1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Set Implicit Arguments.
Require Import Setoid Morphisms BinList BinPos BinNat BinInt.
Require Export Ring_theory.
Local Open Scope positive_scope.
Import RingSyntax.
Section MakeRingPol.
(* Ring elements *)
Variable R:Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R->R).
Variable req : R -> R -> Prop.
(* Ring properties *)
Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
(* Coefficients *)
Variable C: Type.
Variable (cO cI: C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
Variable phi : C -> R.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
(* Power coefficients *)
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
(* division is ok *)
Variable cdiv: C -> C -> C * C.
Variable div_th: div_theory req cadd cmul phi cdiv.
(* R notations *)
Notation "0" := rO. Notation "1" := rI.
Infix "+" := radd. Infix "*" := rmul.
Infix "-" := rsub. Notation "- x" := (ropp x).
Infix "==" := req.
Infix "^" := (pow_pos rmul).
(* C notations *)
Infix "+!" := cadd. Infix "*!" := cmul.
Infix "-! " := csub. Notation "-! x" := (copp x).
Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
(* Useful tactics *)
Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
Ltac add_permut_rec t :=
match t with
| ?x + ?y => add_permut_rec y || add_permut_rec x
| _ => add_push t; apply (Radd_ext Reqe); [|reflexivity]
end.
Ltac add_permut :=
repeat (reflexivity ||
match goal with |- ?t == _ => add_permut_rec t end).
Ltac mul_permut_rec t :=
match t with
| ?x * ?y => mul_permut_rec y || mul_permut_rec x
| _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity]
end.
Ltac mul_permut :=
repeat (reflexivity ||
match goal with |- ?t == _ => mul_permut_rec t end).
(* Definition of multivariable polynomials with coefficients in C :
Type [Pol] represents [X1 ... Xn].
The representation is Horner's where a [n] variable polynomial
(C[X1..Xn]) is seen as a polynomial on [X1] which coefficients
are polynomials with [n-1] variables (C[X2..Xn]).
There are several optimisations to make the repr compacter:
- [Pc c] is the constant polynomial of value c
== c*X1^0*..*Xn^0
- [Pinj j Q] is a polynomial constant w.r.t the [j] first variables.
variable indices are shifted of j in Q.
== X1^0 *..* Xj^0 * Q{X1 <- Xj+1;..; Xn-j <- Xn}
- [PX P i Q] is an optimised Horner form of P*X^i + Q
with P not the null polynomial
== P * X1^i + Q{X1 <- X2; ..; Xn-1 <- Xn}
In addition:
- polynomials of the form (PX (PX P i (Pc 0)) j Q) are forbidden
since they can be represented by the simpler form (PX P (i+j) Q)
- (Pinj i (Pinj j P)) is (Pinj (i+j) P)
- (Pinj i (Pc c)) is (Pc c)
*)
Inductive Pol : Type :=
| Pc : C -> Pol
| Pinj : positive -> Pol -> Pol
| PX : Pol -> positive -> Pol -> Pol.
Definition P0 := Pc cO.
Definition P1 := Pc cI.
Fixpoint Peq (P P' : Pol) {struct P'} : bool :=
match P, P' with
| Pc c, Pc c' => c ?=! c'
| Pinj j Q, Pinj j' Q' =>
match j ?= j' with
| Eq => Peq Q Q'
| _ => false
end
| PX P i Q, PX P' i' Q' =>
match i ?= i' with
| Eq => if Peq P P' then Peq Q Q' else false
| _ => false
end
| _, _ => false
end.
Infix "?==" := Peq.
Definition mkPinj j P :=
match P with
| Pc _ => P
| Pinj j' Q => Pinj (j + j') Q
| _ => Pinj j P
end.
Definition mkPinj_pred j P:=
match j with
| xH => P
| xO j => Pinj (Pos.pred_double j) P
| xI j => Pinj (xO j) P
end.
Definition mkPX P i Q :=
match P with
| Pc c => if c ?=! cO then mkPinj xH Q else PX P i Q
| Pinj _ _ => PX P i Q
| PX P' i' Q' => if Q' ?== P0 then PX P' (i' + i) Q else PX P i Q
end.
Definition mkXi i := PX P1 i P0.
Definition mkX := mkXi 1.
(** Opposite of addition *)
Fixpoint Popp (P:Pol) : Pol :=
match P with
| Pc c => Pc (-! c)
| Pinj j Q => Pinj j (Popp Q)
| PX P i Q => PX (Popp P) i (Popp Q)
end.
Notation "-- P" := (Popp P).
(** Addition et subtraction *)
Fixpoint PaddC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 +! c)
| Pinj j Q => Pinj j (PaddC Q c)
| PX P i Q => PX P i (PaddC Q c)
end.
Fixpoint PsubC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 -! c)
| Pinj j Q => Pinj j (PsubC Q c)
| PX P i Q => PX P i (PsubC Q c)
end.
Section PopI.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PaddI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC Q c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PaddI k Q')
end
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
| xO j => PX P i (PaddI (Pos.pred_double j) Q')
| xI j => PX P i (PaddI (xO j) Q')
end
end.
Fixpoint PsubI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC (--Q) c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PsubI k Q')
end
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
| xO j => PX P i (PsubI (Pos.pred_double j) Q')
| xI j => PX P i (PsubI (xO j) Q')
end
end.
Variable P' : Pol.
Fixpoint PaddX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX P' i' P
| Pinj j Q' =>
match j with
| xH => PX P' i' Q'
| xO j => PX P' i' (Pinj (Pos.pred_double j) Q')
| xI j => PX P' i' (Pinj (xO j) Q')
end
| PX P i Q' =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PaddX k P) i Q'
end
end.
Fixpoint PsubX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX (--P') i' P
| Pinj j Q' =>
match j with
| xH => PX (--P') i' Q'
| xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q')
| xI j => PX (--P') i' (Pinj (xO j) Q')
end
| PX P i Q' =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PsubX k P) i Q'
end
end.
