1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
open Pp
open Util
open Names
open Term
open Closure
open Environ
open Libnames
open Tactics
open Glob_term
open Tacticals
open Tacexpr
open Pcoq
open Tactic
open Constr
open Proof_type
open Coqlib
open Tacmach
open Mod_subst
open Tacinterp
open Libobject
open Printer
open Declare
open Decl_kinds
open Entries
(****************************************************************************)
(* controlled reduction *)
let mark_arg i c = mkEvar(i,[|c|])
let unmark_arg f c =
match destEvar c with
| (i,[|c|]) -> f i c
| _ -> assert false
type protect_flag = Eval|Prot|Rec
let tag_arg tag_rec map subs i c =
match map i with
Eval -> mk_clos subs c
| Prot -> mk_atom c
| Rec -> if i = -1 then mk_clos subs c else tag_rec c
let rec mk_clos_but f_map subs t =
match f_map t with
| Some map -> tag_arg (mk_clos_but f_map subs) map subs (-1) t
| None ->
(match kind_of_term t with
App(f,args) -> mk_clos_app_but f_map subs f args 0
| Prod _ -> mk_clos_deep (mk_clos_but f_map) subs t
| _ -> mk_atom t)
and mk_clos_app_but f_map subs f args n =
if n >= Array.length args then mk_atom(mkApp(f, args))
else
let fargs, args' = array_chop n args in
let f' = mkApp(f,fargs) in
match f_map f' with
Some map ->
mk_clos_deep
(fun s' -> unmark_arg (tag_arg (mk_clos_but f_map s') map s'))
subs
(mkApp (mark_arg (-1) f', Array.mapi mark_arg args'))
| None -> mk_clos_app_but f_map subs f args (n+1)
let interp_map l c =
try
let (im,am) = List.assoc c l in
Some(fun i ->
if List.mem i im then Eval
else if List.mem i am then Prot
else if i = -1 then Eval
else Rec)
with Not_found -> None
let interp_map l t =
try Some(list_assoc_f eq_constr t l) with Not_found -> None
let protect_maps = ref Stringmap.empty
let add_map s m = protect_maps := Stringmap.add s m !protect_maps
let lookup_map map =
try Stringmap.find map !protect_maps
with Not_found ->
errorlabstrm"lookup_map"(str"map "++qs map++str"not found")
let protect_red map env sigma c =
kl (create_clos_infos betadeltaiota env)
(mk_clos_but (lookup_map map c) (Esubst.subs_id 0) c);;
let protect_tac map =
Tactics.reduct_option (protect_red map,DEFAULTcast) None ;;
let protect_tac_in map id =
Tactics.reduct_option (protect_red map,DEFAULTcast) (Some(id, Termops.InHyp));;
TACTIC EXTEND protect_fv
[ "protect_fv" string(map) "in" ident(id) ] ->
[ protect_tac_in map id ]
| [ "protect_fv" string(map) ] ->
[ protect_tac map ]
END;;
(****************************************************************************)
let closed_term t l =
let l = List.map constr_of_global l in
let cs = List.fold_right Quote.ConstrSet.add l Quote.ConstrSet.empty in
if Quote.closed_under cs t then tclIDTAC else tclFAIL 0 (mt())
;;
TACTIC EXTEND closed_term
[ "closed_term" constr(t) "[" ne_reference_list(l) "]" ] ->
[ closed_term t l ]
END
;;
TACTIC EXTEND echo
| [ "echo" constr(t) ] ->
[ Pp.msg (Termops.print_constr t); Tacinterp.eval_tactic (TacId []) ]
END;;
(*
let closed_term_ast l =
TacFun([Some(id_of_string"t")],
TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term",
[Genarg.in_gen Genarg.wit_constr (mkVar(id_of_string"t"));
Genarg.in_gen (Genarg.wit_list1 Genarg.wit_ref) l])))
*)
let closed_term_ast l =
let l = List.map (fun gr -> ArgArg(dummy_loc,gr)) l in
TacFun([Some(id_of_string"t")],
TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term",
[Genarg.in_gen Genarg.globwit_constr (GVar(dummy_loc,id_of_string"t"),None);
Genarg.in_gen (Genarg.wit_list1 Genarg.globwit_ref) l])))
(*
let _ = add_tacdef false ((dummy_loc,id_of_string"ring_closed_term"
*)
(****************************************************************************)
let ic c =
let env = Global.env() and sigma = Evd.empty in
Constrintern.interp_constr sigma env c
let ty c = Typing.type_of (Global.env()) Evd.empty c
let decl_constant na c =
mkConst(declare_constant (id_of_string na) (DefinitionEntry
{ const_entry_body = c;
const_entry_secctx = None;
const_entry_type = None;
const_entry_opaque = true },
IsProof Lemma))
(* Calling a global tactic *)
let ltac_call tac (args:glob_tactic_arg list) =
TacArg(dummy_loc,TacCall(dummy_loc, ArgArg(dummy_loc, Lazy.force tac),args))
(* Calling a locally bound tactic *)
let ltac_lcall tac args =
TacArg(dummy_loc,TacCall(dummy_loc, ArgVar(dummy_loc, id_of_string tac),args))
let ltac_letin (x, e1) e2 =
TacLetIn(false,[(dummy_loc,id_of_string x),e1],e2)
let ltac_apply (f:glob_tactic_expr) (args:glob_tactic_arg list) =
Tacinterp.eval_tactic
(ltac_letin ("F", Tacexp f) (ltac_lcall "F" args))
let ltac_record flds =
