1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* A <X1,...,Xn>: non commutative polynomials on a commutative ring A *)
Set Implicit Arguments.
Require Import Setoid.
Require Import BinList.
Require Import BinPos.
Require Import BinNat.
Require Import BinInt.
Require Export Ring_polynom. (* n'utilise que PExpr *)
Require Export Ncring.
Section MakeRingPol.
Context (C R:Type) `{Rh:Ring_morphism C R}.
Variable phiCR_comm: forall (c:C)(x:R), x * [c] == [c] * x.
Ltac rsimpl := repeat (gen_rewrite || rewrite phiCR_comm).
Ltac add_push := gen_add_push .
(* Definition of non commutative multivariable polynomials
with coefficients in C :
*)
Inductive Pol : Type :=
| Pc : C -> Pol
| PX : Pol -> positive -> positive -> Pol -> Pol.
(* PX P i n Q represents P * X_i^n + Q *)
Definition cO:C . exact ring0. Defined.
Definition cI:C . exact ring1. Defined.
Definition P0 := Pc 0.
Definition P1 := Pc 1.
Variable Ceqb:C->C->bool.
Class Equalityb (A : Type):= {equalityb : A -> A -> bool}.
Notation "x =? y" := (equalityb x y) (at level 70, no associativity).
Variable Ceqb_eq: forall x y:C, Ceqb x y = true -> (x == y).
Instance equalityb_coef : Equalityb C :=
{equalityb x y := Ceqb x y}.
Fixpoint Peq (P P' : Pol) {struct P'} : bool :=
match P, P' with
| Pc c, Pc c' => c =? c'
| PX P i n Q, PX P' i' n' Q' =>
match Pos.compare i i', Pos.compare n n' with
| Eq, Eq => if Peq P P' then Peq Q Q' else false
| _,_ => false
end
| _, _ => false
end.
Instance equalityb_pol : Equalityb Pol :=
{equalityb x y := Peq x y}.
(* Q a ses variables de queue < i *)
Definition mkPX P i n Q :=
match P with
| Pc c => if c =? 0 then Q else PX P i n Q
| PX P' i' n' Q' =>
match Pos.compare i i' with
| Eq => if Q' =? P0 then PX P' i (n + n') Q else PX P i n Q
| _ => PX P i n Q
end
end.
Definition mkXi i n := PX P1 i n P0.
Definition mkX i := mkXi i 1.
(** Opposite of addition *)
Fixpoint Popp (P:Pol) : Pol :=
match P with
| Pc c => Pc (- c)
| PX P i n Q => PX (Popp P) i n (Popp Q)
end.
Notation "-- P" := (Popp P)(at level 30).
(** Addition et subtraction *)
Fixpoint PaddCl (c:C)(P:Pol) {struct P} : Pol :=
match P with
| Pc c1 => Pc (c + c1)
| PX P i n Q => PX P i n (PaddCl c Q)
end.
(* Q quelconque *)
Section PaddX.
Variable Padd:Pol->Pol->Pol.
Variable P:Pol.
(* Xi^n * P + Q
les variables de tete de Q ne sont pas forcement < i
mais Q est normalis : variables de tete decroissantes *)
Fixpoint PaddX (i n:positive)(Q:Pol){struct Q}:=
match Q with
| Pc c => mkPX P i n Q
| PX P' i' n' Q' =>
match Pos.compare i i' with
| (* i > i' *)
Gt => mkPX P i n Q
| (* i < i' *)
Lt => mkPX P' i' n' (PaddX i n Q')
| (* i = i' *)
Eq => match Z.pos_sub n n' with
| (* n > n' *)
Zpos k => mkPX (PaddX i k P') i' n' Q'
| (* n = n' *)
Z0 => mkPX (Padd P P') i n Q'
| (* n < n' *)
Zneg k => mkPX (Padd P (mkPX P' i k P0)) i n Q'
end
end
end.
End PaddX.