End PopI.
Fixpoint Padd (P P': Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PaddC P c'
| Pinj j' Q' => PaddI Padd Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PX P' i' (PaddC Q' c)
| Pinj j Q =>
match j with
| xH => PX P' i' (Padd Q Q')
| xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
end
| PX P i Q =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
| Z0 => mkPX (Padd P P') i (Padd Q Q')
| Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
end
end
end.
Infix "++" := Padd.
Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
match P' with
| Pc c' => PsubC P c'
| Pinj j' Q' => PsubI Psub Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PX (--P') i' (*(--(PsubC Q' c))*) (PaddC (--Q') c)
| Pinj j Q =>
match j with
| xH => PX (--P') i' (Psub Q Q')
| xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
end
| PX P i Q =>
match Z.pos_sub i i' with
| Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
| Z0 => mkPX (Psub P P') i (Psub Q Q')
| Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
end
end
end.
Infix "--" := Psub.
(** Multiplication *)
Fixpoint PmulC_aux (P:Pol) (c:C) : Pol :=
match P with
| Pc c' => Pc (c' *! c)
| Pinj j Q => mkPinj j (PmulC_aux Q c)
| PX P i Q => mkPX (PmulC_aux P c) i (PmulC_aux Q c)
end.
Definition PmulC P c :=
if c ?=! cO then P0 else
if c ?=! cI then P else PmulC_aux P c.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
Fixpoint PmulI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PmulC Q c)
| Pinj j' Q' =>
match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
| Z0 => mkPinj j (Pmul Q' Q)
| Zneg k => mkPinj j' (PmulI k Q')
end
| PX P' i' Q' =>
match j with
| xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
| xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q')
| xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
end
end.
End PmulI.
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol :=
match P'' with
| Pc c => PmulC P c
| Pinj j' Q' => PmulI Pmul Q' j' P
| PX P' i' Q' =>
match P with
| Pc c => PmulC P'' c
| Pinj j Q =>
let QQ' :=
match j with
| xH => Pmul Q Q'
| xO j => Pmul (Pinj (Pos.pred_double j) Q) Q'
| xI j => Pmul (Pinj (xO j) Q) Q'
end in
mkPX (Pmul P P') i' QQ'
| PX P i Q=>
let QQ' := Pmul Q Q' in
let PQ' := PmulI Pmul Q' xH P in
let QP' := Pmul (mkPinj xH Q) P' in
let PP' := Pmul P P' in
(mkPX (mkPX PP' i P0 ++ QP') i' P0) ++ mkPX PQ' i QQ'
end
end.
Infix "**" := Pmul.
Fixpoint Psquare (P:Pol) : Pol :=
match P with
| Pc c => Pc (c *! c)
| Pinj j Q => Pinj j (Psquare Q)
| PX P i Q =>
let twoPQ := Pmul P (mkPinj xH (PmulC Q (cI +! cI))) in
let Q2 := Psquare Q in
let P2 := Psquare P in
mkPX (mkPX P2 i P0 ++ twoPQ) i Q2
end.
(** Monomial **)
(** A monomial is X1^k1...Xi^ki. Its representation
is a simplified version of the polynomial representation:
- [mon0] correspond to the polynom [P1].
- [(zmon j M)] corresponds to [(Pinj j ...)],
i.e. skip j variable indices.
- [(vmon i M)] is X^i*M with X the current variable,
its corresponds to (PX P1 i ...)]
*)
Inductive Mon: Set :=
| mon0: Mon
| zmon: positive -> Mon -> Mon
| vmon: positive -> Mon -> Mon.
Definition mkZmon j M :=
match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M :=
match j with xH => M | _ => mkZmon (Pos.pred j) M end.
Definition mkVmon i M :=
match M with
| mon0 => vmon i mon0
| zmon j m => vmon i (zmon_pred j m)
| vmon i' m => vmon (i+i') m
end.
Fixpoint CFactor (P: Pol) (c: C) {struct P}: Pol * Pol :=
match P with
| Pc c1 => let (q,r) := cdiv c1 c in (Pc r, Pc q)
| Pinj j1 P1 =>
let (R,S) := CFactor P1 c in
(mkPinj j1 R, mkPinj j1 S)
| PX P1 i Q1 =>
let (R1, S1) := CFactor P1 c in
let (R2, S2) := CFactor Q1 c in
(mkPX R1 i R2, mkPX S1 i S2)
end.
Fixpoint MFactor (P: Pol) (c: C) (M: Mon) {struct P}: Pol * Pol :=
match P, M with
_, mon0 => if (ceqb c cI) then (Pc cO, P) else CFactor P c
| Pc _, _ => (P, Pc cO)
| Pinj j1 P1, zmon j2 M1 =>
match j1 ?= j2 with
Eq => let (R,S) := MFactor P1 c M1 in
(mkPinj j1 R, mkPinj j1 S)
| Lt => let (R,S) := MFactor P1 c (zmon (j2 - j1) M1) in
(mkPinj j1 R, mkPinj j1 S)
| Gt => (P, Pc cO)
end
| Pinj _ _, vmon _ _ => (P, Pc cO)
| PX P1 i Q1, zmon j M1 =>
let M2 := zmon_pred j M1 in
let (R1, S1) := MFactor P1 c M in
let (R2, S2) := MFactor Q1 c M2 in
(mkPX R1 i R2, mkPX S1 i S2)
| PX P1 i Q1, vmon j M1 =>
match i ?= j with
Eq => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in
(mkPX R1 i Q1, S1)
| Lt => let (R1,S1) := MFactor P1 c (vmon (j - i) M1) in
(mkPX R1 i Q1, S1)
| Gt => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in
(mkPX R1 i Q1, mkPX S1 (i-j) (Pc cO))
end
end.