TacFun([Some(id_of_string"proj")], ltac_lcall "proj" flds)
let carg c = TacDynamic(dummy_loc,Pretyping.constr_in c)
let dummy_goal env =
let (gl,_,sigma) =
Goal.V82.mk_goal Evd.empty (named_context_val env) mkProp Store.empty in
{Evd.it = gl;
Evd.sigma = sigma}
let exec_tactic env n f args =
let lid = list_tabulate(fun i -> id_of_string("x"^string_of_int i)) n in
let res = ref [||] in
let get_res ist =
let l = List.map (fun id -> List.assoc id ist.lfun) lid in
res := Array.of_list l;
TacId[] in
let getter =
Tacexp(TacFun(List.map(fun id -> Some id) lid,
glob_tactic(tacticIn get_res))) in
let _ =
Tacinterp.eval_tactic(ltac_call f (args@[getter])) (dummy_goal env) in
!res
let constr_of = function
| VConstr ([],c) -> c
| _ -> failwith "Ring.exec_tactic: anomaly"
let stdlib_modules =
[["Coq";"Setoids";"Setoid"];
["Coq";"Lists";"List"];
["Coq";"Init";"Datatypes"];
["Coq";"Init";"Logic"];
]
let coq_constant c =
lazy (Coqlib.gen_constant_in_modules "Ring" stdlib_modules c)
let coq_mk_Setoid = coq_constant "Build_Setoid_Theory"
let coq_cons = coq_constant "cons"
let coq_nil = coq_constant "nil"
let coq_None = coq_constant "None"
let coq_Some = coq_constant "Some"
let coq_eq = coq_constant "eq"
let lapp f args = mkApp(Lazy.force f,args)
let dest_rel0 t =
match kind_of_term t with
| App(f,args) when Array.length args >= 2 ->
let rel = mkApp(f,Array.sub args 0 (Array.length args - 2)) in
if closed0 rel then
(rel,args.(Array.length args - 2),args.(Array.length args - 1))
else error "ring: cannot find relation (not closed)"
| _ -> error "ring: cannot find relation"
let rec dest_rel t =
match kind_of_term t with
| Prod(_,_,c) -> dest_rel c
| _ -> dest_rel0 t
(****************************************************************************)
(* Library linking *)
let plugin_dir = "setoid_ring"
let cdir = ["Coq";plugin_dir]
let plugin_modules =
List.map (fun d -> cdir@d)
[["Ring_theory"];["Ring_polynom"]; ["Ring_tac"];["InitialRing"];
["Field_tac"]; ["Field_theory"]
]
let my_constant c =
lazy (Coqlib.gen_constant_in_modules "Ring" plugin_modules c)
let new_ring_path =
make_dirpath (List.map id_of_string ["Ring_tac";plugin_dir;"Coq"])
let ltac s =
lazy(make_kn (MPfile new_ring_path) (make_dirpath []) (mk_label s))
let znew_ring_path =
make_dirpath (List.map id_of_string ["InitialRing";plugin_dir;"Coq"])
let zltac s =
lazy(make_kn (MPfile znew_ring_path) (make_dirpath []) (mk_label s))
let mk_cst l s = lazy (Coqlib.gen_constant "newring" l s);;
let pol_cst s = mk_cst [plugin_dir;"Ring_polynom"] s ;;
(* Ring theory *)
(* almost_ring defs *)
let coq_almost_ring_theory = my_constant "almost_ring_theory"
(* setoid and morphism utilities *)
let coq_eq_setoid = my_constant "Eqsth"
let coq_eq_morph = my_constant "Eq_ext"
let coq_eq_smorph = my_constant "Eq_s_ext"
(* ring -> almost_ring utilities *)
let coq_ring_theory = my_constant "ring_theory"
let coq_mk_reqe = my_constant "mk_reqe"
(* semi_ring -> almost_ring utilities *)
let coq_semi_ring_theory = my_constant "semi_ring_theory"
let coq_mk_seqe = my_constant "mk_seqe"
let ltac_inv_morph_gen = zltac"inv_gen_phi"
let ltac_inv_morphZ = zltac"inv_gen_phiZ"
let ltac_inv_morphN = zltac"inv_gen_phiN"
let ltac_inv_morphNword = zltac"inv_gen_phiNword"
let coq_abstract = my_constant"Abstract"
let coq_comp = my_constant"Computational"
let coq_morph = my_constant"Morphism"
(* morphism *)
let coq_ring_morph = my_constant "ring_morph"
let coq_semi_morph = my_constant "semi_morph"
(* power function *)
let ltac_inv_morph_nothing = zltac"inv_morph_nothing"
let coq_pow_N_pow_N = my_constant "pow_N_pow_N"
(* hypothesis *)
let coq_mkhypo = my_constant "mkhypo"
let coq_hypo = my_constant "hypo"
(* Equality: do not evaluate but make recursive call on both sides *)
let map_with_eq arg_map c =
let (req,_,_) = dest_rel c in
interp_map
((req,(function -1->Prot|_->Rec))::
List.map (fun (c,map) -> (Lazy.force c,map)) arg_map)
let _ = add_map "ring"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
pol_cst "Pphi_pow",
(function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
(* PEeval: evaluate morphism and polynomial, protect ring
operations and make recursive call on the var map *)
pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot)])
(****************************************************************************)
(* Ring database *)
type ring_info =
{ ring_carrier : types;
ring_req : constr;
ring_setoid : constr;
ring_ext : constr;
ring_morph : constr;
ring_th : constr;
ring_cst_tac : glob_tactic_expr;
ring_pow_tac : glob_tactic_expr;
