1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import ZArith_base.
Require Import Zpow_def.
Require Import BinInt.
Require Import BinNat.
Require Import Setoid.
Require Import BinList.
Require Import BinPos.
Require Import BinNat.
Require Import BinInt.
Require Import Setoid.
Require Export Ncring.
Require Export Ncring_polynom.
Import List.
Set Implicit Arguments.
(* An object to return when an expression is not recognized as a constant *)
Definition NotConstant := false.
(** Z is a ring and a setoid*)
Lemma Zsth : Equivalence (@eq Z).
Proof. exact Z.eq_equiv. Qed.
Instance Zops:@Ring_ops Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z).
Instance Zr: (@Ring _ _ _ _ _ _ _ _ Zops).
Proof.
constructor; try apply Zsth; try solve_proper.
exact Z.add_comm. exact Z.add_assoc.
exact Z.mul_1_l. exact Z.mul_1_r. exact Z.mul_assoc.
exact Z.mul_add_distr_r. intros; apply Z.mul_add_distr_l. exact Z.sub_diag.
Defined.
(*Instance ZEquality: @Equality Z:= (@eq Z).*)
(** Two generic morphisms from Z to (abrbitrary) rings, *)
(**second one is more convenient for proofs but they are ext. equal*)
Section ZMORPHISM.
Context {R:Type}`{Ring R}.
Ltac rrefl := reflexivity.
Fixpoint gen_phiPOS1 (p:positive) : R :=
match p with
| xH => 1
| xO p => (1 + 1) * (gen_phiPOS1 p)
| xI p => 1 + ((1 + 1) * (gen_phiPOS1 p))
end.
Fixpoint gen_phiPOS (p:positive) : R :=
match p with
| xH => 1
| xO xH => (1 + 1)
| xO p => (1 + 1) * (gen_phiPOS p)
| xI xH => 1 + (1 +1)
| xI p => 1 + ((1 + 1) * (gen_phiPOS p))
end.
Definition gen_phiZ1 z :=
match z with
| Zpos p => gen_phiPOS1 p
| Z0 => 0
| Zneg p => -(gen_phiPOS1 p)
end.
Definition gen_phiZ z :=
match z with
| Zpos p => gen_phiPOS p
| Z0 => 0
| Zneg p => -(gen_phiPOS p)
end.
Notation "[ x ]" := (gen_phiZ x).
Definition get_signZ z :=
match z with
| Zneg p => Some (Zpos p)
| _ => None
end.
Ltac norm := gen_rewrite.
Ltac add_push := Ncring.gen_add_push.
Ltac rsimpl := simpl.
Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x.
Proof.
induction x;rsimpl.
rewrite IHx. destruct x;simpl;norm.
rewrite IHx;destruct x;simpl;norm.
reflexivity.
Qed.
Lemma ARgen_phiPOS_Psucc : forall x,
gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x).
Proof.
induction x;rsimpl;norm.
rewrite IHx. gen_rewrite. add_push 1. reflexivity.
Qed.
Lemma ARgen_phiPOS_add : forall x y,
gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
Proof.
induction x;destruct y;simpl;norm.
rewrite Pos.add_carry_spec.
rewrite ARgen_phiPOS_Psucc.
rewrite IHx;norm.
add_push (gen_phiPOS1 y);add_push 1;reflexivity.
rewrite IHx;norm;add_push (gen_phiPOS1 y);reflexivity.
rewrite ARgen_phiPOS_Psucc;norm;add_push 1;reflexivity.
rewrite IHx;norm;add_push(gen_phiPOS1 y); add_push 1;reflexivity.
rewrite IHx;norm;add_push(gen_phiPOS1 y);reflexivity.
add_push 1;reflexivity.
rewrite ARgen_phiPOS_Psucc;norm;add_push 1;reflexivity.
Qed.
Lemma ARgen_phiPOS_mult :
forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y.
Proof.
induction x;intros;simpl;norm.
rewrite ARgen_phiPOS_add;simpl;rewrite IHx;norm.
rewrite IHx;reflexivity.
Qed.
(*morphisms are extensionaly equal*)
Lemma same_genZ : forall x, [x] == gen_phiZ1 x.
Proof.
destruct x;rsimpl; try rewrite same_gen; reflexivity.
Qed.
Lemma gen_Zeqb_ok : forall x y,
Zeq_bool x y = true -> [x] == [y].
Proof.
intros x y H7.
assert (H10 := Zeq_bool_eq x y H7);unfold IDphi in H10.
rewrite H10;reflexivity.
Qed.
Lemma gen_phiZ1_add_pos_neg : forall x y,
gen_phiZ1 (Z.pos_sub x y)
== gen_phiPOS1 x + -gen_phiPOS1 y.
Proof.
intros x y.
generalize (Z.pos_sub_discr x y).
destruct (Z.pos_sub x y) as [|p|p]; intros; subst.
- now rewrite ring_opp_def.
- rewrite ARgen_phiPOS_add;simpl;norm.
add_push (gen_phiPOS1 p). rewrite ring_opp_def;norm.
- rewrite ARgen_phiPOS_add;simpl;norm.
rewrite ring_opp_def;norm.
Qed.
Lemma match_compOpp : forall x (B:Type) (be bl bg:B),
match CompOpp x with Eq => be | Lt => bl | Gt => bg end
= match x with Eq => be | Lt => bg | Gt => bl end.
Proof. destruct x;simpl;intros;trivial. Qed.
Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
Proof.
intros x y; repeat rewrite same_genZ; generalize x y;clear x y.
induction x;destruct y;simpl;norm.
apply ARgen_phiPOS_add.
apply gen_phiZ1_add_pos_neg.
rewrite gen_phiZ1_add_pos_neg. rewrite ring_add_comm.
reflexivity.
rewrite ARgen_phiPOS_add. rewrite ring_opp_add. reflexivity.
Qed.
Lemma gen_phiZ_opp : forall x, [- x] == - [x].
Proof.
intros x. repeat rewrite same_genZ. generalize x ;clear x.
induction x;simpl;norm.
rewrite ring_opp_opp. reflexivity.
Qed.
Lemma gen_phiZ_mul : forall x y, [x * y] == [x] * [y].
Proof.
intros x y;repeat rewrite same_genZ.
destruct x;destruct y;simpl;norm;
rewrite ARgen_phiPOS_mult;try (norm;fail).
rewrite ring_opp_opp ;reflexivity.
Qed.
Lemma gen_phiZ_ext : forall x y : Z, x = y -> [x] == [y].
Proof. intros;subst;reflexivity. Qed.
(*proof that [.] satisfies morphism specifications*)
Global Instance gen_phiZ_morph :
(@Ring_morphism (Z:Type) R _ _ _ _ _ _ _ Zops Zr _ _ _ _ _ _ _ _ _ gen_phiZ) . (* beurk!*)
apply Build_Ring_morphism; simpl;try reflexivity.
apply gen_phiZ_add. intros. rewrite ring_sub_def.
replace (x-y)%Z with (x + (-y))%Z.
now rewrite gen_phiZ_add, gen_phiZ_opp, ring_sub_def.
reflexivity.
apply gen_phiZ_mul. apply gen_phiZ_opp. apply gen_phiZ_ext.
Defined.
End ZMORPHISM.
Instance multiplication_phi_ring{R:Type}`{Ring R} : Multiplication :=
{multiplication x y := (gen_phiZ x) * y}.
|