Definition POneSubst (P1: Pol) (cM1: C * Mon) (P2: Pol): option Pol :=
let (c,M1) := cM1 in
let (Q1,R1) := MFactor P1 c M1 in
match R1 with
(Pc c) => if c ?=! cO then None
else Some (Padd Q1 (Pmul P2 R1))
| _ => Some (Padd Q1 (Pmul P2 R1))
end.
Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) : Pol :=
match POneSubst P1 cM1 P2 with
Some P3 => match n with S n1 => PNSubst1 P3 cM1 P2 n1 | _ => P3 end
| _ => P1
end.
Definition PNSubst (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat): option Pol :=
match POneSubst P1 cM1 P2 with
Some P3 => match n with S n1 => Some (PNSubst1 P3 cM1 P2 n1) | _ => None end
| _ => None
end.
Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : Pol :=
match LM1 with
cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n
| _ => P1
end.
Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : option Pol :=
match LM1 with
cons (M1,P2) LM2 =>
match PNSubst P1 M1 P2 n with
Some P3 => Some (PSubstL1 P3 LM2 n)
| None => PSubstL P1 LM2 n
end
| _ => None
end.
Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) : Pol :=
match PSubstL P1 LM1 n with
Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end
| _ => P1
end.
(** Evaluation of a polynomial towards R *)
Local Notation hd := (List.hd 0).
Fixpoint Pphi(l:list R) (P:Pol) : R :=
match P with
| Pc c => [c]
| Pinj j Q => Pphi (jump j l) Q
| PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q
end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
(** Evaluation of a monomial towards R *)
Fixpoint Mphi(l:list R) (M: Mon) : R :=
match M with
| mon0 => rI
| zmon j M1 => Mphi (jump j l) M1
| vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i
end.
Notation "M @@ l" := (Mphi l M) (at level 10, no associativity).
(** Proofs *)
Ltac destr_pos_sub :=
match goal with |- context [Z.pos_sub ?x ?y] =>
generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
end.
Lemma jump_add' i j (l:list R) : jump (i + j) l = jump j (jump i l).
Proof. rewrite Pos.add_comm. apply jump_add. Qed.
Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l.
Proof.
revert P';induction P;destruct P';simpl; intros H l; try easy.
- now apply (morph_eq CRmorph).
- destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
now rewrite IHP.
- specialize (IHP1 P'1); specialize (IHP2 P'2).
destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
destruct (P2 ?== P'1); [|easy].
rewrite H in *.
now rewrite IHP1, IHP2.
Qed.
Lemma Peq_spec P P' :
BoolSpec (forall l, P@l == P'@l) True (P ?== P').
Proof.
generalize (Peq_ok P P'). destruct (P ?== P'); auto.
Qed.
Lemma Pphi0 l : P0@l == 0.
Proof.
simpl;apply (morph0 CRmorph).
Qed.
Lemma Pphi1 l : P1@l == 1.
Proof.
simpl;apply (morph1 CRmorph).
Qed.
Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l).
Proof.
destruct P;simpl;rsimpl.
now rewrite jump_add'.
Qed.
Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j.
Proof.
rewrite Pos.add_comm.
apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)).
Qed.
Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c').
Proof.
generalize (morph_eq CRmorph c c').
destruct (c ?=! c'); auto.
Qed.
Lemma mkPX_ok l P i Q :
(mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l).
Proof.
unfold mkPX. destruct P.
- case ceqb_spec; intros H; simpl; try reflexivity.
rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl.
- reflexivity.
- case Peq_spec; intros H; simpl; try reflexivity.
rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl.
Qed.
Hint Rewrite
Pphi0
Pphi1
mkPinj_ok
mkPX_ok
(morph0 CRmorph)
(morph1 CRmorph)
(morph0 CRmorph)
(morph_add CRmorph)
(morph_mul CRmorph)
(morph_sub CRmorph)
(morph_opp CRmorph)
: Esimpl.
(* Quicker than autorewrite with Esimpl :-) *)
Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl.
Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c].
Proof.
revert l;induction P;simpl;intros;Esimpl;trivial.
rewrite IHP2;rsimpl.
Qed.
Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c].
Proof.
revert l;induction P;simpl;intros.
- Esimpl.
- rewrite IHP;rsimpl.
- rewrite IHP2;rsimpl.
Qed.
Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c].
Proof.
revert l;induction P;simpl;intros;Esimpl;trivial.
rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut.
Qed.
Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c].
Proof.
unfold PmulC.
case ceqb_spec; intros H.
- rewrite H; Esimpl.
- case ceqb_spec; intros H'.
+ rewrite H'; Esimpl.
+ apply PmulC_aux_ok.
Qed.
Lemma Popp_ok P l : (--P)@l == - P@l.
Proof.
revert l;induction P;simpl;intros.
- Esimpl.
- apply IHP.
- rewrite IHP1, IHP2;rsimpl.
Qed.
Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl.
Lemma PaddX_ok P' P k l :
(forall P l, (P++P')@l == P@l + P'@l) ->
(PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k.
Proof.
intros IHP'.
revert k l. induction P;simpl;intros.
- add_permut.
- destruct p; simpl;
rewrite ?jump_pred_double; add_permut.
- destr_pos_sub; intros ->;Esimpl.
+ rewrite IHP';rsimpl. add_permut.
+ rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l.
Proof.
revert P l; induction P';simpl;intros;Esimpl.
- revert p l; induction P;simpl;intros.
+ Esimpl; add_permut.
+ destr_pos_sub; intros ->;Esimpl.
* now rewrite IHP'.
* rewrite IHP';Esimpl. now rewrite jump_add'.
* rewrite IHP. now rewrite jump_add'.
+ destruct p0;simpl.
* rewrite IHP2;simpl. rsimpl.
* rewrite IHP2;simpl. rewrite jump_pred_double. rsimpl.
* rewrite IHP'. rsimpl.