ring_lemma1 : constr;
ring_lemma2 : constr;
ring_pre_tac : glob_tactic_expr;
ring_post_tac : glob_tactic_expr }
module Cmap = Map.Make(struct type t = constr let compare = constr_ord end)
let from_carrier = ref Cmap.empty
let from_relation = ref Cmap.empty
let from_name = ref Spmap.empty
let ring_for_carrier r = Cmap.find r !from_carrier
let ring_for_relation rel = Cmap.find rel !from_relation
let find_ring_structure env sigma l =
match l with
| t::cl' ->
let ty = Retyping.get_type_of env sigma t in
let check c =
let ty' = Retyping.get_type_of env sigma c in
if not (Reductionops.is_conv env sigma ty ty') then
errorlabstrm "ring"
(str"arguments of ring_simplify do not have all the same type")
in
List.iter check cl';
(try ring_for_carrier ty
with Not_found ->
errorlabstrm "ring"
(str"cannot find a declared ring structure over"++
spc()++str"\""++pr_constr ty++str"\""))
| [] -> assert false
(*
let (req,_,_) = dest_rel cl in
(try ring_for_relation req
with Not_found ->
errorlabstrm "ring"
(str"cannot find a declared ring structure for equality"++
spc()++str"\""++pr_constr req++str"\"")) *)
let _ =
Summary.declare_summary "tactic-new-ring-table"
{ Summary.freeze_function =
(fun () -> !from_carrier,!from_relation,!from_name);
Summary.unfreeze_function =
(fun (ct,rt,nt) ->
from_carrier := ct; from_relation := rt; from_name := nt);
Summary.init_function =
(fun () ->
from_carrier := Cmap.empty; from_relation := Cmap.empty;
from_name := Spmap.empty) }
let add_entry (sp,_kn) e =
(* let _ = ty e.ring_lemma1 in
let _ = ty e.ring_lemma2 in
*)
from_carrier := Cmap.add e.ring_carrier e !from_carrier;
from_relation := Cmap.add e.ring_req e !from_relation;
from_name := Spmap.add sp e !from_name
let subst_th (subst,th) =
let c' = subst_mps subst th.ring_carrier in
let eq' = subst_mps subst th.ring_req in
let set' = subst_mps subst th.ring_setoid in
let ext' = subst_mps subst th.ring_ext in
let morph' = subst_mps subst th.ring_morph in
let th' = subst_mps subst th.ring_th in
let thm1' = subst_mps subst th.ring_lemma1 in
let thm2' = subst_mps subst th.ring_lemma2 in
let tac'= subst_tactic subst th.ring_cst_tac in
let pow_tac'= subst_tactic subst th.ring_pow_tac in
let pretac'= subst_tactic subst th.ring_pre_tac in
let posttac'= subst_tactic subst th.ring_post_tac in
if c' == th.ring_carrier &&
eq' == th.ring_req &&
eq_constr set' th.ring_setoid &&
ext' == th.ring_ext &&
morph' == th.ring_morph &&
th' == th.ring_th &&
thm1' == th.ring_lemma1 &&
thm2' == th.ring_lemma2 &&
tac' == th.ring_cst_tac &&
pow_tac' == th.ring_pow_tac &&
pretac' == th.ring_pre_tac &&
posttac' == th.ring_post_tac then th
else
{ ring_carrier = c';
ring_req = eq';
ring_setoid = set';
ring_ext = ext';
ring_morph = morph';
ring_th = th';
ring_cst_tac = tac';
ring_pow_tac = pow_tac';
ring_lemma1 = thm1';
ring_lemma2 = thm2';
ring_pre_tac = pretac';
ring_post_tac = posttac' }
let theory_to_obj : ring_info -> obj =
let cache_th (name,th) = add_entry name th in
declare_object
{(default_object "tactic-new-ring-theory") with
open_function = (fun i o -> if i=1 then cache_th o);
cache_function = cache_th;
subst_function = subst_th;
classify_function = (fun x -> Substitute x)}
let setoid_of_relation env a r =
let evm = Evd.empty in
try
lapp coq_mk_Setoid
[|a ; r ;
Rewrite.get_reflexive_proof env evm a r ;
Rewrite.get_symmetric_proof env evm a r ;
Rewrite.get_transitive_proof env evm a r |]
with Not_found ->
error "cannot find setoid relation"
let op_morph r add mul opp req m1 m2 m3 =
lapp coq_mk_reqe [| r; add; mul; opp; req; m1; m2; m3 |]
let op_smorph r add mul req m1 m2 =
lapp coq_mk_seqe [| r; add; mul; req; m1; m2 |]
(* let default_ring_equality (r,add,mul,opp,req) = *)
(* let is_setoid = function *)
(* {rel_refl=Some _; rel_sym=Some _;rel_trans=Some _;rel_aeq=rel} -> *)
(* eq_constr req rel (\* Qu: use conversion ? *\) *)
(* | _ -> false in *)
(* match default_relation_for_carrier ~filter:is_setoid r with *)
(* Leibniz _ -> *)
(* let setoid = lapp coq_eq_setoid [|r|] in *)
(* let op_morph = *)
(* match opp with *)
(* Some opp -> lapp coq_eq_morph [|r;add;mul;opp|] *)
(* | None -> lapp coq_eq_smorph [|r;add;mul|] in *)
(* (setoid,op_morph) *)
(* | Relation rel -> *)
(* let setoid = setoid_of_relation rel in *)
(* let is_endomorphism = function *)
(* { args=args } -> List.for_all *)
(* (function (var,Relation rel) -> *)
(* var=None && eq_constr req rel *)
(* | _ -> false) args in *)
(* let add_m = *)
(* try default_morphism ~filter:is_endomorphism add *)
(* with Not_found -> *)