Fixpoint Padd (P1 P2: Pol) {struct P1} : Pol :=
match P1 with
| Pc c => PaddCl c P2
| PX P' i' n' Q' =>
PaddX Padd P' i' n' (Padd Q' P2)
end.
Notation "P ++ P'" := (Padd P P').
Definition Psub(P P':Pol):= P ++ (--P').
Notation "P -- P'" := (Psub P P')(at level 50).
(** Multiplication *)
Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol :=
match P with
| Pc c' => Pc (c' * c)
| PX P i n Q => mkPX (PmulC_aux P c) i n (PmulC_aux Q c)
end.
Definition PmulC P c :=
if c =? 0 then P0 else
if c =? 1 then P else PmulC_aux P c.
Fixpoint Pmul (P1 P2 : Pol) {struct P2} : Pol :=
match P2 with
| Pc c => PmulC P1 c
| PX P i n Q =>
PaddX Padd (Pmul P1 P) i n (Pmul P1 Q)
end.
Notation "P ** P'" := (Pmul P P')(at level 40).
Definition Psquare (P:Pol) : Pol := P ** P.
(** Evaluation of a polynomial towards R *)
Fixpoint Pphi(l:list R) (P:Pol) {struct P} : R :=
match P with
| Pc c => [c]
| PX P i n Q =>
let x := nth 0 i l in
let xn := pow_pos x n in
(Pphi l P) * xn + (Pphi l Q)
end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
(** Proofs *)
Ltac destr_pos_sub H :=
match goal with |- context [Z.pos_sub ?x ?y] =>
assert (H := Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
end.
Lemma Peq_ok : forall P P',
(P =? P') = true -> forall l, P@l == P'@ l.
Proof.
induction P;destruct P';simpl;intros ;try easy.
- now apply ring_morphism_eq, Ceqb_eq.
- specialize (IHP1 P'1). specialize (IHP2 P'2).
simpl in IHP1, IHP2.
destruct (Pos.compare_spec p p1); try discriminate;
destruct (Pos.compare_spec p0 p2); try discriminate.
destruct (Peq P2 P'1); try discriminate.
subst; now rewrite IHP1, IHP2.
Qed.
Lemma Pphi0 : forall l, P0@l == 0.
Proof.
intros;simpl.
rewrite ring_morphism0. reflexivity.
Qed.
Lemma Pphi1 : forall l, P1@l == 1.
Proof.
intros;simpl; rewrite ring_morphism1. reflexivity.
Qed.
Lemma mkPX_ok : forall l P i n Q,
(mkPX P i n Q)@l == P@l * (pow_pos (nth 0 i l) n) + Q@l.
Proof.
intros l P i n Q;unfold mkPX.
destruct P;try (simpl;reflexivity).
assert (Hh := ring_morphism_eq c 0).
simpl; case_eq (Ceqb c 0);simpl;try reflexivity.
intros.
rewrite Hh. rewrite ring_morphism0.
rsimpl. apply Ceqb_eq. trivial.
destruct (Pos.compare_spec i p).
assert (Hh := @Peq_ok P3 P0). case_eq (P3=? P0). intro. simpl.
rewrite Hh.
rewrite Pphi0. rsimpl. rewrite Pos.add_comm. rewrite pow_pos_add;rsimpl.
subst;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity.
simpl. reflexivity.
Qed.
Ltac Esimpl :=
repeat (progress (
match goal with
| |- context [?P@?l] =>
match P with
| P0 => rewrite (Pphi0 l)
| P1 => rewrite (Pphi1 l)
| (mkPX ?P ?i ?n ?Q) => rewrite (mkPX_ok l P i n Q)
end
| |- context [[?c]] =>
match c with
| 0 => rewrite ring_morphism0
| 1 => rewrite ring_morphism1
| ?x + ?y => rewrite ring_morphism_add
| ?x * ?y => rewrite ring_morphism_mul
| ?x - ?y => rewrite ring_morphism_sub
| - ?x => rewrite ring_morphism_opp
end
end));
simpl; rsimpl.
