1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Import Setoid Morphisms BinPos BinNat.
Set Implicit Arguments.
Module RingSyntax.
Reserved Notation "x ?=! y" (at level 70, no associativity).
Reserved Notation "x +! y " (at level 50, left associativity).
Reserved Notation "x -! y" (at level 50, left associativity).
Reserved Notation "x *! y" (at level 40, left associativity).
Reserved Notation "-! x" (at level 35, right associativity).
Reserved Notation "[ x ]" (at level 0).
Reserved Notation "x ?== y" (at level 70, no associativity).
Reserved Notation "x -- y" (at level 50, left associativity).
Reserved Notation "x ** y" (at level 40, left associativity).
Reserved Notation "-- x" (at level 35, right associativity).
Reserved Notation "x == y" (at level 70, no associativity).
End RingSyntax.
Import RingSyntax.
Section Power.
Variable R:Type.
Variable rI : R.
Variable rmul : R -> R -> R.
Variable req : R -> R -> Prop.
Variable Rsth : Equivalence req.
Infix "*" := rmul.
Infix "==" := req.
Hypothesis mul_ext : Proper (req ==> req ==> req) rmul.
Hypothesis mul_assoc : forall x y z, x * (y * z) == (x * y) * z.
Fixpoint pow_pos (x:R) (i:positive) : R :=
match i with
| xH => x
| xO i => let p := pow_pos x i in p * p
| xI i => let p := pow_pos x i in x * (p * p)
end.
Lemma pow_pos_swap x j : pow_pos x j * x == x * pow_pos x j.
Proof.
induction j; simpl; rewrite <- ?mul_assoc.
- f_equiv. now do 2 (rewrite IHj, mul_assoc).
- now do 2 (rewrite IHj, mul_assoc).
- reflexivity.
Qed.
Lemma pow_pos_succ x j :
pow_pos x (Pos.succ j) == x * pow_pos x j.
Proof.
induction j; simpl; try reflexivity.
rewrite IHj, <- mul_assoc; f_equiv.
now rewrite mul_assoc, pow_pos_swap, mul_assoc.
Qed.
Lemma pow_pos_add x i j :
pow_pos x (i + j) == pow_pos x i * pow_pos x j.
Proof.
induction i using Pos.peano_ind.
- now rewrite Pos.add_1_l, pow_pos_succ.
- now rewrite Pos.add_succ_l, !pow_pos_succ, IHi, mul_assoc.
Qed.
Definition pow_N (x:R) (p:N) :=
match p with
| N0 => rI
| Npos p => pow_pos x p
end.
Definition id_phi_N (x:N) : N := x.
Lemma pow_N_pow_N x n : pow_N x (id_phi_N n) == pow_N x n.
Proof.
reflexivity.
Qed.
End Power.
Section DEFINITIONS.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Infix "==" := req. Infix "+" := radd. Infix "*" := rmul.
Infix "-" := rsub. Notation "- x" := (ropp x).
(** Semi Ring *)
Record semi_ring_theory : Prop := mk_srt {
SRadd_0_l : forall n, 0 + n == n;
SRadd_comm : forall n m, n + m == m + n ;
SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
SRmul_1_l : forall n, 1*n == n;
SRmul_0_l : forall n, 0*n == 0;
SRmul_comm : forall n m, n*m == m*n;
SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
}.
(** Almost Ring *)
(*Almost ring are no ring : Ropp_def is missing **)
Record almost_ring_theory : Prop := mk_art {
ARadd_0_l : forall x, 0 + x == x;
ARadd_comm : forall x y, x + y == y + x;
ARadd_assoc : forall x y z, x + (y + z) == (x + y) + z;
ARmul_1_l : forall x, 1 * x == x;
ARmul_0_l : forall x, 0 * x == 0;
ARmul_comm : forall x y, x * y == y * x;
ARmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
ARdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
ARopp_mul_l : forall x y, -(x * y) == -x * y;
ARopp_add : forall x y, -(x + y) == -x + -y;
ARsub_def : forall x y, x - y == x + -y
}.
(** Ring *)
Record ring_theory : Prop := mk_rt {
Radd_0_l : forall x, 0 + x == x;
Radd_comm : forall x y, x + y == y + x;
Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
Rmul_1_l : forall x, 1 * x == x;
Rmul_comm : forall x y, x * y == y * x;
Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
Rsub_def : forall x y, x - y == x + -y;
Ropp_def : forall x, x + (- x) == 0
}.