- destruct P;simpl.
+ Esimpl. add_permut.
+ destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
* rsimpl. add_permut.
* rewrite jump_pred_double. rsimpl. add_permut.
* rsimpl. add_permut.
+ destr_pos_sub; intros ->; Esimpl.
* rewrite IHP'1, IHP'2;rsimpl. add_permut.
* rewrite IHP'1, IHP'2;simpl;Esimpl.
rewrite pow_pos_add;rsimpl. add_permut.
* rewrite PaddX_ok by trivial; rsimpl.
rewrite IHP'2, pow_pos_add; rsimpl. add_permut.
Qed.
Lemma PsubX_ok P' P k l :
(forall P l, (P--P')@l == P@l - P'@l) ->
(PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k.
Proof.
intros IHP'.
revert k l. induction P;simpl;intros.
- rewrite Popp_ok;rsimpl; add_permut.
- destruct p; simpl;
rewrite Popp_ok;rsimpl;
rewrite ?jump_pred_double; add_permut.
- destr_pos_sub; intros ->; Esimpl.
+ rewrite IHP';rsimpl. add_permut.
+ rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l.
Proof.
revert P l; induction P';simpl;intros;Esimpl.
- revert p l; induction P;simpl;intros.
+ Esimpl; add_permut.
+ destr_pos_sub; intros ->;Esimpl.
* rewrite IHP';rsimpl.
* rewrite IHP';Esimpl. now rewrite jump_add'.
* rewrite IHP. now rewrite jump_add'.
+ destruct p0;simpl.
* rewrite IHP2;simpl. rsimpl.
* rewrite IHP2;simpl. rewrite jump_pred_double. rsimpl.
* rewrite IHP'. rsimpl.
- destruct P;simpl.
+ Esimpl; add_permut.
+ destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
* rsimpl. add_permut.
* rewrite jump_pred_double. rsimpl. add_permut.
* rsimpl. add_permut.
+ destr_pos_sub; intros ->; Esimpl.
* rewrite IHP'1, IHP'2;rsimpl. add_permut.
* rewrite IHP'1, IHP'2;simpl;Esimpl.
rewrite pow_pos_add;rsimpl. add_permut.
* rewrite PsubX_ok by trivial;rsimpl.
rewrite IHP'2, pow_pos_add;rsimpl. add_permut.
Qed.
Lemma PmulI_ok P' :
(forall P l, (Pmul P P') @ l == P @ l * P' @ l) ->
forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
intros IHP'.
induction P;simpl;intros.
- Esimpl; mul_permut.
- destr_pos_sub; intros ->;Esimpl.
+ now rewrite IHP'.
+ now rewrite IHP', jump_add'.
+ now rewrite IHP, jump_add'.
- destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl.
+ f_equiv. mul_permut.
+ rewrite jump_pred_double. f_equiv. mul_permut.
+ rewrite IHP'. f_equiv. mul_permut.
Qed.
Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l.
Proof.
revert P l;induction P';simpl;intros.
- apply PmulC_ok.
- apply PmulI_ok;trivial.
- destruct P.
+ rewrite (ARmul_comm ARth). Esimpl.
+ Esimpl. f_equiv. rewrite IHP'1; Esimpl.
destruct p0;rewrite IHP'2;Esimpl.
rewrite jump_pred_double; Esimpl.
+ rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok,
!IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl.
add_permut; f_equiv; mul_permut.
Qed.
Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l.
Proof.
revert l;induction P;simpl;intros;Esimpl.
- apply IHP.
- rewrite Padd_ok, Pmul_ok;Esimpl.
rewrite IHP1, IHP2.
mul_push ((hd l)^p). now mul_push (P2@l).
Qed.
Lemma mkZmon_ok M j l :
(mkZmon j M) @@ l == (zmon j M) @@ l.
Proof.
destruct M; simpl; rsimpl.
Qed.
Lemma zmon_pred_ok M j l :
(zmon_pred j M) @@ (tail l) == (zmon j M) @@ l.
Proof.
destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl.
rewrite jump_pred_double; rsimpl.
Qed.
Lemma mkVmon_ok M i l :
(mkVmon i M)@@l == M@@l * (hd l)^i.
Proof.
destruct M;simpl;intros;rsimpl.
- rewrite zmon_pred_ok;simpl;rsimpl.
- rewrite pow_pos_add;rsimpl.
Qed.
Ltac destr_factor := match goal with
| H : context [CFactor ?P _] |- context [CFactor ?P ?c] =>
destruct (CFactor P c); destr_factor; rewrite H; clear H
| H : context [MFactor ?P _ _] |- context [MFactor ?P ?c ?M] =>
specialize (H M); destruct (MFactor P c M); destr_factor; rewrite H; clear H
| _ => idtac
end.
Lemma Mcphi_ok P c l :
let (Q,R) := CFactor P c in
P@l == Q@l + [c] * R@l.
Proof.
revert l.
induction P as [c0 | j P IH | P1 IH1 i P2 IH2]; intros l; Esimpl.
- assert (H := div_th.(div_eucl_th) c0 c).
destruct cdiv as (q,r). rewrite H; Esimpl. add_permut.
- destr_factor. Esimpl.
- destr_factor. Esimpl. add_permut.
Qed.
Lemma Mphi_ok P (cM: C * Mon) l :
let (c,M) := cM in
let (Q,R) := MFactor P c M in
P@l == Q@l + [c] * M@@l * R@l.
Proof.
destruct cM as (c,M). revert M l.
induction P; destruct M; intros l; simpl; auto;
try (case ceqb_spec; intro He);
try (case Pos.compare_spec; intros He); rewrite ?He;
destr_factor; simpl; Esimpl.
- assert (H := div_th.(div_eucl_th) c0 c).
destruct cdiv as (q,r). rewrite H; Esimpl. add_permut.
