1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Term
open Reductionops
open Environ
open Typeops
open Pretype_errors
open Classops
open Recordops
open Evarutil
open Evarconv
open Retyping
open Evd
open Global
open Subtac_utils
open Coqlib
open Printer
open Subtac_errors
open Eterm
open Pp
let app_opt env evars f t =
whd_betaiota !evars (app_opt f t)
let pair_of_array a = (a.(0), a.(1))
let make_name s = Name (id_of_string s)
let rec disc_subset x =
match kind_of_term x with
| App (c, l) ->
(match kind_of_term c with
Ind i ->
let len = Array.length l in
let sig_ = delayed_force sig_ in
if len = 2 && i = Term.destInd sig_.typ
then
let (a, b) = pair_of_array l in
Some (a, b)
else None
| _ -> None)
| _ -> None
and disc_exist env x =
match kind_of_term x with
| App (c, l) ->
(match kind_of_term c with
Construct c ->
if c = Term.destConstruct (delayed_force sig_).intro
then Some (l.(0), l.(1), l.(2), l.(3))
else None
| _ -> None)
| _ -> None
module Coercion = struct
exception NoSubtacCoercion
let disc_proj_exist env x =
match kind_of_term x with
| App (c, l) ->
(if Term.eq_constr c (delayed_force sig_).proj1
&& Array.length l = 3
then disc_exist env l.(2)
else None)
| _ -> None
let sort_rel s1 s2 =
match s1, s2 with
Prop Pos, Prop Pos -> Prop Pos
| Prop Pos, Prop Null -> Prop Null
| Prop Null, Prop Null -> Prop Null
| Prop Null, Prop Pos -> Prop Pos
| Type _, Prop Pos -> Prop Pos
| Type _, Prop Null -> Prop Null
| _, Type _ -> s2
let hnf env isevars c = whd_betadeltaiota env isevars c
let hnf_nodelta env evars c = whd_betaiota evars c
let lift_args n sign =
let rec liftrec k = function
| t::sign -> liftn n k t :: (liftrec (k-1) sign)
| [] -> []
in
liftrec (List.length sign) sign
let rec mu env isevars t =
let rec aux v =
let v = hnf env !isevars v in
match disc_subset v with
Some (u, p) ->
let f, ct = aux u in
let p = hnf env !isevars p in
(Some (fun x ->
app_opt env isevars
f (mkApp ((delayed_force sig_).proj1,
[| u; p; x |]))),
ct)
| None -> (None, v)
in aux t
and coerce loc env isevars (x : Term.constr) (y : Term.constr)
: (Term.constr -> Term.constr) option
=
let rec coerce_unify env x y =
let x = hnf env !isevars x and y = hnf env !isevars y in
try
isevars := the_conv_x_leq env x y !isevars;
None
with Reduction.NotConvertible -> coerce' env x y
and coerce' env x y : (Term.constr -> Term.constr) option =
let subco () = subset_coerce env isevars x y in
let dest_prod c =
match Reductionops.splay_prod_n env ( !isevars) 1 c with
| [(na,b,t)], c -> (na,t), c
| _ -> raise NoSubtacCoercion
in
let rec coerce_application typ typ' c c' l l' =
let len = Array.length l in
let rec aux tele typ typ' i co =
if i < len then
let hdx = l.(i) and hdy = l'.(i) in
try isevars := the_conv_x_leq env hdx hdy !isevars;
let (n, eqT), restT = dest_prod typ in
let (n', eqT'), restT' = dest_prod typ' in
aux (hdx :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) co
with Reduction.NotConvertible ->
let (n, eqT), restT = dest_prod typ in
let (n', eqT'), restT' = dest_prod typ' in
let _ =
try isevars := the_conv_x_leq env eqT eqT' !isevars
with Reduction.NotConvertible -> raise NoSubtacCoercion
in
(* Disallow equalities on arities *)
if Reduction.is_arity env eqT then raise NoSubtacCoercion;
let restargs = lift_args 1
(List.rev (Array.to_list (Array.sub l (succ i) (len - (succ i)))))
in
let args = List.rev (restargs @ mkRel 1 :: List.map (lift 1) tele) in
let pred = mkLambda (n, eqT, applistc (lift 1 c) args) in
let eq = mkApp (delayed_force eq_ind, [| eqT; hdx; hdy |]) in