(** Equality is extensional *)
Record sring_eq_ext : Prop := mk_seqe {
(* SRing operators are compatible with equality *)
SRadd_ext : Proper (req ==> req ==> req) radd;
SRmul_ext : Proper (req ==> req ==> req) rmul
}.
Record ring_eq_ext : Prop := mk_reqe {
(* Ring operators are compatible with equality *)
Radd_ext : Proper (req ==> req ==> req) radd;
Rmul_ext : Proper (req ==> req ==> req) rmul;
Ropp_ext : Proper (req ==> req) ropp
}.
(** Interpretation morphisms definition*)
Section MORPHISM.
Variable C:Type.
Variable (cO cI : C) (cadd cmul csub : C->C->C) (copp : C->C).
Variable ceqb : C->C->bool.
(* [phi] est un morphisme de [C] dans [R] *)
Variable phi : C -> R.
Infix "+!" := cadd. Infix "-!" := csub.
Infix "*!" := cmul. Notation "-! x" := (copp x).
Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
(*for semi rings*)
Record semi_morph : Prop := mkRmorph {
Smorph0 : [cO] == 0;
Smorph1 : [cI] == 1;
Smorph_add : forall x y, [x +! y] == [x]+[y];
Smorph_mul : forall x y, [x *! y] == [x]*[y];
Smorph_eq : forall x y, x?=!y = true -> [x] == [y]
}.
(* for rings*)
Record ring_morph : Prop := mkmorph {
morph0 : [cO] == 0;
morph1 : [cI] == 1;
morph_add : forall x y, [x +! y] == [x]+[y];
morph_sub : forall x y, [x -! y] == [x]-[y];
morph_mul : forall x y, [x *! y] == [x]*[y];
morph_opp : forall x, [-!x] == -[x];
morph_eq : forall x y, x?=!y = true -> [x] == [y]
}.
Section SIGN.
Variable get_sign : C -> option C.
Record sign_theory : Prop := mksign_th {
sign_spec : forall c c', get_sign c = Some c' -> c ?=! -! c' = true
}.
End SIGN.
Definition get_sign_None (c:C) := @None C.
Lemma get_sign_None_th : sign_theory get_sign_None.
Proof. constructor;intros;discriminate. Qed.
Section DIV.
Variable cdiv: C -> C -> C*C.
Record div_theory : Prop := mkdiv_th {
div_eucl_th : forall a b, let (q,r) := cdiv a b in [a] == [b *! q +! r]
}.
End DIV.
End MORPHISM.
(** Identity is a morphism *)
Variable Rsth : Equivalence req.
Variable reqb : R->R->bool.
Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y.
Definition IDphi (x:R) := x.
Lemma IDmorph : ring_morph rO rI radd rmul rsub ropp reqb IDphi.
Proof.
now apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi).
Qed.
(** Specification of the power function *)
Section POWER.
Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Record power_theory : Prop := mkpow_th {
rpow_pow_N : forall r n, req (rpow r (Cp_phi n)) (pow_N rI rmul r n)
}.
End POWER.
Definition pow_N_th :=
mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth).
End DEFINITIONS.
Section ALMOST_RING.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
Notation "0" := rO. Notation "1" := rI.
Infix "==" := req. Infix "+" := radd. Infix "* " := rmul.
Infix "-" := rsub. Notation "- x" := (ropp x).
(** Leibniz equality leads to a setoid theory and is extensional*)
Lemma Eqsth : Equivalence (@eq R).
Proof. exact eq_equivalence. Qed.
Lemma Eq_s_ext : sring_eq_ext radd rmul (@eq R).
Proof. constructor;solve_proper. Qed.
Lemma Eq_ext : ring_eq_ext radd rmul ropp (@eq R).
Proof. constructor;solve_proper. Qed.
Variable Rsth : Equivalence req.
Section SEMI_RING.
Variable SReqe : sring_eq_ext radd rmul req.
Add Morphism radd : radd_ext1. exact (SRadd_ext SReqe). Qed.
Add Morphism rmul : rmul_ext1. exact (SRmul_ext SReqe). Qed.
Variable SRth : semi_ring_theory 0 1 radd rmul req.
(** Every semi ring can be seen as an almost ring, by taking :
-x = x and x - y = x + y *)
Definition SRopp (x:R) := x. Notation "- x" := (SRopp x).
Definition SRsub x y := x + -y. Notation "x - y " := (SRsub x y).
Lemma SRopp_ext : forall x y, x == y -> -x == -y.