- assert (H := Mcphi_ok P c). destr_factor. Esimpl.
- now rewrite <- jump_add, Pos.sub_add.
- assert (H2 := Mcphi_ok P2 c). assert (H3 := Mcphi_ok P3 c).
destr_factor. Esimpl. add_permut.
- rewrite zmon_pred_ok. simpl. add_permut.
- rewrite mkZmon_ok. simpl. add_permut. mul_permut.
- add_permut. mul_permut.
rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl.
- rewrite mkZmon_ok. simpl. Esimpl. add_permut. mul_permut.
rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl.
Qed.
Lemma POneSubst_ok P1 cM1 P2 P3 l :
POneSubst P1 cM1 P2 = Some P3 ->
[fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l.
Proof.
destruct cM1 as (cc,M1).
unfold POneSubst.
assert (H := Mphi_ok P1 (cc, M1) l). simpl in H.
destruct MFactor as (R1,S1); simpl. rewrite H. clear H.
intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1).
- rewrite EQ', Padd_ok, Pmul_ok; rsimpl.
- revert EQ. destruct S1; try now injection 1.
case ceqb_spec; now inversion 2.
Qed.
Lemma PNSubst1_ok n P1 cM1 P2 l :
[fst cM1] * (snd cM1)@@l == P2@l ->
P1@l == (PNSubst1 P1 cM1 P2 n)@l.
Proof.
revert P1. induction n; simpl; intros P1;
generalize (POneSubst_ok P1 cM1 P2); destruct POneSubst;
intros; rewrite <- ?IHn; auto; reflexivity.
Qed.
Lemma PNSubst_ok n P1 cM1 P2 l P3 :
PNSubst P1 cM1 P2 n = Some P3 ->
[fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l.
Proof.
unfold PNSubst.
assert (H := POneSubst_ok P1 cM1 P2); destruct POneSubst; try discriminate.
destruct n; inversion_clear 1.
intros. rewrite <- PNSubst1_ok; auto.
Qed.
Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) : Prop :=
match LM1 with
| (M1,P2) :: LM2 => ([fst M1] * (snd M1)@@l == P2@l) /\ MPcond LM2 l
| _ => True
end.
Lemma PSubstL1_ok n LM1 P1 l :
MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
- reflexivity.
- rewrite <- IH by intuition. now apply PNSubst1_ok.
Qed.
Lemma PSubstL_ok n LM1 P1 P2 l :
PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Proof.
revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros.
- discriminate.
- assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst.
* injection H; intros <-. rewrite <- PSubstL1_ok; intuition.
* now apply IH.
Qed.
Lemma PNSubstL_ok m n LM1 P1 l :
MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Proof.
revert LM1 P1. induction m; simpl; intros;
assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL;
auto; try reflexivity.
rewrite <- IHm; auto.
Qed.
(** Definition of polynomial expressions *)
Inductive PExpr : Type :=
| PEc : C -> PExpr
| PEX : positive -> PExpr
| PEadd : PExpr -> PExpr -> PExpr
| PEsub : PExpr -> PExpr -> PExpr
| PEmul : PExpr -> PExpr -> PExpr
| PEopp : PExpr -> PExpr
| PEpow : PExpr -> N -> PExpr.
(** evaluation of polynomial expressions towards R *)
Definition mk_X j := mkPinj_pred j mkX.
(** evaluation of polynomial expressions towards R *)
Fixpoint PEeval (l:list R) (pe:PExpr) {struct pe} : R :=
match pe with
| PEc c => phi c
| PEX j => nth 0 j l
| PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2)
| PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2)
| PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2)
| PEopp pe1 => - (PEeval l pe1)
| PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n)
end.
Strategy expand [PEeval].
(** Correctness proofs *)
Lemma mkX_ok p l : nth 0 p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
- now rewrite <-jump_tl, nth_jump.
- now rewrite <- nth_jump, nth_pred_double.
Qed.
Hint Rewrite Padd_ok Psub_ok : Esimpl.
Section POWER.
Variable subst_l : Pol -> Pol.
Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol :=
match p with
| xH => subst_l (res ** P)
| xO p => Ppow_pos (Ppow_pos res P p) P p
| xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P)
end.
Definition Ppow_N P n :=
match n with
| N0 => P1
| Npos p => Ppow_pos P1 P p
end.
Lemma Ppow_pos_ok l :
(forall P, subst_l P@l == P@l) ->
forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Proof.
intros subst_l_ok res P p. revert res.
induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp;
mul_permut.
Qed.
Lemma Ppow_N_ok l :
(forall P, subst_l P@l == P@l) ->
forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
Proof.
destruct n;simpl.
- reflexivity.
- rewrite Ppow_pos_ok by trivial. Esimpl.
Qed.
End POWER.
(** Normalization and rewriting *)
Section NORM_SUBST_REC.
Variable n : nat.
Variable lmp:list (C*Mon*Pol).
Let subst_l P := PNSubstL P lmp n n.
Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2).
Let Ppow_subst := Ppow_N subst_l.
Fixpoint norm_aux (pe:PExpr) : Pol :=
match pe with
| PEc c => Pc c
| PEX j => mk_X j
| PEadd (PEopp pe1) pe2 => (norm_aux pe2) -- (norm_aux pe1)
| PEadd pe1 (PEopp pe2) => (norm_aux pe1) -- (norm_aux pe2)
| PEadd pe1 pe2 => (norm_aux pe1) ++ (norm_aux pe2)
| PEsub pe1 pe2 => (norm_aux pe1) -- (norm_aux pe2)
| PEmul pe1 pe2 => (norm_aux pe1) ** (norm_aux pe2)
| PEopp pe1 => -- (norm_aux pe1)
| PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n
end.
Definition norm_subst pe := subst_l (norm_aux pe).
(** Internally, [norm_aux] is expanded in a large number of cases.