(* error "ring addition should be declared as a morphism" in *)
(* let mul_m = *)
(* try default_morphism ~filter:is_endomorphism mul *)
(* with Not_found -> *)
(* error "ring multiplication should be declared as a morphism" in *)
(* let op_morph = *)
(* match opp with *)
(* | Some opp -> *)
(* (let opp_m = *)
(* try default_morphism ~filter:is_endomorphism opp *)
(* with Not_found -> *)
(* error "ring opposite should be declared as a morphism" in *)
(* let op_morph = *)
(* op_morph r add mul opp req add_m.lem mul_m.lem opp_m.lem in *)
(* msgnl *)
(* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\""++spc()++ *)
(* str"and morphisms \""++pr_constr add_m.morphism_theory++ *)
(* str"\","++spc()++ str"\""++pr_constr mul_m.morphism_theory++ *)
(* str"\""++spc()++str"and \""++pr_constr opp_m.morphism_theory++ *)
(* str"\""); *)
(* op_morph) *)
(* | None -> *)
(* (msgnl *)
(* (str"Using setoid \""++pr_constr rel.rel_aeq++str"\"" ++ spc() ++ *)
(* str"and morphisms \""++pr_constr add_m.morphism_theory++ *)
(* str"\""++spc()++str"and \""++ *)
(* pr_constr mul_m.morphism_theory++str"\""); *)
(* op_smorph r add mul req add_m.lem mul_m.lem) in *)
(* (setoid,op_morph) *)
let ring_equality (r,add,mul,opp,req) =
match kind_of_term req with
| App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) ->
let setoid = lapp coq_eq_setoid [|r|] in
let op_morph =
match opp with
Some opp -> lapp coq_eq_morph [|r;add;mul;opp|]
| None -> lapp coq_eq_smorph [|r;add;mul|] in
(setoid,op_morph)
| _ ->
let setoid = setoid_of_relation (Global.env ()) r req in
let signature = [Some (r,Some req);Some (r,Some req)],Some(r,Some req) in
let add_m, add_m_lem =
try Rewrite.default_morphism signature add
with Not_found ->
error "ring addition should be declared as a morphism" in
let mul_m, mul_m_lem =
try Rewrite.default_morphism signature mul
with Not_found ->
error "ring multiplication should be declared as a morphism" in
let op_morph =
match opp with
| Some opp ->
(let opp_m,opp_m_lem =
try Rewrite.default_morphism ([Some(r,Some req)],Some(r,Some req)) opp
with Not_found ->
error "ring opposite should be declared as a morphism" in
let op_morph =
op_morph r add mul opp req add_m_lem mul_m_lem opp_m_lem in
Flags.if_verbose
msgnl
(str"Using setoid \""++pr_constr req++str"\""++spc()++
str"and morphisms \""++pr_constr add_m_lem ++
str"\","++spc()++ str"\""++pr_constr mul_m_lem++
str"\""++spc()++str"and \""++pr_constr opp_m_lem++
str"\"");
op_morph)
| None ->
(Flags.if_verbose
msgnl
(str"Using setoid \""++pr_constr req ++str"\"" ++ spc() ++
str"and morphisms \""++pr_constr add_m_lem ++
str"\""++spc()++str"and \""++
pr_constr mul_m_lem++str"\"");
op_smorph r add mul req add_m_lem mul_m_lem) in
(setoid,op_morph)
let build_setoid_params r add mul opp req eqth =
match eqth with
Some th -> th
| None -> ring_equality (r,add,mul,opp,req)
let dest_ring env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match kind_of_term th_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req|])
when eq_constr f (Lazy.force coq_almost_ring_theory) ->
(None,r,zero,one,add,mul,Some sub,Some opp,req)
| App(f,[|r;zero;one;add;mul;req|])
when eq_constr f (Lazy.force coq_semi_ring_theory) ->
(Some true,r,zero,one,add,mul,None,None,req)
| App(f,[|r;zero;one;add;mul;sub;opp;req|])
when eq_constr f (Lazy.force coq_ring_theory) ->
(Some false,r,zero,one,add,mul,Some sub,Some opp,req)
| _ -> error "bad ring structure"
let dest_morph env sigma m_spec =
let m_typ = Retyping.get_type_of env sigma m_spec in
match kind_of_term m_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req;
c;czero;cone;cadd;cmul;csub;copp;ceqb;phi|])
when eq_constr f (Lazy.force coq_ring_morph) ->
(c,czero,cone,cadd,cmul,Some csub,Some copp,ceqb,phi)
| App(f,[|r;zero;one;add;mul;req;c;czero;cone;cadd;cmul;ceqb;phi|])
when eq_constr f (Lazy.force coq_semi_morph) ->
(c,czero,cone,cadd,cmul,None,None,ceqb,phi)
| _ -> error "bad morphism structure"
type coeff_spec =
Computational of constr (* equality test *)
| Abstract (* coeffs = Z *)
| Morphism of constr (* general morphism *)
let reflect_coeff rkind =
(* We build an ill-typed terms on purpose... *)
match rkind with
Abstract -> Lazy.force coq_abstract
| Computational c -> lapp coq_comp [|c|]
| Morphism m -> lapp coq_morph [|m|]
type cst_tac_spec =
CstTac of raw_tactic_expr
| Closed of reference list
let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac =
match cst_tac with
Some (CstTac t) -> Tacinterp.glob_tactic t
| Some (Closed lc) ->
closed_term_ast (List.map Smartlocate.global_with_alias lc)