Proof. intros x y H; exact H. Qed.
Lemma SReqe_Reqe : ring_eq_ext radd rmul SRopp req.
Proof.
constructor.
- exact (SRadd_ext SReqe).
- exact (SRmul_ext SReqe).
- exact SRopp_ext.
Qed.
Lemma SRopp_mul_l : forall x y, -(x * y) == -x * y.
Proof. reflexivity. Qed.
Lemma SRopp_add : forall x y, -(x + y) == -x + -y.
Proof. reflexivity. Qed.
Lemma SRsub_def : forall x y, x - y == x + -y.
Proof. reflexivity. Qed.
Lemma SRth_ARth : almost_ring_theory 0 1 radd rmul SRsub SRopp req.
Proof (mk_art 0 1 radd rmul SRsub SRopp req
(SRadd_0_l SRth) (SRadd_comm SRth) (SRadd_assoc SRth)
(SRmul_1_l SRth) (SRmul_0_l SRth)
(SRmul_comm SRth) (SRmul_assoc SRth) (SRdistr_l SRth)
SRopp_mul_l SRopp_add SRsub_def).
(** Identity morphism for semi-ring equipped with their almost-ring structure*)
Variable reqb : R->R->bool.
Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y.
Definition SRIDmorph : ring_morph 0 1 radd rmul SRsub SRopp req
0 1 radd rmul SRsub SRopp reqb (@IDphi R).
Proof.
now apply mkmorph.
Qed.
(* a semi_morph can be extended to a ring_morph for the almost_ring derived
from a semi_ring, provided the ring is a setoid (we only need
reflexivity) *)
Variable C : Type.
Variable (cO cI : C) (cadd cmul: C->C->C).
Variable (ceqb : C -> C -> bool).
Variable phi : C -> R.
Variable Smorph : semi_morph rO rI radd rmul req cO cI cadd cmul ceqb phi.
Lemma SRmorph_Rmorph :
ring_morph rO rI radd rmul SRsub SRopp req
cO cI cadd cmul cadd (fun x => x) ceqb phi.
Proof.
case Smorph; now constructor.
Qed.
End SEMI_RING.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Add Morphism radd : radd_ext2. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext2. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext2. exact (Ropp_ext Reqe). Qed.
Section RING.
Variable Rth : ring_theory 0 1 radd rmul rsub ropp req.
(** Rings are almost rings*)
Lemma Rmul_0_l x : 0 * x == 0.
Proof.
setoid_replace (0*x) with ((0+1)*x + -x).
now rewrite (Radd_0_l Rth), (Rmul_1_l Rth), (Ropp_def Rth).
rewrite (Rdistr_l Rth), (Rmul_1_l Rth).
rewrite <- (Radd_assoc Rth), (Ropp_def Rth).
now rewrite (Radd_comm Rth), (Radd_0_l Rth).
Qed.
Lemma Ropp_mul_l x y : -(x * y) == -x * y.
Proof.
rewrite <-(Radd_0_l Rth (- x * y)).
rewrite (Radd_comm Rth), <-(Ropp_def Rth (x*y)).
rewrite (Radd_assoc Rth), <- (Rdistr_l Rth).
rewrite (Rth.(Radd_comm) (-x)), (Ropp_def Rth).
now rewrite Rmul_0_l, (Radd_0_l Rth).
Qed.
Lemma Ropp_add x y : -(x + y) == -x + -y.
Proof.
rewrite <- ((Radd_0_l Rth) (-(x+y))).
rewrite <- ((Ropp_def Rth) x).
rewrite <- ((Radd_0_l Rth) (x + - x + - (x + y))).
rewrite <- ((Ropp_def Rth) y).
rewrite ((Radd_comm Rth) x).
rewrite ((Radd_comm Rth) y).
rewrite <- ((Radd_assoc Rth) (-y)).
rewrite <- ((Radd_assoc Rth) (- x)).
rewrite ((Radd_assoc Rth) y).
rewrite ((Radd_comm Rth) y).
rewrite <- ((Radd_assoc Rth) (- x)).
rewrite ((Radd_assoc Rth) y).
rewrite ((Radd_comm Rth) y), (Ropp_def Rth).
rewrite ((Radd_comm Rth) (-x) 0), (Radd_0_l Rth).
now apply (Radd_comm Rth).
Qed.
Lemma Ropp_opp x : - -x == x.