Lemma PaddCl_ok : forall c P l, (PaddCl c P)@l == [c] + P@l .
Proof.
induction P; simpl; intros; Esimpl; try reflexivity.
rewrite IHP2. rsimpl.
rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0) [c]).
reflexivity.
Qed.
Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c].
Proof.
induction P;simpl;intros. rewrite ring_morphism_mul.
try reflexivity.
simpl. Esimpl. rewrite IHP1;rewrite IHP2;rsimpl.
Qed.
Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c].
Proof.
intros c P l; unfold PmulC.
assert (Hh:= ring_morphism_eq c 0);case_eq (c =? 0). intros.
rewrite Hh;Esimpl. apply Ceqb_eq;trivial.
assert (H1h:= ring_morphism_eq c 1);case_eq (c =? 1);intros.
rewrite H1h;Esimpl. apply Ceqb_eq;trivial.
apply PmulC_aux_ok.
Qed.
Lemma Popp_ok : forall P l, (--P)@l == - P@l.
Proof.
induction P;simpl;intros.
Esimpl.
rewrite IHP1;rewrite IHP2;rsimpl.
Qed.
Ltac Esimpl2 :=
Esimpl;
repeat (progress (
match goal with
| |- context [(PaddCl ?c ?P)@?l] => rewrite (PaddCl_ok c P l)
| |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l)
| |- context [(--?P)@?l] => rewrite (Popp_ok P l)
end)); Esimpl.
Lemma PaddXPX: forall P i n Q,
PaddX Padd P i n Q =
match Q with
| Pc c => mkPX P i n Q
| PX P' i' n' Q' =>
match Pos.compare i i' with
| (* i > i' *)
Gt => mkPX P i n Q
| (* i < i' *)
Lt => mkPX P' i' n' (PaddX Padd P i n Q')
| (* i = i' *)
Eq => match Z.pos_sub n n' with
| (* n > n' *)
Zpos k => mkPX (PaddX Padd P i k P') i' n' Q'
| (* n = n' *)
Z0 => mkPX (Padd P P') i n Q'
| (* n < n' *)
Zneg k => mkPX (Padd P (mkPX P' i k P0)) i n Q'
end
end
end.
induction Q; reflexivity.
Qed.
Lemma PaddX_ok2 : forall P2,
(forall P l, (P2 ++ P) @ l == P2 @ l + P @ l)
/\
(forall P k n l,
(PaddX Padd P2 k n P) @ l ==
P2 @ l * pow_pos (nth 0 k l) n + P @ l).
induction P2;simpl;intros. split. intros. apply PaddCl_ok.
induction P. unfold PaddX. intros. rewrite mkPX_ok.
simpl. rsimpl.
intros. simpl.
destruct (Pos.compare_spec k p) as [Hh|Hh|Hh].
destr_pos_sub H1h. Esimpl2.
rewrite Hh; trivial. rewrite H1h. reflexivity.
simpl. rewrite mkPX_ok. rewrite IHP1. Esimpl2.
rewrite Pos.add_comm in H1h.
rewrite H1h.
rewrite pow_pos_add. Esimpl2.
rewrite Hh; trivial. reflexivity.
rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pos.add_comm in H1h.
rewrite H1h. Esimpl2. rewrite pow_pos_add. Esimpl2.
rewrite Hh; trivial. reflexivity.
rewrite mkPX_ok. rewrite IHP2. Esimpl2.
rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0)
([c] * pow_pos (nth 0 k l) n)).
reflexivity. assert (H1h := ring_morphism_eq c 0);case_eq (Ceqb c 0);
intros; simpl.
rewrite H1h;trivial. Esimpl2. apply Ceqb_eq; trivial. reflexivity.
decompose [and] IHP2_1. decompose [and] IHP2_2. clear IHP2_1 IHP2_2.
split. intros. rewrite H0. rewrite H1.
