gen_lemma2_2 get_sign ss_spec) in
let lemma1 :=
constr:(ring_correct set ext_r arth morph pp_spec dd_spec) in
fun f => f arth ext_r morph lemma1 lemma2
| _ => fail 4 "ring: bad sign specification"
end
| _ => fail 3 "ring: bad coefficiant division specification"
end
| _ => fail 2 "ring: bad power specification"
end
| _ => fail 1 "ring internal error: ring_lemmas, please report"
end).
(* Tactic for constant *)
Ltac isnatcst t :=
match t with
O => constr:true
| S ?p => isnatcst p
| _ => constr:false
end.
Ltac isPcst t :=
match t with
| xI ?p => isPcst p
| xO ?p => isPcst p
| xH => constr:true
(* nat -> positive *)
| Pos.of_succ_nat ?n => isnatcst n
| _ => constr:false
end.
Ltac isNcst t :=
match t with
N0 => constr:true
| Npos ?p => isPcst p
| _ => constr:false
end.
Ltac isZcst t :=
match t with
Z0 => constr:true
| Zpos ?p => isPcst p
| Zneg ?p => isPcst p
(* injection nat -> Z *)
| Z.of_nat ?n => isnatcst n
(* injection N -> Z *)
| Z.of_N ?n => isNcst n
(* *)
| _ => constr:false
end.
|