Proof.
rewrite <- (Radd_0_l Rth (- -x)).
rewrite <- (Ropp_def Rth x).
rewrite <- (Radd_assoc Rth), (Ropp_def Rth).
rewrite ((Radd_comm Rth) x); now apply (Radd_0_l Rth).
Qed.
Lemma Rth_ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
Proof
(mk_art 0 1 radd rmul rsub ropp req (Radd_0_l Rth) (Radd_comm Rth) (Radd_assoc Rth)
(Rmul_1_l Rth) Rmul_0_l (Rmul_comm Rth) (Rmul_assoc Rth) (Rdistr_l Rth)
Ropp_mul_l Ropp_add (Rsub_def Rth)).
(** Every semi morphism between two rings is a morphism*)
Variable C : Type.
Variable (cO cI : C) (cadd cmul csub: C->C->C) (copp : C -> C).
Variable (ceq : C -> C -> Prop) (ceqb : C -> C -> bool).
Variable phi : C -> R.
Infix "+!" := cadd. Infix "*!" := cmul.
Infix "-!" := csub. Notation "-! x" := (copp x).
Notation "?=!" := ceqb. Notation "[ x ]" := (phi x).
Variable Csth : Equivalence ceq.
Variable Ceqe : ring_eq_ext cadd cmul copp ceq.
Add Setoid C ceq Csth as C_setoid.
Add Morphism cadd : cadd_ext. exact (Radd_ext Ceqe). Qed.
Add Morphism cmul : cmul_ext. exact (Rmul_ext Ceqe). Qed.
Add Morphism copp : copp_ext. exact (Ropp_ext Ceqe). Qed.
Variable Cth : ring_theory cO cI cadd cmul csub copp ceq.
Variable Smorph : semi_morph 0 1 radd rmul req cO cI cadd cmul ceqb phi.
Variable phi_ext : forall x y, ceq x y -> [x] == [y].
Add Morphism phi : phi_ext1. exact phi_ext. Qed.
Lemma Smorph_opp x : [-!x] == -[x].
Proof.
rewrite <- (Rth.(Radd_0_l) [-!x]).
rewrite <- ((Ropp_def Rth) [x]).
rewrite ((Radd_comm Rth) [x]).
rewrite <- (Radd_assoc Rth).
rewrite <- (Smorph_add Smorph).
rewrite (Ropp_def Cth).
rewrite (Smorph0 Smorph).
rewrite (Radd_comm Rth (-[x])).
now apply (Radd_0_l Rth).
Qed.
Lemma Smorph_sub x y : [x -! y] == [x] - [y].
Proof.
rewrite (Rsub_def Cth), (Rsub_def Rth).
now rewrite (Smorph_add Smorph), Smorph_opp.
Qed.
Lemma Smorph_morph :
ring_morph 0 1 radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
Proof
(mkmorph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi
(Smorph0 Smorph) (Smorph1 Smorph)
(Smorph_add Smorph) Smorph_sub (Smorph_mul Smorph) Smorph_opp
(Smorph_eq Smorph)).
End RING.
(** Useful lemmas on almost ring *)
Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
Lemma ARth_SRth : semi_ring_theory 0 1 radd rmul req.
Proof.
elim ARth; intros.
constructor; trivial.
Qed.
Instance ARsub_ext : Proper (req ==> req ==> req) rsub.
Proof.
intros x1 x2 Ex y1 y2 Ey.
now rewrite !(ARsub_def ARth), Ex, Ey.
Qed.
Ltac mrewrite :=
repeat first
[ rewrite (ARadd_0_l ARth)
| rewrite <- ((ARadd_comm ARth) 0)
| rewrite (ARmul_1_l ARth)
| rewrite <- ((ARmul_comm ARth) 1)
| rewrite (ARmul_0_l ARth)
| rewrite <- ((ARmul_comm ARth) 0)
| rewrite (ARdistr_l ARth)
| reflexivity
| match goal with
| |- context [?z * (?x + ?y)] => rewrite ((ARmul_comm ARth) z (x+y))
end].
Lemma ARadd_0_r x : x + 0 == x.
Proof. mrewrite. Qed.
Lemma ARmul_1_r x : x * 1 == x.
Proof. mrewrite. Qed.
Lemma ARmul_0_r x : x * 0 == 0.
Proof. mrewrite. Qed.
Lemma ARdistr_r x y z : z * (x + y) == z*x + z*y.
Proof.
mrewrite. now rewrite !(ARth.(ARmul_comm) z).
Qed.
Lemma ARadd_assoc1 x y z : (x + y) + z == (y + z) + x.