Esimpl2.
induction P. unfold PaddX. intros. rewrite mkPX_ok. simpl. reflexivity.
intros. rewrite PaddXPX.
destruct (Pos.compare_spec k p1) as [H3h|H3h|H3h].
destr_pos_sub H4h.
rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. Esimpl2.
rewrite H4h. rewrite H3h;trivial. reflexivity.
rewrite mkPX_ok. rewrite IHP1. Esimpl2. rewrite H3h;trivial.
rewrite Pos.add_comm in H4h.
rewrite H4h. rewrite pow_pos_add. Esimpl2.
rewrite mkPX_ok. simpl. rewrite H0. rewrite H1.
rewrite mkPX_ok.
Esimpl2. rewrite H3h;trivial.
rewrite Pos.add_comm in H4h.
rewrite H4h. rewrite pow_pos_add. Esimpl2.
rewrite mkPX_ok. simpl. rewrite IHP2. Esimpl2.
gen_add_push (P2 @ l * pow_pos (nth 0 p1 l) p2). try reflexivity.
rewrite mkPX_ok. simpl. reflexivity.
Qed.
Lemma Padd_ok : forall P Q l, (P ++ Q) @ l == P @ l + Q @ l.
intro P. elim (PaddX_ok2 P); auto.
Qed.
Lemma PaddX_ok : forall P2 P k n l,
(PaddX Padd P2 k n P) @ l == P2 @ l * pow_pos (nth 0 k l) n + P @ l.
intro P2. elim (PaddX_ok2 P2); auto.
Qed.
Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l.
unfold Psub. intros. rewrite Padd_ok. rewrite Popp_ok. rsimpl.
Qed.
Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
induction P'; simpl; intros. rewrite PmulC_ok. reflexivity.
rewrite PaddX_ok. rewrite IHP'1. rewrite IHP'2. Esimpl2.
Qed.
Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l.
Proof.
intros. unfold Psquare. apply Pmul_ok.
Qed.
(** Definition of polynomial expressions *)
(*
Inductive PExpr : Type :=
| PEc : C -> PExpr
| PEX : positive -> PExpr
| PEadd : PExpr -> PExpr -> PExpr
| PEsub : PExpr -> PExpr -> PExpr
| PEmul : PExpr -> PExpr -> PExpr
| PEopp : PExpr -> PExpr
| PEpow : PExpr -> N -> PExpr.
*)
(** Specification of the power function *)
Section POWER.
Variable Cpow : Set.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Record power_theory : Prop := mkpow_th {
rpow_pow_N : forall r n, (rpow r (Cp_phi n))== (pow_N r n)
}.
End POWER.
Variable Cpow : Set.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory Cp_phi rpow.
(** evaluation of polynomial expressions towards R *)
Fixpoint PEeval (l:list R) (pe:PExpr C) {struct pe} : R :=
match pe with
| PEc c => [c]
| PEX j => nth 0 j l
| PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2)
| PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2)
| PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2)
| PEopp pe1 => - (PEeval l pe1)
| PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n)
end.
Strategy expand [PEeval].
Definition mk_X j := mkX j.
(** Correctness proofs *)
Lemma mkX_ok : forall p l, nth 0 p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
Qed.
Ltac Esimpl3 :=
repeat match goal with
| |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P1 P2 l)
| |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P1 P2 l)
end;try Esimpl2;try reflexivity;try apply ring_add_comm.
(* Power using the chinise algorithm *)
Section POWER2.
Variable subst_l : Pol -> Pol.
Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol :=
match p with
| xH => subst_l (Pmul P res)
| xO p => Ppow_pos (Ppow_pos res P p) P p
| xI p => subst_l (Pmul P (Ppow_pos (Ppow_pos res P p) P p))
end.
Definition Ppow_N P n :=
match n with
| N0 => P1
| Npos p => Ppow_pos P1 P p
end.
Fixpoint pow_pos_gen (R:Type)(m:R->R->R)(x:R) (i:positive) {struct i}: R :=
match i with
| xH => x
| xO i => let p := pow_pos_gen m x i in m p p
| xI i => let p := pow_pos_gen m x i in m x (m p p)
end.
Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
forall res P p, (Ppow_pos res P p)@l == (pow_pos_gen Pmul P p)@l * res@l.
Proof.
intros l subst_l_ok res P p. generalize res;clear res.
induction p;simpl;intros. try rewrite subst_l_ok.
repeat rewrite Pmul_ok. repeat rewrite IHp.
rsimpl. repeat rewrite Pmul_ok. repeat rewrite IHp. rsimpl.
try rewrite subst_l_ok.
repeat rewrite Pmul_ok. reflexivity.
Qed.
Definition pow_N_gen (R:Type)(x1:R)(m:R->R->R)(x:R) (p:N) :=
match p with
| N0 => x1
| Npos p => pow_pos_gen m x p
end.
Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
forall P n, (Ppow_N P n)@l == (pow_N_gen P1 Pmul P n)@l.
Proof. destruct n;simpl. reflexivity. rewrite Ppow_pos_ok; trivial. Esimpl. Qed.
End POWER2.
(** Normalization and rewriting *)
Section NORM_SUBST_REC.
Let subst_l (P:Pol) := P.
Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2).
Let Ppow_subst := Ppow_N subst_l.
Fixpoint norm_aux (pe:PExpr C) : Pol :=
match pe with
| PEc c => Pc c
| PEX j => mk_X j
| PEadd pe1 (PEopp pe2) =>
Psub (norm_aux pe1) (norm_aux pe2)
| PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2)
| PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2)
| PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2)
| PEopp pe1 => Popp (norm_aux pe1)
| PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n
end.
Definition norm_subst pe := subst_l (norm_aux pe).
Lemma norm_aux_spec :
forall l pe,
PEeval l pe == (norm_aux pe)@l.
Proof.
intros.
induction pe.
Esimpl3. Esimpl3. simpl.
rewrite IHpe1;rewrite IHpe2.
destruct pe2; Esimpl3.
unfold Psub.
destruct pe1; destruct pe2; rewrite Padd_ok; rewrite Popp_ok; reflexivity.
simpl. unfold Psub. rewrite IHpe1;rewrite IHpe2.
destruct pe1. destruct pe2; rewrite Padd_ok; rewrite Popp_ok; try reflexivity.
Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3.
Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3.
simpl. rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. reflexivity.
simpl. rewrite IHpe; Esimpl3.
simpl.
rewrite Ppow_N_ok; (intros;try reflexivity).
rewrite rpow_pow_N. Esimpl3.
induction n;simpl. Esimpl3. induction p; simpl.
try rewrite IHp;try rewrite IHpe;
repeat rewrite Pms_ok;
repeat rewrite Pmul_ok;reflexivity.
rewrite Pmul_ok. try rewrite IHp;try rewrite IHpe;
repeat rewrite Pms_ok;
repeat rewrite Pmul_ok;reflexivity. trivial.
exact pow_th.
Qed.
Lemma norm_subst_spec :
forall l pe,
PEeval l pe == (norm_subst pe)@l.
Proof.
intros;unfold norm_subst.
unfold subst_l. apply norm_aux_spec.
Qed.
End NORM_SUBST_REC.
Fixpoint interp_PElist (l:list R) (lpe:list (PExpr C * PExpr C)) {struct lpe} : Prop :=
match lpe with
| nil => True
| (me,pe)::lpe =>
match lpe with
| nil => PEeval l me == PEeval l pe
| _ => PEeval l me == PEeval l pe /\ interp_PElist l lpe
end
end.
Lemma norm_subst_ok : forall l pe,
PEeval l pe == (norm_subst pe)@l.
Proof.
intros;apply norm_subst_spec.
Qed.
Lemma ring_correct : forall l pe1 pe2,
(norm_subst pe1 =? norm_subst pe2) = true ->
PEeval l pe1 == PEeval l pe2.
Proof.
simpl;intros.
do 2 (rewrite (norm_subst_ok l);trivial).
apply Peq_ok;trivial.
Qed.
End MakeRingPol.
|