let evar = make_existential loc env isevars eq in
let eq_app x = mkApp (delayed_force eq_rect,
[| eqT; hdx; pred; x; hdy; evar|]) in
aux (hdy :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) (fun x -> eq_app (co x))
else Some co
in
if isEvar c || isEvar c' then
(* Second-order unification needed. *)
raise NoSubtacCoercion;
aux [] typ typ' 0 (fun x -> x)
in
match (kind_of_term x, kind_of_term y) with
| Sort s, Sort s' ->
(match s, s' with
Prop x, Prop y when x = y -> None
| Prop _, Type _ -> None
| Type x, Type y when x = y -> None (* false *)
| _ -> subco ())
| Prod (name, a, b), Prod (name', a', b') ->
let name' = Name (Namegen.next_ident_away (id_of_string "x") (Termops.ids_of_context env)) in
let env' = push_rel (name', None, a') env in
let c1 = coerce_unify env' (lift 1 a') (lift 1 a) in
(* env, x : a' |- c1 : lift 1 a' > lift 1 a *)
let coec1 = app_opt env' isevars c1 (mkRel 1) in
(* env, x : a' |- c1[x] : lift 1 a *)
let c2 = coerce_unify env' (subst1 coec1 (liftn 1 2 b)) b' in
(* env, x : a' |- c2 : b[c1[x]/x]] > b' *)
(match c1, c2 with
| None, None -> None
| _, _ ->
Some
(fun f ->
mkLambda (name', a',
app_opt env' isevars c2
(mkApp (Term.lift 1 f, [| coec1 |])))))
| App (c, l), App (c', l') ->
(match kind_of_term c, kind_of_term c' with
Ind i, Ind i' -> (* Inductive types *)
let len = Array.length l in
let existS = delayed_force existS in
let prod = delayed_force prod in
(* Sigma types *)
if len = Array.length l' && len = 2 && i = i'
&& (i = Term.destInd existS.typ || i = Term.destInd prod.typ)
then
if i = Term.destInd existS.typ
then
begin
let (a, pb), (a', pb') =
pair_of_array l, pair_of_array l'
in
let c1 = coerce_unify env a a' in
let rec remove_head a c =
match kind_of_term c with
| Lambda (n, t, t') -> c, t'
(*| Prod (n, t, t') -> t'*)
| Evar (k, args) ->
let (evs, t) = Evarutil.define_evar_as_lambda env !isevars (k,args) in
isevars := evs;
let (n, dom, rng) = destLambda t in
let (domk, args) = destEvar dom in
isevars := define domk a !isevars;
t, rng
| _ -> raise NoSubtacCoercion
in
let (pb, b), (pb', b') = remove_head a pb, remove_head a' pb' in
let env' = push_rel (make_name "x", None, a) env in
let c2 = coerce_unify env' b b' in
match c1, c2 with
None, None ->
None
| _, _ ->
Some
(fun x ->
let x, y =
app_opt env' isevars c1 (mkApp (existS.proj1,
[| a; pb; x |])),
app_opt env' isevars c2 (mkApp (existS.proj2,
[| a; pb; x |]))
in
mkApp (existS.intro, [| a'; pb'; x ; y |]))
end
else
begin
let (a, b), (a', b') =
pair_of_array l, pair_of_array l'
in
let c1 = coerce_unify env a a' in
let c2 = coerce_unify env b b' in
match c1, c2 with
None, None -> None
| _, _ ->
Some
(fun x ->
let x, y =
app_opt env isevars c1 (mkApp (prod.proj1,
[| a; b; x |])),
app_opt env isevars c2 (mkApp (prod.proj2,
[| a; b; x |]))
in
mkApp (prod.intro, [| a'; b'; x ; y |]))
end
else
if i = i' && len = Array.length l' then
let evm = !isevars in
(try subco ()
with NoSubtacCoercion ->
let typ = Typing.type_of env evm c in
let typ' = Typing.type_of env evm c' in
(* if not (is_arity env evm typ) then *)
coerce_application typ typ' c c' l l')
(* else subco () *)
else
subco ()
| x, y when x = y ->
if Array.length l = Array.length l' then
let evm = !isevars in
let lam_type = Typing.type_of env evm c in
let lam_type' = Typing.type_of env evm c' in
(* if not (is_arity env evm lam_type) then ( *)
coerce_application lam_type lam_type' c c' l l'
(* ) else subco () *)
else subco ()
| _ -> subco ())
| _, _ -> subco ()
and subset_coerce env isevars x y =