Proof.
now rewrite <-(ARth.(ARadd_assoc) x), (ARth.(ARadd_comm) x).
Qed.
Lemma ARadd_assoc2 x y z : (y + x) + z == (y + z) + x.
Proof.
now rewrite <- !(ARadd_assoc ARth), ((ARadd_comm ARth) x).
Qed.
Lemma ARmul_assoc1 x y z : (x * y) * z == (y * z) * x.
Proof.
now rewrite <- ((ARmul_assoc ARth) x), ((ARmul_comm ARth) x).
Qed.
Lemma ARmul_assoc2 x y z : (y * x) * z == (y * z) * x.
Proof.
now rewrite <- !(ARmul_assoc ARth), ((ARmul_comm ARth) x).
Qed.
Lemma ARopp_mul_r x y : - (x * y) == x * -y.
Proof.
rewrite ((ARmul_comm ARth) x y), (ARopp_mul_l ARth).
now apply (ARmul_comm ARth).
Qed.
Lemma ARopp_zero : -0 == 0.
Proof.
now rewrite <- (ARmul_0_r 0), (ARopp_mul_l ARth), !ARmul_0_r.
Qed.
End ALMOST_RING.
Section AddRing.
(* Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop. *)
Inductive ring_kind : Type :=
| Abstract
| Computational
(R:Type)
(req : R -> R -> Prop)
(reqb : R -> R -> bool)
(_ : forall x y, (reqb x y) = true -> req x y)
| Morphism
(R : Type)
(rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R)
(req : R -> R -> Prop)
(C : Type)
(cO cI : C) (cadd cmul csub : C->C->C) (copp : C->C)
(ceqb : C->C->bool)
phi
(_ : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi).
End AddRing.
(** Some simplification tactics*)
Ltac gen_reflexivity Rsth := apply (Seq_refl _ _ Rsth).
Ltac gen_srewrite Rsth Reqe ARth :=
repeat first
[ gen_reflexivity Rsth
| progress rewrite (ARopp_zero Rsth Reqe ARth)
| rewrite (ARadd_0_l ARth)
| rewrite (ARadd_0_r Rsth ARth)
| rewrite (ARmul_1_l ARth)
| rewrite (ARmul_1_r Rsth ARth)
| rewrite (ARmul_0_l ARth)
| rewrite (ARmul_0_r Rsth ARth)
| rewrite (ARdistr_l ARth)
| rewrite (ARdistr_r Rsth Reqe ARth)
| rewrite (ARadd_assoc ARth)
| rewrite (ARmul_assoc ARth)
| progress rewrite (ARopp_add ARth)
| progress rewrite (ARsub_def ARth)
| progress rewrite <- (ARopp_mul_l ARth)
| progress rewrite <- (ARopp_mul_r Rsth Reqe ARth) ].
Ltac gen_srewrite_sr Rsth Reqe ARth :=
repeat first
[ gen_reflexivity Rsth
| progress rewrite (ARopp_zero Rsth Reqe ARth)
| rewrite (ARadd_0_l ARth)
| rewrite (ARadd_0_r Rsth ARth)
| rewrite (ARmul_1_l ARth)
| rewrite (ARmul_1_r Rsth ARth)
| rewrite (ARmul_0_l ARth)
| rewrite (ARmul_0_r Rsth ARth)
| rewrite (ARdistr_l ARth)
| rewrite (ARdistr_r Rsth Reqe ARth)
| rewrite (ARadd_assoc ARth)
| rewrite (ARmul_assoc ARth) ].
Ltac gen_add_push add Rsth Reqe ARth x :=
repeat (match goal with
| |- context [add (add ?y x) ?z] =>
progress rewrite (ARadd_assoc2 Rsth Reqe ARth x y z)
| |- context [add (add x ?y) ?z] =>
progress rewrite (ARadd_assoc1 Rsth ARth x y z)
| |- context [(add x ?y)] =>
progress rewrite (ARadd_comm ARth x y)
end).
Ltac gen_mul_push mul Rsth Reqe ARth x :=
repeat (match goal with
| |- context [mul (mul ?y x) ?z] =>
progress rewrite (ARmul_assoc2 Rsth Reqe ARth x y z)
| |- context [mul (mul x ?y) ?z] =>
progress rewrite (ARmul_assoc1 Rsth ARth x y z)
| |- context [(mul x ?y)] =>
progress rewrite (ARmul_comm ARth x y)
end).
|