| None ->
(match rk, opp, kind with
Abstract, None, _ ->
let t = ArgArg(dummy_loc,Lazy.force ltac_inv_morphN) in
TacArg(dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;add;mul]))
| Abstract, Some opp, Some _ ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphZ) in
TacArg(dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
| Abstract, Some opp, None ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphNword) in
TacArg
(dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
| Computational _,_,_ ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in
TacArg
(dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;zero;one]))
| Morphism mth,_,_ ->
let (_,czero,cone,_,_,_,_,_,_) = dest_morph env sigma mth in
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in
TacArg
(dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;czero;cone])))
let make_hyp env c =
let t = Retyping.get_type_of env Evd.empty c in
lapp coq_mkhypo [|t;c|]
let make_hyp_list env lH =
let carrier = Lazy.force coq_hypo in
List.fold_right
(fun c l -> lapp coq_cons [|carrier; (make_hyp env c); l|]) lH
(lapp coq_nil [|carrier|])
let interp_power env pow =
let carrier = Lazy.force coq_hypo in
match pow with
| None ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_nothing) in
(TacArg(dummy_loc,TacCall(dummy_loc,t,[])), lapp coq_None [|carrier|])
| Some (tac, spec) ->
let tac =
match tac with
| CstTac t -> Tacinterp.glob_tactic t
| Closed lc ->
closed_term_ast (List.map Smartlocate.global_with_alias lc) in
let spec = make_hyp env (ic spec) in
(tac, lapp coq_Some [|carrier; spec|])
let interp_sign env sign =
let carrier = Lazy.force coq_hypo in
match sign with
| None -> lapp coq_None [|carrier|]
| Some spec ->
let spec = make_hyp env (ic spec) in
lapp coq_Some [|carrier;spec|]
(* Same remark on ill-typed terms ... *)
let interp_div env div =
let carrier = Lazy.force coq_hypo in
match div with
| None -> lapp coq_None [|carrier|]
| Some spec ->
let spec = make_hyp env (ic spec) in
lapp coq_Some [|carrier;spec|]
(* Same remark on ill-typed terms ... *)
let add_theory name rth eqth morphth cst_tac (pre,post) power sign div =
check_required_library (cdir@["Ring_base"]);
let env = Global.env() in
let sigma = Evd.empty in
let (kind,r,zero,one,add,mul,sub,opp,req) = dest_ring env sigma rth in
let (sth,ext) = build_setoid_params r add mul opp req eqth in
let (pow_tac, pspec) = interp_power env power in
let sspec = interp_sign env sign in
let dspec = interp_div env div in
let rk = reflect_coeff morphth in
let params =
exec_tactic env 5 (zltac "ring_lemmas")
(List.map carg[sth;ext;rth;pspec;sspec;dspec;rk]) in
let lemma1 = constr_of params.(3) in
let lemma2 = constr_of params.(4) in
let lemma1 = decl_constant (string_of_id name^"_ring_lemma1") lemma1 in
let lemma2 = decl_constant (string_of_id name^"_ring_lemma2") lemma2 in
let cst_tac =
interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
let pretac =
match pre with
Some t -> Tacinterp.glob_tactic t
| _ -> TacId [] in
let posttac =
match post with
Some t -> Tacinterp.glob_tactic t
| _ -> TacId [] in
let _ =
Lib.add_leaf name
(theory_to_obj
{ ring_carrier = r;
ring_req = req;
ring_setoid = sth;
ring_ext = constr_of params.(1);
ring_morph = constr_of params.(2);
ring_th = constr_of params.(0);
ring_cst_tac = cst_tac;
ring_pow_tac = pow_tac;
ring_lemma1 = lemma1;
ring_lemma2 = lemma2;
ring_pre_tac = pretac;
ring_post_tac = posttac }) in
()
type ring_mod =
Ring_kind of coeff_spec
| Const_tac of cst_tac_spec
| Pre_tac of raw_tactic_expr
| Post_tac of raw_tactic_expr
| Setoid of Topconstr.constr_expr * Topconstr.constr_expr
| Pow_spec of cst_tac_spec * Topconstr.constr_expr
(* Syntaxification tactic , correctness lemma *)
| Sign_spec of Topconstr.constr_expr
| Div_spec of Topconstr.constr_expr
VERNAC ARGUMENT EXTEND ring_mod
| [ "decidable" constr(eq_test) ] -> [ Ring_kind(Computational (ic eq_test)) ]
| [ "abstract" ] -> [ Ring_kind Abstract ]
| [ "morphism" constr(morph) ] -> [ Ring_kind(Morphism (ic morph)) ]
| [ "constants" "[" tactic(cst_tac) "]" ] -> [ Const_tac(CstTac cst_tac) ]
| [ "closed" "[" ne_global_list(l) "]" ] -> [ Const_tac(Closed l) ]
| [ "preprocess" "[" tactic(pre) "]" ] -> [ Pre_tac pre ]
| [ "postprocess" "[" tactic(post) "]" ] -> [ Post_tac post ]
| [ "setoid" constr(sth) constr(ext) ] -> [ Setoid(sth,ext) ]
| [ "sign" constr(sign_spec) ] -> [ Sign_spec sign_spec ]
| [ "power" constr(pow_spec) "[" ne_global_list(l) "]" ] ->
[ Pow_spec (Closed l, pow_spec) ]