match disc_subset x with
Some (u, p) ->
let c = coerce_unify env u y in
let f x =
app_opt env isevars c (mkApp ((delayed_force sig_).proj1,
[| u; p; x |]))
in Some f
| None ->
match disc_subset y with
Some (u, p) ->
let c = coerce_unify env x u in
Some
(fun x ->
let cx = app_opt env isevars c x in
let evar = make_existential loc env isevars (mkApp (p, [| cx |]))
in
(mkApp
((delayed_force sig_).intro,
[| u; p; cx; evar |])))
| None ->
raise NoSubtacCoercion
(*isevars := Evd.add_conv_pb (Reduction.CONV, x, y) !isevars;
None*)
in coerce_unify env x y
let coerce_itf loc env isevars v t c1 =
let evars = ref isevars in
let coercion = coerce loc env evars t c1 in
let t = Option.map (app_opt env evars coercion) v in
!evars, t
(* Taken from pretyping/coercion.ml *)
(* Typing operations dealing with coercions *)
(* Here, funj is a coercion therefore already typed in global context *)
let apply_coercion_args env argl funj =
let rec apply_rec acc typ = function
| [] -> { uj_val = applist (j_val funj,argl);
uj_type = typ }
| h::restl ->
(* On devrait pouvoir s'arranger pour qu'on n'ait pas à faire hnf_constr *)
match kind_of_term (whd_betadeltaiota env Evd.empty typ) with
| Prod (_,c1,c2) ->
(* Typage garanti par l'appel à app_coercion*)
apply_rec (h::acc) (subst1 h c2) restl
| _ -> anomaly "apply_coercion_args"
in
apply_rec [] funj.uj_type argl
(* appliquer le chemin de coercions de patterns p *)
exception NoCoercion
let apply_pattern_coercion loc pat p =
List.fold_left
(fun pat (co,n) ->
let f i = if i<n then Glob_term.PatVar (loc, Anonymous) else pat in
Glob_term.PatCstr (loc, co, list_tabulate f (n+1), Anonymous))
pat p
(* raise Not_found if no coercion found *)
let inh_pattern_coerce_to loc pat ind1 ind2 =
let p = lookup_pattern_path_between (ind1,ind2) in
apply_pattern_coercion loc pat p
(* appliquer le chemin de coercions p à hj *)
let apply_coercion env sigma p hj typ_cl =
try
fst (List.fold_left
(fun (ja,typ_cl) i ->
let fv,isid = coercion_value i in
let argl = (class_args_of env sigma typ_cl)@[ja.uj_val] in
let jres = apply_coercion_args env argl fv in
(if isid then
{ uj_val = ja.uj_val; uj_type = jres.uj_type }
else
jres),
jres.uj_type)
(hj,typ_cl) p)
with e when Errors.noncritical e -> anomaly "apply_coercion"
let inh_app_fun _ env isevars j =
let isevars = ref isevars in
let t = hnf env !isevars j.uj_type in
match kind_of_term t with
| Prod (_,_,_) -> (!isevars,j)
| Evar ev when not (is_defined_evar !isevars ev) ->
let (isevars',t) = define_evar_as_product !isevars ev in
(isevars',{ uj_val = j.uj_val; uj_type = t })
| _ ->
(try
let t,p =
lookup_path_to_fun_from env !isevars j.uj_type in
(!isevars,apply_coercion env !isevars p j t)
with Not_found ->
try
let coercef, t = mu env isevars t in
let res = { uj_val = app_opt env isevars coercef j.uj_val; uj_type = t } in
(!isevars, res)
with NoSubtacCoercion | NoCoercion ->
(!isevars,j))
let inh_tosort_force loc env isevars j =
try
let t,p = lookup_path_to_sort_from env ( isevars) j.uj_type in
let j1 = apply_coercion env ( isevars) p j t in
(isevars, type_judgment env (j_nf_evar ( isevars) j1))
with Not_found ->
error_not_a_type_loc loc env ( isevars) j
let inh_coerce_to_sort loc env isevars j =
let typ = hnf env isevars j.uj_type in
match kind_of_term typ with
| Sort s -> (isevars,{ utj_val = j.uj_val; utj_type = s })
| Evar ev when not (is_defined_evar isevars ev) ->
let (isevars',s) = define_evar_as_sort isevars ev in
(isevars',{ utj_val = j.uj_val; utj_type = s })
| _ ->
inh_tosort_force loc env isevars j
