1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* digit-based syntax for int31, bigN bigZ and bigQ *)
open Bigint
open Libnames
open Glob_term
(*** Constants for locating int31 / bigN / bigZ / bigQ constructors ***)
let make_dir l = Names.make_dirpath (List.map Names.id_of_string (List.rev l))
let make_path dir id = Libnames.make_path (make_dir dir) (Names.id_of_string id)
let make_mind mp id = Names.make_mind mp Names.empty_dirpath (Names.mk_label id)
let make_mind_mpfile dir id = make_mind (Names.MPfile (make_dir dir)) id
let make_mind_mpdot dir modname id =
let mp = Names.MPdot (Names.MPfile (make_dir dir), Names.mk_label modname)
in make_mind mp id
(* int31 stuff *)
let int31_module = ["Coq"; "Numbers"; "Cyclic"; "Int31"; "Int31"]
let int31_path = make_path int31_module "int31"
let int31_id = make_mind_mpfile int31_module
let int31_scope = "int31_scope"
let int31_construct = ConstructRef ((int31_id "int31",0),1)
let int31_0 = ConstructRef ((int31_id "digits",0),1)
let int31_1 = ConstructRef ((int31_id "digits",0),2)
(* bigN stuff*)
let zn2z_module = ["Coq"; "Numbers"; "Cyclic"; "DoubleCyclic"; "DoubleType"]
let zn2z_path = make_path zn2z_module "zn2z"
let zn2z_id = make_mind_mpfile zn2z_module
let zn2z_W0 = ConstructRef ((zn2z_id "zn2z",0),1)
let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2)
let bigN_module = ["Coq"; "Numbers"; "Natural"; "BigN"; "BigN" ]
let bigN_path = make_path (bigN_module@["BigN"]) "t"
let bigN_t = make_mind_mpdot bigN_module "BigN" "t'"
let bigN_scope = "bigN_scope"
(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *)
let n_inlined = 7
let bigN_constructor i =
ConstructRef ((bigN_t,0),(min i n_inlined)+1)
(*bigZ stuff*)
let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ]
let bigZ_path = make_path (bigZ_module@["BigZ"]) "t"
let bigZ_t = make_mind_mpdot bigZ_module "BigZ" "t_"
let bigZ_scope = "bigZ_scope"
let bigZ_pos = ConstructRef ((bigZ_t,0),1)
let bigZ_neg = ConstructRef ((bigZ_t,0),2)
(*bigQ stuff*)
let bigQ_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "BigQ"]
let bigQ_path = make_path (bigQ_module@["BigQ"]) "t"
let bigQ_t = make_mind_mpdot bigQ_module "BigQ" "t_"
let bigQ_scope = "bigQ_scope"
let bigQ_z = ConstructRef ((bigQ_t,0),1)
(*** Definition of the Non_closed exception, used in the pretty printing ***)
exception Non_closed
(*** Parsing for int31 in digital notation ***)
(* parses a *non-negative* integer (from bigint.ml) into an int31
wraps modulo 2^31 *)
let int31_of_pos_bigint dloc n =
let ref_construct = GRef (dloc, int31_construct) in
let ref_0 = GRef (dloc, int31_0) in
let ref_1 = GRef (dloc, int31_1) in
let rec args counter n =
if counter <= 0 then
[]
else
let (q,r) = div2_with_rest n in
(if r then ref_1 else ref_0)::(args (counter-1) q)
in
GApp (dloc, ref_construct, List.rev (args 31 n))
let error_negative dloc =
Util.user_err_loc (dloc, "interp_int31", Pp.str "int31 are only non-negative numbers.")
let interp_int31 dloc n =
if is_pos_or_zero n then
int31_of_pos_bigint dloc n
else
error_negative dloc
(* Pretty prints an int31 *)
let bigint_of_int31 =
let rec args_parsing args cur =
match args with
| [] -> cur
| (GRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur)
| (GRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur))
| _ -> raise Non_closed
in
function
| GApp (_, GRef (_, c), args) when c=int31_construct -> args_parsing args zero
| _ -> raise Non_closed
let uninterp_int31 i =
try
Some (bigint_of_int31 i)
with Non_closed ->
None
(* Actually declares the interpreter for int31 *)
let _ = Notation.declare_numeral_interpreter int31_scope
(int31_path, int31_module)
interp_int31
([GRef (Util.dummy_loc, int31_construct)],
uninterp_int31,
true)
(*** Parsing for bigN in digital notation ***)
(* the base for bigN (in Coq) that is 2^31 in our case *)
let base = pow two 31
(* base of the bigN of height N : (2^31)^(2^n) *)
let rank n =
let rec rk n pow2 =
if n <= 0 then pow2
else rk (n-1) (mult pow2 pow2)
in rk n base
(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored
it is expected to be used only when the quotient would also need 2^n int31 to be
stored *)
let split_at n bi =
euclid bi (rank (n-1))
(* search the height of the Coq bigint needed to represent the integer bi *)
let height bi =
let rec hght n pow2 =
if less_than bi pow2 then n
else hght (n+1) (mult pow2 pow2)
in hght 0 base
(* n must be a non-negative integer (from bigint.ml) *)
let word_of_pos_bigint dloc hght n =
let ref_W0 = GRef (dloc, zn2z_W0) in
let ref_WW = GRef (dloc, zn2z_WW) in
let rec decomp hgt n =
if hgt <= 0 then
int31_of_pos_bigint dloc n
else if equal n zero then
GApp (dloc, ref_W0, [GHole (dloc, Evd.InternalHole)])
else
let (h,l) = split_at hgt n in
GApp (dloc, ref_WW, [GHole (dloc, Evd.InternalHole);
decomp (hgt-1) h;
decomp (hgt-1) l])
in
decomp hght n
let bigN_of_pos_bigint dloc n =
let h = height n in
let ref_constructor = GRef (dloc, bigN_constructor h) in
let word = word_of_pos_bigint dloc h n in
let args =
if h < n_inlined then [word]
else [Nat_syntax.nat_of_int dloc (of_int (h-n_inlined));word]
in
GApp (dloc, ref_constructor, args)
let bigN_error_negative dloc =
Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers.")