| [ "power_tac" constr(pow_spec) "[" tactic(cst_tac) "]" ] ->
[ Pow_spec (CstTac cst_tac, pow_spec) ]
| [ "div" constr(div_spec) ] -> [ Div_spec div_spec ]
END
let set_once s r v =
if !r = None then r := Some v else error (s^" cannot be set twice")
let process_ring_mods l =
let kind = ref None in
let set = ref None in
let cst_tac = ref None in
let pre = ref None in
let post = ref None in
let sign = ref None in
let power = ref None in
let div = ref None in
List.iter(function
Ring_kind k -> set_once "ring kind" kind k
| Const_tac t -> set_once "tactic recognizing constants" cst_tac t
| Pre_tac t -> set_once "preprocess tactic" pre t
| Post_tac t -> set_once "postprocess tactic" post t
| Setoid(sth,ext) -> set_once "setoid" set (ic sth,ic ext)
| Pow_spec(t,spec) -> set_once "power" power (t,spec)
| Sign_spec t -> set_once "sign" sign t
| Div_spec t -> set_once "div" div t) l;
let k = match !kind with Some k -> k | None -> Abstract in
(k, !set, !cst_tac, !pre, !post, !power, !sign, !div)
VERNAC COMMAND EXTEND AddSetoidRing
| [ "Add" "Ring" ident(id) ":" constr(t) ring_mods(l) ] ->
[ let (k,set,cst,pre,post,power,sign, div) = process_ring_mods l in
add_theory id (ic t) set k cst (pre,post) power sign div]
END
(*****************************************************************************)
(* The tactics consist then only in a lookup in the ring database and
call the appropriate ltac. *)
let make_args_list rl t =
match rl with
| [] -> let (_,t1,t2) = dest_rel0 t in [t1;t2]
| _ -> rl
let make_term_list carrier rl =
List.fold_right
(fun x l -> lapp coq_cons [|carrier;x;l|]) rl
(lapp coq_nil [|carrier|])
let ltac_ring_structure e =
let req = carg e.ring_req in
let sth = carg e.ring_setoid in
let ext = carg e.ring_ext in
let morph = carg e.ring_morph in
let th = carg e.ring_th in
let cst_tac = Tacexp e.ring_cst_tac in
let pow_tac = Tacexp e.ring_pow_tac in
let lemma1 = carg e.ring_lemma1 in
let lemma2 = carg e.ring_lemma2 in
let pretac = Tacexp(TacFun([None],e.ring_pre_tac)) in
let posttac = Tacexp(TacFun([None],e.ring_post_tac)) in
[req;sth;ext;morph;th;cst_tac;pow_tac;
lemma1;lemma2;pretac;posttac]
let ring_lookup (f:glob_tactic_expr) lH rl t gl =
let env = pf_env gl in
let sigma = project gl in
let rl = make_args_list rl t in
let e = find_ring_structure env sigma rl in
let rl = carg (make_term_list e.ring_carrier rl) in
let lH = carg (make_hyp_list env lH) in
let ring = ltac_ring_structure e in
ltac_apply f (ring@[lH;rl]) gl
TACTIC EXTEND ring_lookup
| [ "ring_lookup" tactic0(f) "[" constr_list(lH) "]" ne_constr_list(lrt) ] ->
[ let (t,lr) = list_sep_last lrt in ring_lookup f lH lr t]
END
(***********************************************************************)
let new_field_path =
make_dirpath (List.map id_of_string ["Field_tac";plugin_dir;"Coq"])
let field_ltac s =
lazy(make_kn (MPfile new_field_path) (make_dirpath []) (mk_label s))
let _ = add_map "field"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
(* display_linear: evaluate polynomials and coef operations, protect
field operations and make recursive call on the var map *)
my_constant "display_linear",
(function -1|9|10|11|12|13|15|16->Eval|14->Rec|_->Prot);
my_constant "display_pow_linear",
(function -1|9|10|11|12|13|14|16|18|19->Eval|17->Rec|_->Prot);
(* Pphi_dev: evaluate polynomial and coef operations, protect
ring operations and make recursive call on the var map *)
pol_cst "Pphi_dev", (function -1|8|9|10|11|12|14->Eval|13->Rec|_->Prot);
pol_cst "Pphi_pow",
(function -1|8|9|10|11|13|15|17->Eval|16->Rec|_->Prot);
(* PEeval: evaluate morphism and polynomial, protect ring
operations and make recursive call on the var map *)
pol_cst "PEeval", (function -1|7|9|12->Eval|11->Rec|_->Prot);
(* FEeval: evaluate morphism, protect field
operations and make recursive call on the var map *)
my_constant "FEeval", (function -1|8|9|10|11|14->Eval|13->Rec|_->Prot)]);;
let _ = add_map "field_cond"
(map_with_eq
[coq_cons,(function -1->Eval|2->Rec|_->Prot);
coq_nil, (function -1->Eval|_ -> Prot);
(* PCond: evaluate morphism and denum list, protect ring
operations and make recursive call on the var map *)
my_constant "PCond", (function -1|8|10|13->Eval|12->Rec|_->Prot)]);;
(* (function -1|8|10->Eval|9->Rec|_->Prot)]);;*)
let _ = Redexpr.declare_reduction "simpl_field_expr"
(protect_red "field")
let afield_theory = my_constant "almost_field_theory"
let field_theory = my_constant "field_theory"
let sfield_theory = my_constant "semi_field_theory"
let af_ar = my_constant"AF_AR"
let f_r = my_constant"F_R"