let inh_coerce_to_base loc env isevars j =
let isevars = ref isevars in
let typ = hnf env !isevars j.uj_type in
let ct, typ' = mu env isevars typ in
let res =
{ uj_val = app_opt env isevars ct j.uj_val;
uj_type = typ' }
in !isevars, res
let inh_coerce_to_prod loc env isevars t =
let isevars = ref isevars in
let typ = hnf env !isevars (snd t) in
let _, typ' = mu env isevars typ in
!isevars, (fst t, typ')
let inh_coerce_to_fail env evd rigidonly v t c1 =
if rigidonly & not (Heads.is_rigid env c1 && Heads.is_rigid env t)
then
raise NoCoercion
else
let v', t' =
try
let t2,t1,p = lookup_path_between env evd (t,c1) in
match v with
Some v ->
let j = apply_coercion env evd p
{uj_val = v; uj_type = t} t2 in
Some j.uj_val, j.uj_type
| None -> None, t
with Not_found -> raise NoCoercion
in
try (the_conv_x_leq env t' c1 evd, v')
with Reduction.NotConvertible -> raise NoCoercion
let rec inh_conv_coerce_to_fail loc env evd rigidonly v t c1 =
try (the_conv_x_leq env t c1 evd, v)
with Reduction.NotConvertible ->
try inh_coerce_to_fail env evd rigidonly v t c1
with NoCoercion ->
match
kind_of_term (whd_betadeltaiota env evd t),
kind_of_term (whd_betadeltaiota env evd c1)
with
| Prod (name,t1,t2), Prod (_,u1,u2) ->
(* Conversion did not work, we may succeed with a coercion. *)
(* We eta-expand (hence possibly modifying the original term!) *)
(* and look for a coercion c:u1->t1 s.t. fun x:u1 => v' (c x)) *)
(* has type forall (x:u1), u2 (with v' recursively obtained) *)
let name = match name with
| Anonymous -> Name (id_of_string "x")
| _ -> name in
let env1 = push_rel (name,None,u1) env in
let (evd', v1) =
inh_conv_coerce_to_fail loc env1 evd rigidonly
(Some (mkRel 1)) (lift 1 u1) (lift 1 t1) in
let v1 = Option.get v1 in
let v2 = Option.map (fun v -> beta_applist (lift 1 v,[v1])) v in
let t2 = Termops.subst_term v1 t2 in
let (evd'',v2') = inh_conv_coerce_to_fail loc env1 evd' rigidonly v2 t2 u2 in
(evd'', Option.map (fun v2' -> mkLambda (name, u1, v2')) v2')
| _ -> raise NoCoercion
(* Look for cj' obtained from cj by inserting coercions, s.t. cj'.typ = t *)
let inh_conv_coerce_to_gen rigidonly loc env evd cj ((n, t) as _tycon) =
match n with
| None ->
let cj = { cj with uj_type = hnf_nodelta env evd cj.uj_type }
and t = hnf_nodelta env evd t in
let (evd', val') =
try
inh_conv_coerce_to_fail loc env evd rigidonly
(Some cj.uj_val) cj.uj_type t
with NoCoercion ->
(try
coerce_itf loc env evd (Some cj.uj_val) cj.uj_type t
with NoSubtacCoercion ->
error_actual_type_loc loc env evd cj t)
in
let val' = match val' with Some v -> v | None -> assert(false) in
(evd',{ uj_val = val'; uj_type = t })
| Some (init, cur) ->
(evd, cj)
let inh_conv_coerce_to _ = inh_conv_coerce_to_gen false
let inh_conv_coerce_rigid_to _ = inh_conv_coerce_to_gen true
let inh_conv_coerces_to loc env isevars t ((abs, t') as _tycon) =
let nabsinit, nabs =
match abs with
None -> 0, 0
| Some (init, cur) -> init, cur
in
try
let rels, rng = Reductionops.splay_prod_n env ( isevars) nabs t in
(* The final range free variables must have been replaced by evars, we accept only that evars
in rng are applied to free vars. *)
if noccur_with_meta 1 (succ nabs) rng then (
let env', t, t' =
let env' = push_rel_context rels env in
env', rng, lift nabs t'
in
try
fst (try inh_conv_coerce_to_fail loc env' isevars false None t t'
with NoCoercion ->
coerce_itf loc env' isevars None t t')
with NoSubtacCoercion ->
error_cannot_coerce env' isevars (t, t'))
else isevars
with e when Errors.noncritical e -> isevars
end
|