1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Export Ring.
Require Import ZArith_base.
Require Import Zpow_def.
Import InitialRing.
Set Implicit Arguments.
Ltac Zcst t :=
match isZcst t with
true => t
| _ => constr:NotConstant
end.
Ltac isZpow_coef t :=
match t with
| Zpos ?p => isPcst p
| Z0 => constr:true
| _ => constr:false
end.
Notation N_of_Z := Z.to_N (only parsing).
Ltac Zpow_tac t :=
match isZpow_coef t with
| true => constr:(N_of_Z t)
| _ => constr:NotConstant
end.
Ltac Zpower_neg :=
repeat match goal with
| [|- ?G] =>
match G with
| context c [Z.pow _ (Zneg _)] =>
let t := context c [Z0] in
change t
end
end.
Add Ring Zr : Zth
(decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Z.succ],
power_tac Zpower_theory [Zpow_tac],
(* The two following option are not needed, it is the default chose when the set of
coefficiant is usual ring Z *)
div (InitialRing.Ztriv_div_th (@Eqsth Z) (@IDphi Z)),
sign get_signZ_th).
|