let sf_sr = my_constant"SF_SR"
let dest_field env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match kind_of_term th_typ with
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
when eq_constr f (Lazy.force afield_theory) ->
let rth = lapp af_ar
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
when eq_constr f (Lazy.force field_theory) ->
let rth =
lapp f_r
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;div;inv;req|])
when eq_constr f (Lazy.force sfield_theory) ->
let rth = lapp sf_sr
[|r;zero;one;add;mul;div;inv;req;th_spec|] in
(Some true,r,zero,one,add,mul,None,None,div,inv,req,rth)
| _ -> error "bad field structure"
type field_info =
{ field_carrier : types;
field_req : constr;
field_cst_tac : glob_tactic_expr;
field_pow_tac : glob_tactic_expr;
field_ok : constr;
field_simpl_eq_ok : constr;
field_simpl_ok : constr;
field_simpl_eq_in_ok : constr;
field_cond : constr;
field_pre_tac : glob_tactic_expr;
field_post_tac : glob_tactic_expr }
let field_from_carrier = ref Cmap.empty
let field_from_relation = ref Cmap.empty
let field_from_name = ref Spmap.empty
let field_for_carrier r = Cmap.find r !field_from_carrier
let field_for_relation rel = Cmap.find rel !field_from_relation
let find_field_structure env sigma l =
check_required_library (cdir@["Field_tac"]);
match l with
| t::cl' ->
let ty = Retyping.get_type_of env sigma t in
let check c =
let ty' = Retyping.get_type_of env sigma c in
if not (Reductionops.is_conv env sigma ty ty') then
errorlabstrm "field"
(str"arguments of field_simplify do not have all the same type")
in
List.iter check cl';
(try field_for_carrier ty
with Not_found ->
errorlabstrm "field"
(str"cannot find a declared field structure over"++
spc()++str"\""++pr_constr ty++str"\""))
| [] -> assert false
(* let (req,_,_) = dest_rel cl in
(try field_for_relation req
with Not_found ->
errorlabstrm "field"
(str"cannot find a declared field structure for equality"++
spc()++str"\""++pr_constr req++str"\"")) *)
let _ =
Summary.declare_summary "tactic-new-field-table"
{ Summary.freeze_function =
(fun () -> !field_from_carrier,!field_from_relation,!field_from_name);
Summary.unfreeze_function =
(fun (ct,rt,nt) ->
field_from_carrier := ct; field_from_relation := rt;
field_from_name := nt);
Summary.init_function =
(fun () ->
field_from_carrier := Cmap.empty; field_from_relation := Cmap.empty;
field_from_name := Spmap.empty) }
let add_field_entry (sp,_kn) e =
(*
let _ = ty e.field_ok in
let _ = ty e.field_simpl_eq_ok in
let _ = ty e.field_simpl_ok in
let _ = ty e.field_cond in
*)
field_from_carrier := Cmap.add e.field_carrier e !field_from_carrier;
field_from_relation := Cmap.add e.field_req e !field_from_relation;
field_from_name := Spmap.add sp e !field_from_name
let subst_th (subst,th) =
let c' = subst_mps subst th.field_carrier in
let eq' = subst_mps subst th.field_req in
let thm1' = subst_mps subst th.field_ok in
let thm2' = subst_mps subst th.field_simpl_eq_ok in
let thm3' = subst_mps subst th.field_simpl_ok in
let thm4' = subst_mps subst th.field_simpl_eq_in_ok in
let thm5' = subst_mps subst th.field_cond in
let tac'= subst_tactic subst th.field_cst_tac in
let pow_tac' = subst_tactic subst th.field_pow_tac in
let pretac'= subst_tactic subst th.field_pre_tac in
let posttac'= subst_tactic subst th.field_post_tac in
if c' == th.field_carrier &&
eq' == th.field_req &&
thm1' == th.field_ok &&
thm2' == th.field_simpl_eq_ok &&
thm3' == th.field_simpl_ok &&
thm4' == th.field_simpl_eq_in_ok &&
thm5' == th.field_cond &&
tac' == th.field_cst_tac &&
pow_tac' == th.field_pow_tac &&
pretac' == th.field_pre_tac &&
posttac' == th.field_post_tac then th
else
{ field_carrier = c';
field_req = eq';
field_cst_tac = tac';
field_pow_tac = pow_tac';
field_ok = thm1';
field_simpl_eq_ok = thm2';
field_simpl_ok = thm3';
field_simpl_eq_in_ok = thm4';
field_cond = thm5';
field_pre_tac = pretac';
field_post_tac = posttac' }
let ftheory_to_obj : field_info -> obj =
let cache_th (name,th) = add_field_entry name th in
declare_object
{(default_object "tactic-new-field-theory") with
open_function = (fun i o -> if i=1 then cache_th o);
cache_function = cache_th;
subst_function = subst_th;
classify_function = (fun x -> Substitute x) }
let field_equality r inv req =
match kind_of_term req with
| App (f, [| _ |]) when eq_constr f (Lazy.force coq_eq) ->
mkApp((Coqlib.build_coq_eq_data()).congr,[|r;r;inv|])
| _ ->
let _setoid = setoid_of_relation (Global.env ()) r req in
let signature = [Some (r,Some req)],Some(r,Some req) in
let inv_m, inv_m_lem =