To speed-up proofs, we use an alternative definition. *)
Definition get_PEopp pe :=
match pe with
| PEopp pe' => Some pe'
| _ => None
end.
Lemma norm_aux_PEadd pe1 pe2 :
norm_aux (PEadd pe1 pe2) =
match get_PEopp pe1, get_PEopp pe2 with
| Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1')
| None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2')
| None, None => (norm_aux pe1) ++ (norm_aux pe2)
end.
Proof.
simpl (norm_aux (PEadd _ _)).
destruct pe1; [ | | | | | reflexivity | ];
destruct pe2; simpl get_PEopp; reflexivity.
Qed.
Lemma norm_aux_PEopp pe :
match get_PEopp pe with
| Some pe' => norm_aux pe = -- (norm_aux pe')
| None => True
end.
Proof.
now destruct pe.
Qed.
Lemma norm_aux_spec l pe :
PEeval l pe == (norm_aux pe)@l.
Proof.
intros.
induction pe.
- reflexivity.
- apply mkX_ok.
- simpl PEeval. rewrite IHpe1, IHpe2.
assert (H1 := norm_aux_PEopp pe1).
assert (H2 := norm_aux_PEopp pe2).
rewrite norm_aux_PEadd.
do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut.
- simpl. rewrite IHpe1, IHpe2. Esimpl.
- simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok.
- simpl. rewrite IHpe. Esimpl.
- simpl. rewrite Ppow_N_ok by reflexivity.
rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl.
induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok.
Qed.
Lemma norm_subst_spec :
forall l pe, MPcond lmp l ->
PEeval l pe == (norm_subst pe)@l.
Proof.
intros;unfold norm_subst.
unfold subst_l;rewrite <- PNSubstL_ok;trivial. apply norm_aux_spec.
Qed.
End NORM_SUBST_REC.
Fixpoint interp_PElist (l:list R) (lpe:list (PExpr*PExpr)) {struct lpe} : Prop :=
match lpe with
| nil => True
| (me,pe)::lpe =>
match lpe with
| nil => PEeval l me == PEeval l pe
| _ => PEeval l me == PEeval l pe /\ interp_PElist l lpe
end
end.
Fixpoint mon_of_pol (P:Pol) : option (C * Mon) :=
match P with
| Pc c => if (c ?=! cO) then None else Some (c, mon0)
| Pinj j P =>
match mon_of_pol P with
| None => None
| Some (c,m) => Some (c, mkZmon j m)
end
| PX P i Q =>
if Peq Q P0 then
match mon_of_pol P with
| None => None
| Some (c,m) => Some (c, mkVmon i m)
end
else None
end.
Fixpoint mk_monpol_list (lpe:list (PExpr * PExpr)) : list (C*Mon*Pol) :=
match lpe with
| nil => nil
| (me,pe)::lpe =>
match mon_of_pol (norm_subst 0 nil me) with
| None => mk_monpol_list lpe
| Some m => (m,norm_subst 0 nil pe):: mk_monpol_list lpe
end
end.
Lemma mon_of_pol_ok : forall P m, mon_of_pol P = Some m ->
forall l, [fst m] * Mphi l (snd m) == P@l.
Proof.
induction P;simpl;intros;Esimpl.
assert (H1 := (morph_eq CRmorph) c cO).
destruct (c ?=! cO).
discriminate.
inversion H;trivial;Esimpl.
generalize H;clear H;case_eq (mon_of_pol P).
intros (c1,P2) H0 H1; inversion H1; Esimpl.
generalize (IHP (c1, P2) H0 (jump p l)).
rewrite mkZmon_ok;simpl;auto.
intros; discriminate.
generalize H;clear H;change match P3 with
| Pc c => c ?=! cO
| Pinj _ _ => false
| PX _ _ _ => false
end with (P3 ?== P0).
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
case_eq (mon_of_pol P2);try intros (cc, pp); intros.
inversion H1.
simpl.
rewrite mkVmon_ok;simpl.
rewrite H;trivial;Esimpl.
generalize (IHP1 _ H0); simpl; intros HH; rewrite HH; rsimpl.
discriminate.
intros;discriminate.
Qed.
Lemma interp_PElist_ok : forall l lpe,
interp_PElist l lpe -> MPcond (mk_monpol_list lpe) l.
Proof.
induction lpe;simpl. trivial.
destruct a;simpl;intros.
assert (HH:=mon_of_pol_ok (norm_subst 0 nil p));
destruct (mon_of_pol (norm_subst 0 nil p)).
split.
rewrite <- norm_subst_spec by exact I.
destruct lpe;try destruct H;rewrite <- H;
rewrite (norm_subst_spec 0 nil); try exact I;apply HH;trivial.
apply IHlpe. destruct lpe;simpl;trivial. destruct H. exact H0.
apply IHlpe. destruct lpe;simpl;trivial. destruct H. exact H0.
Qed.
Lemma norm_subst_ok : forall n l lpe pe,
interp_PElist l lpe ->
PEeval l pe == (norm_subst n (mk_monpol_list lpe) pe)@l.
Proof.
intros;apply norm_subst_spec. apply interp_PElist_ok;trivial.
Qed.
Lemma ring_correct : forall n l lpe pe1 pe2,
interp_PElist l lpe ->
(let lmp := mk_monpol_list lpe in
norm_subst n lmp pe1 ?== norm_subst n lmp pe2) = true ->
PEeval l pe1 == PEeval l pe2.
Proof.
simpl;intros.
do 2 (rewrite (norm_subst_ok n l lpe);trivial).
apply Peq_ok;trivial.
Qed.
(** Generic evaluation of polynomial towards R avoiding parenthesis *)
Variable get_sign : C -> option C.
Variable get_sign_spec : sign_theory copp ceqb get_sign.
Section EVALUATION.
(* [mkpow x p] = x^p *)
Variable mkpow : R -> positive -> R.