let interp_bigN dloc n =
if is_pos_or_zero n then
bigN_of_pos_bigint dloc n
else
bigN_error_negative dloc
(* Pretty prints a bigN *)
let bigint_of_word =
let rec get_height rc =
match rc with
| GApp (_,GRef(_,c), [_;lft;rght]) when c = zn2z_WW ->
1+max (get_height lft) (get_height rght)
| _ -> 0
in
let rec transform hght rc =
match rc with
| GApp (_,GRef(_,c),_) when c = zn2z_W0-> zero
| GApp (_,GRef(_,c), [_;lft;rght]) when c=zn2z_WW->
let new_hght = hght-1 in
add (mult (rank new_hght)
(transform new_hght lft))
(transform new_hght rght)
| _ -> bigint_of_int31 rc
in
fun rc ->
let hght = get_height rc in
transform hght rc
let bigint_of_bigN rc =
match rc with
| GApp (_,_,[one_arg]) -> bigint_of_word one_arg
| GApp (_,_,[_;second_arg]) -> bigint_of_word second_arg
| _ -> raise Non_closed
let uninterp_bigN rc =
try
Some (bigint_of_bigN rc)
with Non_closed ->
None
(* declare the list of constructors of bigN used in the declaration of the
numeral interpreter *)
let bigN_list_of_constructors =
let rec build i =
if i < n_inlined+1 then
GRef (Util.dummy_loc, bigN_constructor i)::(build (i+1))
else
[]
in
build 0
(* Actually declares the interpreter for bigN *)
let _ = Notation.declare_numeral_interpreter bigN_scope
(bigN_path, bigN_module)
interp_bigN
(bigN_list_of_constructors,
uninterp_bigN,
true)
(*** Parsing for bigZ in digital notation ***)
let interp_bigZ dloc n =
let ref_pos = GRef (dloc, bigZ_pos) in
let ref_neg = GRef (dloc, bigZ_neg) in
if is_pos_or_zero n then
GApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])
else
GApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])
(* pretty printing functions for bigZ *)
let bigint_of_bigZ = function
| GApp (_, GRef(_,c), [one_arg]) when c = bigZ_pos -> bigint_of_bigN one_arg
| GApp (_, GRef(_,c), [one_arg]) when c = bigZ_neg ->
let opp_val = bigint_of_bigN one_arg in
if equal opp_val zero then
raise Non_closed
else
neg opp_val
| _ -> raise Non_closed
let uninterp_bigZ rc =
try
Some (bigint_of_bigZ rc)
with Non_closed ->
None
(* Actually declares the interpreter for bigZ *)
let _ = Notation.declare_numeral_interpreter bigZ_scope
(bigZ_path, bigZ_module)
interp_bigZ
([GRef (Util.dummy_loc, bigZ_pos);
GRef (Util.dummy_loc, bigZ_neg)],
uninterp_bigZ,
true)
(*** Parsing for bigQ in digital notation ***)
let interp_bigQ dloc n =
let ref_z = GRef (dloc, bigQ_z) in
GApp (dloc, ref_z, [interp_bigZ dloc n])
let uninterp_bigQ rc =
try match rc with
| GApp (_, GRef(_,c), [one_arg]) when c = bigQ_z ->
Some (bigint_of_bigZ one_arg)
| _ -> None (* we don't pretty-print yet fractions *)
with Non_closed -> None
(* Actually declares the interpreter for bigQ *)
let _ = Notation.declare_numeral_interpreter bigQ_scope
(bigQ_path, bigQ_module)
interp_bigQ
([GRef (Util.dummy_loc, bigQ_z)], uninterp_bigQ,
true)
|