try Rewrite.default_morphism signature inv
with Not_found ->
error "field inverse should be declared as a morphism" in
inv_m_lem
let add_field_theory name fth eqth morphth cst_tac inj (pre,post) power sign odiv =
check_required_library (cdir@["Field_tac"]);
let env = Global.env() in
let sigma = Evd.empty in
let (kind,r,zero,one,add,mul,sub,opp,div,inv,req,rth) =
dest_field env sigma fth in
let (sth,ext) = build_setoid_params r add mul opp req eqth in
let eqth = Some(sth,ext) in
let _ = add_theory name rth eqth morphth cst_tac (None,None) power sign odiv in
let (pow_tac, pspec) = interp_power env power in
let sspec = interp_sign env sign in
let dspec = interp_div env odiv in
let inv_m = field_equality r inv req in
let rk = reflect_coeff morphth in
let params =
exec_tactic env 9 (field_ltac"field_lemmas")
(List.map carg[sth;ext;inv_m;fth;pspec;sspec;dspec;rk]) in
let lemma1 = constr_of params.(3) in
let lemma2 = constr_of params.(4) in
let lemma3 = constr_of params.(5) in
let lemma4 = constr_of params.(6) in
let cond_lemma =
match inj with
| Some thm -> mkApp(constr_of params.(8),[|thm|])
| None -> constr_of params.(7) in
let lemma1 = decl_constant (string_of_id name^"_field_lemma1") lemma1 in
let lemma2 = decl_constant (string_of_id name^"_field_lemma2") lemma2 in
let lemma3 = decl_constant (string_of_id name^"_field_lemma3") lemma3 in
let lemma4 = decl_constant (string_of_id name^"_field_lemma4") lemma4 in
let cond_lemma = decl_constant (string_of_id name^"_lemma5") cond_lemma in
let cst_tac =
interp_cst_tac env sigma morphth kind (zero,one,add,mul,opp) cst_tac in
let pretac =
match pre with
Some t -> Tacinterp.glob_tactic t
| _ -> TacId [] in
let posttac =
match post with
Some t -> Tacinterp.glob_tactic t
| _ -> TacId [] in
let _ =
Lib.add_leaf name
(ftheory_to_obj
{ field_carrier = r;
field_req = req;
field_cst_tac = cst_tac;
field_pow_tac = pow_tac;
field_ok = lemma1;
field_simpl_eq_ok = lemma2;
field_simpl_ok = lemma3;
field_simpl_eq_in_ok = lemma4;
field_cond = cond_lemma;
field_pre_tac = pretac;
field_post_tac = posttac }) in ()
type field_mod =
Ring_mod of ring_mod
| Inject of Topconstr.constr_expr
VERNAC ARGUMENT EXTEND field_mod
| [ ring_mod(m) ] -> [ Ring_mod m ]
| [ "completeness" constr(inj) ] -> [ Inject inj ]
END
let process_field_mods l =
let kind = ref None in
let set = ref None in
let cst_tac = ref None in
let pre = ref None in
let post = ref None in
let inj = ref None in
let sign = ref None in
let power = ref None in
let div = ref None in
List.iter(function
Ring_mod(Ring_kind k) -> set_once "field kind" kind k
| Ring_mod(Const_tac t) ->
set_once "tactic recognizing constants" cst_tac t
| Ring_mod(Pre_tac t) -> set_once "preprocess tactic" pre t
| Ring_mod(Post_tac t) -> set_once "postprocess tactic" post t
| Ring_mod(Setoid(sth,ext)) -> set_once "setoid" set (ic sth,ic ext)
| Ring_mod(Pow_spec(t,spec)) -> set_once "power" power (t,spec)
| Ring_mod(Sign_spec t) -> set_once "sign" sign t
| Ring_mod(Div_spec t) -> set_once "div" div t
| Inject i -> set_once "infinite property" inj (ic i)) l;
let k = match !kind with Some k -> k | None -> Abstract in
(k, !set, !inj, !cst_tac, !pre, !post, !power, !sign, !div)
VERNAC COMMAND EXTEND AddSetoidField
| [ "Add" "Field" ident(id) ":" constr(t) field_mods(l) ] ->
[ let (k,set,inj,cst_tac,pre,post,power,sign,div) = process_field_mods l in
add_field_theory id (ic t) set k cst_tac inj (pre,post) power sign div]
END
let ltac_field_structure e =
let req = carg e.field_req in
let cst_tac = Tacexp e.field_cst_tac in
let pow_tac = Tacexp e.field_pow_tac in
let field_ok = carg e.field_ok in
let field_simpl_ok = carg e.field_simpl_ok in
let field_simpl_eq_ok = carg e.field_simpl_eq_ok in
let field_simpl_eq_in_ok = carg e.field_simpl_eq_in_ok in
let cond_ok = carg e.field_cond in
let pretac = Tacexp(TacFun([None],e.field_pre_tac)) in
let posttac = Tacexp(TacFun([None],e.field_post_tac)) in
[req;cst_tac;pow_tac;field_ok;field_simpl_ok;field_simpl_eq_ok;
field_simpl_eq_in_ok;cond_ok;pretac;posttac]
let field_lookup (f:glob_tactic_expr) lH rl t gl =
let env = pf_env gl in
let sigma = project gl in
let rl = make_args_list rl t in
let e = find_field_structure env sigma rl in
let rl = carg (make_term_list e.field_carrier rl) in
let lH = carg (make_hyp_list env lH) in
let field = ltac_field_structure e in
ltac_apply f (field@[lH;rl]) gl
TACTIC EXTEND field_lookup
| [ "field_lookup" tactic(f) "[" constr_list(lH) "]" ne_constr_list(lt) ] ->
[ let (t,l) = list_sep_last lt in field_lookup f lH l t ]
END
|