(* [mkpow x p] = -(x^p) *)
Variable mkopp_pow : R -> positive -> R.
(* [mkmult_pow r x p] = r * x^p *)
Variable mkmult_pow : R -> R -> positive -> R.
Fixpoint mkmult_rec (r:R) (lm:list (R*positive)) {struct lm}: R :=
match lm with
| nil => r
| cons (x,p) t => mkmult_rec (mkmult_pow r x p) t
end.
Definition mkmult1 lm :=
match lm with
| nil => 1
| cons (x,p) t => mkmult_rec (mkpow x p) t
end.
Definition mkmultm1 lm :=
match lm with
| nil => ropp rI
| cons (x,p) t => mkmult_rec (mkopp_pow x p) t
end.
Definition mkmult_c_pos c lm :=
if c ?=! cI then mkmult1 (rev' lm)
else mkmult_rec [c] (rev' lm).
Definition mkmult_c c lm :=
match get_sign c with
| None => mkmult_c_pos c lm
| Some c' =>
if c' ?=! cI then mkmultm1 (rev' lm)
else mkmult_rec [c] (rev' lm)
end.
Definition mkadd_mult rP c lm :=
match get_sign c with
| None => rP + mkmult_c_pos c lm
| Some c' => rP - mkmult_c_pos c' lm
end.
Definition add_pow_list (r:R) n l :=
match n with
| N0 => l
| Npos p => (r,p)::l
end.
Fixpoint add_mult_dev
(rP:R) (P:Pol) (fv:list R) (n:N) (lm:list (R*positive)) {struct P} : R :=
match P with
| Pc c =>
let lm := add_pow_list (hd fv) n lm in
mkadd_mult rP c lm
| Pinj j Q =>
add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd fv) n lm)
| PX P i Q =>
let rP := add_mult_dev rP P fv (N.add (Npos i) n) lm in
if Q ?== P0 then rP
else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd fv) n lm)
end.
Fixpoint mult_dev (P:Pol) (fv : list R) (n:N)
(lm:list (R*positive)) {struct P} : R :=
(* P@l * (hd 0 l)^n * lm *)
match P with
| Pc c => mkmult_c c (add_pow_list (hd fv) n lm)
| Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd fv) n lm)
| PX P i Q =>
let rP := mult_dev P fv (N.add (Npos i) n) lm in
if Q ?== P0 then rP
else
let lmq := add_pow_list (hd fv) n lm in
add_mult_dev rP Q (tail fv) N0 lmq
end.
Definition Pphi_avoid fv P := mult_dev P fv N0 nil.
Fixpoint r_list_pow (l:list (R*positive)) : R :=
match l with
| nil => rI
| cons (r,p) l => pow_pos rmul r p * r_list_pow l
end.
Hypothesis mkpow_spec : forall r p, mkpow r p == pow_pos rmul r p.
Hypothesis mkopp_pow_spec : forall r p, mkopp_pow r p == - (pow_pos rmul r p).
Hypothesis mkmult_pow_spec : forall r x p, mkmult_pow r x p == r * pow_pos rmul x p.
Lemma mkmult_rec_ok : forall lm r, mkmult_rec r lm == r * r_list_pow lm.
Proof.
induction lm;intros;simpl;Esimpl.
destruct a as (x,p);Esimpl.
rewrite IHlm. rewrite mkmult_pow_spec. Esimpl.
Qed.
Lemma mkmult1_ok : forall lm, mkmult1 lm == r_list_pow lm.
Proof.
destruct lm;simpl;Esimpl.
destruct p. rewrite mkmult_rec_ok;rewrite mkpow_spec;Esimpl.
Qed.
Lemma mkmultm1_ok : forall lm, mkmultm1 lm == - r_list_pow lm.
Proof.
destruct lm;simpl;Esimpl.
destruct p;rewrite mkmult_rec_ok. rewrite mkopp_pow_spec;Esimpl.
Qed.
Lemma r_list_pow_rev : forall l, r_list_pow (rev' l) == r_list_pow l.
Proof.
assert
(forall l lr : list (R * positive), r_list_pow (rev_append l lr) == r_list_pow lr * r_list_pow l).
induction l;intros;simpl;Esimpl.
destruct a;rewrite IHl;Esimpl.
rewrite (ARmul_comm ARth (pow_pos rmul r p)). reflexivity.
intros;unfold rev'. rewrite H;simpl;Esimpl.
Qed.
Lemma mkmult_c_pos_ok : forall c lm, mkmult_c_pos c lm == [c]* r_list_pow lm.
Proof.
intros;unfold mkmult_c_pos;simpl.
assert (H := (morph_eq CRmorph) c cI).
rewrite <- r_list_pow_rev; destruct (c ?=! cI).
rewrite H;trivial;Esimpl.
apply mkmult1_ok. apply mkmult_rec_ok.
Qed.
Lemma mkmult_c_ok : forall c lm, mkmult_c c lm == [c] * r_list_pow lm.
Proof.
intros;unfold mkmult_c;simpl.
case_eq (get_sign c);intros.
assert (H1 := (morph_eq CRmorph) c0 cI).
destruct (c0 ?=! cI).
rewrite (CRmorph.(morph_eq) _ _ (get_sign_spec.(sign_spec) _ H)). Esimpl. rewrite H1;trivial.
rewrite <- r_list_pow_rev;trivial;Esimpl.
apply mkmultm1_ok.
rewrite <- r_list_pow_rev; apply mkmult_rec_ok.
apply mkmult_c_pos_ok.
Qed.
Lemma mkadd_mult_ok : forall rP c lm, mkadd_mult rP c lm == rP + [c]*r_list_pow lm.
Proof.
intros;unfold mkadd_mult.
case_eq (get_sign c);intros.
rewrite (CRmorph.(morph_eq) _ _ (get_sign_spec.(sign_spec) _ H));Esimpl.
rewrite mkmult_c_pos_ok;Esimpl.
rewrite mkmult_c_pos_ok;Esimpl.
Qed.
Lemma add_pow_list_ok :
forall r n l, r_list_pow (add_pow_list r n l) == pow_N rI rmul r n * r_list_pow l.
Proof.
destruct n;simpl;intros;Esimpl.
Qed.
Lemma add_mult_dev_ok : forall P rP fv n lm,
add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd fv) n * r_list_pow lm.
Proof.
induction P;simpl;intros.
rewrite mkadd_mult_ok. rewrite add_pow_list_ok; Esimpl.
rewrite IHP. simpl. rewrite add_pow_list_ok; Esimpl.
change (match P3 with
| Pc c => c ?=! cO
| Pinj _ _ => false
| PX _ _ _ => false
end) with (Peq P3 P0).
change match n with
| N0 => Npos p
| Npos q => Npos (p + q)
end with (N.add (Npos p) n);trivial.
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
rewrite (H eq_refl).
rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
add_permut. mul_permut.
rewrite IHP2.
rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
add_permut. mul_permut.
Qed.
Lemma mult_dev_ok : forall P fv n lm,
mult_dev P fv n lm == P@fv * pow_N rI rmul (hd fv) n * r_list_pow lm.
Proof.
induction P;simpl;intros;Esimpl.
rewrite mkmult_c_ok;rewrite add_pow_list_ok;Esimpl.
rewrite IHP. simpl;rewrite add_pow_list_ok;Esimpl.
change (match P3 with
| Pc c => c ?=! cO
| Pinj _ _ => false
| PX _ _ _ => false
end) with (Peq P3 P0).
change match n with
| N0 => Npos p
| Npos q => Npos (p + q)
end with (N.add (Npos p) n);trivial.
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
rewrite (H eq_refl).
rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
mul_permut.
rewrite add_mult_dev_ok. rewrite IHP1; rewrite add_pow_list_ok.
destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
add_permut; mul_permut.
Qed.
Lemma Pphi_avoid_ok : forall P fv, Pphi_avoid fv P == P@fv.
Proof.
unfold Pphi_avoid;intros;rewrite mult_dev_ok;simpl;Esimpl.
Qed.
End EVALUATION.
Definition Pphi_pow :=
let mkpow x p :=
match p with xH => x | _ => rpow x (Cp_phi (Npos p)) end in
let mkopp_pow x p := ropp (mkpow x p) in
let mkmult_pow r x p := rmul r (mkpow x p) in
Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma local_mkpow_ok r p :
match p with
| xI _ => rpow r (Cp_phi (Npos p))
| xO _ => rpow r (Cp_phi (Npos p))
| 1 => r
end == pow_pos rmul r p.
Proof. destruct p; now rewrite ?pow_th.(rpow_pow_N). Qed.
Lemma Pphi_pow_ok : forall P fv, Pphi_pow fv P == P@fv.
Proof.
unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros;
now rewrite ?local_mkpow_ok.
Qed.
Lemma ring_rw_pow_correct : forall n lH l,
interp_PElist l lH ->
forall lmp, mk_monpol_list lH = lmp ->
forall pe npe, norm_subst n lmp pe = npe ->
PEeval l pe == Pphi_pow l npe.
Proof.
intros n lH l H1 lmp Heq1 pe npe Heq2.
rewrite Pphi_pow_ok, <- Heq2, <- Heq1.
apply norm_subst_ok. trivial.
Qed.
Fixpoint mkmult_pow (r x:R) (p: positive) {struct p} : R :=
match p with
| xH => r*x
| xO p => mkmult_pow (mkmult_pow r x p) x p
| xI p => mkmult_pow (mkmult_pow (r*x) x p) x p
end.
Definition mkpow x p :=
match p with
| xH => x
| xO p => mkmult_pow x x (Pos.pred_double p)
| xI p => mkmult_pow x x (xO p)
end.
Definition mkopp_pow x p :=
match p with
| xH => -x
| xO p => mkmult_pow (-x) x (Pos.pred_double p)
| xI p => mkmult_pow (-x) x (xO p)
end.
Definition Pphi_dev := Pphi_avoid mkpow mkopp_pow mkmult_pow.
Lemma mkmult_pow_ok p r x : mkmult_pow r x p == r * x^p.
Proof.
revert r; induction p;intros;simpl;Esimpl;rewrite !IHp;Esimpl.
Qed.
Lemma mkpow_ok p x : mkpow x p == x^p.
Proof.
destruct p;simpl;intros;Esimpl.
- rewrite !mkmult_pow_ok;Esimpl.
- rewrite mkmult_pow_ok;Esimpl.
change x with (x^1) at 1.
now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double.
Qed.
Lemma mkopp_pow_ok p x : mkopp_pow x p == - x^p.
Proof.
destruct p;simpl;intros;Esimpl.
- rewrite !mkmult_pow_ok;Esimpl.
- rewrite mkmult_pow_ok;Esimpl.
change x with (x^1) at 1.
now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double.
Qed.
Lemma Pphi_dev_ok : forall P fv, Pphi_dev fv P == P@fv.
Proof.
unfold Pphi_dev;intros;apply Pphi_avoid_ok.
- intros;apply mkpow_ok.
- intros;apply mkopp_pow_ok.
- intros;apply mkmult_pow_ok.
Qed.
Lemma ring_rw_correct : forall n lH l,
interp_PElist l lH ->
forall lmp, mk_monpol_list lH = lmp ->
forall pe npe, norm_subst n lmp pe = npe ->
PEeval l pe == Pphi_dev l npe.
Proof.
intros n lH l H1 lmp Heq1 pe npe Heq2.
rewrite Pphi_dev_ok. rewrite <- Heq2;rewrite <- Heq1.
apply norm_subst_ok. trivial.
Qed.
End MakeRingPol.
|