1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
(************************************************************************)
(* This file is distributed under the terms of the *)
(* GNU Lesser General Public License Version 2.1 *)
(* *)
(* Copyright (C) 2000-2004, HELM Team. *)
(* http://helm.cs.unibo.it *)
(************************************************************************)
(* Utility Functions *)
exception TwoModulesWhoseDirPathIsOneAPrefixOfTheOther;;
let get_module_path_of_full_path path =
let dirpath = fst (Libnames.repr_path path) in
let modules = Lib.library_dp () :: (Library.loaded_libraries ()) in
match
List.filter
(function modul -> Libnames.is_dirpath_prefix_of modul dirpath) modules
with
[] ->
Pp.msg_warn ("Modules not supported: reference to "^
Libnames.string_of_path path^" will be wrong");
dirpath
| [modul] -> modul
| _ ->
raise TwoModulesWhoseDirPathIsOneAPrefixOfTheOther
;;
(*CSC: Problem: here we are using the wrong (???) hypothesis that there do *)
(*CSC: not exist two modules whose dir_paths are one a prefix of the other *)
let remove_module_dirpath_from_dirpath ~basedir dir =
let module Ln = Libnames in
if Ln.is_dirpath_prefix_of basedir dir then
let ids = Names.repr_dirpath dir in
let rec remove_firsts n l =
match n,l with
(0,l) -> l
| (n,he::tl) -> remove_firsts (n-1) tl
| _ -> assert false
in
let ids' =
List.rev
(remove_firsts
(List.length (Names.repr_dirpath basedir))
(List.rev ids))
in
ids'
else Names.repr_dirpath dir
;;
let get_uri_of_var v pvars =
let module D = Decls in
let module N = Names in
let rec search_in_open_sections =
function
[] -> Util.error ("Variable "^v^" not found")
| he::tl as modules ->
let dirpath = N.make_dirpath modules in
if List.mem (N.id_of_string v) (D.last_section_hyps dirpath) then
modules
else
search_in_open_sections tl
in
let path =
if List.mem v pvars then
[]
else
search_in_open_sections (N.repr_dirpath (Lib.cwd ()))
in
"cic:" ^
List.fold_left
(fun i x -> "/" ^ N.string_of_id x ^ i) "" path
;;
type tag =
Constant of Names.constant
| Inductive of Names.mutual_inductive
| Variable of Names.kernel_name
;;
type etag =
TConstant
| TInductive
| TVariable
;;
let etag_of_tag =
function
Constant _ -> TConstant
| Inductive _ -> TInductive
| Variable _ -> TVariable
let ext_of_tag =
function
TConstant -> "con"
| TInductive -> "ind"
| TVariable -> "var"
;;
exception FunctorsXMLExportationNotImplementedYet;;
let subtract l1 l2 =
let l1' = List.rev (Names.repr_dirpath l1) in
let l2' = List.rev (Names.repr_dirpath l2) in
let rec aux =
function
he::tl when tl = l2' -> [he]
| he::tl -> he::(aux tl)
| [] -> assert (l2' = []) ; []
in
Names.make_dirpath (List.rev (aux l1'))
;;
let token_list_of_path dir id tag =
let module N = Names in
let token_list_of_dirpath dirpath =
List.rev_map N.string_of_id (N.repr_dirpath dirpath) in
token_list_of_dirpath dir @ [N.string_of_id id ^ "." ^ (ext_of_tag tag)]
let token_list_of_kernel_name tag =
let module N = Names in
let module LN = Libnames in
let id,dir = match tag with
| Variable kn ->
N.id_of_label (N.label kn), Lib.cwd ()
| Constant con ->
N.id_of_label (N.con_label con),
Lib.remove_section_part (LN.ConstRef con)
| Inductive kn ->
N.id_of_label (N.mind_label kn),
Lib.remove_section_part (LN.IndRef (kn,0))
in
token_list_of_path dir id (etag_of_tag tag)
;;
let uri_of_kernel_name tag =
let tokens = token_list_of_kernel_name tag in
"cic:/" ^ String.concat "/" tokens
let uri_of_declaration id tag =
let module LN = Libnames in
let dir = LN.pop_dirpath_n (Lib.sections_depth ()) (Lib.cwd ()) in
let tokens = token_list_of_path dir id tag in
"cic:/" ^ String.concat "/" tokens
(* Special functions for handling of CCorn's CProp "sort" *)
type sort =
Coq_sort of Term.sorts_family
| CProp
;;
let prerr_endline _ = ();;
let family_of_term ty =
match Term.kind_of_term ty with
Term.Sort s -> Coq_sort (Term.family_of_sort s)
| Term.Const _ -> CProp (* I could check that the constant is CProp *)
| _ -> Util.anomaly "family_of_term"
;;
module CPropRetyping =
struct
module T = Term
let outsort env sigma t =
family_of_term (DoubleTypeInference.whd_betadeltaiotacprop env sigma t)
let rec subst_type env sigma typ = function
| [] -> typ
| h::rest ->
match T.kind_of_term (DoubleTypeInference.whd_betadeltaiotacprop env sigma typ) with
| T.Prod (na,c1,c2) -> subst_type env sigma (T.subst1 h c2) rest
| _ -> Util.anomaly "Non-functional construction"
let sort_of_atomic_type env sigma ft args =
let rec concl_of_arity env ar =
match T.kind_of_term (DoubleTypeInference.whd_betadeltaiotacprop env sigma ar) with
| T.Prod (na, t, b) -> concl_of_arity (Environ.push_rel (na,None,t) env) b
| T.Sort s -> Coq_sort (T.family_of_sort s)
| _ -> outsort env sigma (subst_type env sigma ft (Array.to_list args))
in concl_of_arity env ft
let typeur sigma metamap =
let rec type_of env cstr=
match Term.kind_of_term cstr with
| T.Meta n ->
(try T.strip_outer_cast (List.assoc n metamap)
with Not_found -> Util.anomaly "type_of: this is not a well-typed term")
| T.Rel n ->
let (_,_,ty) = Environ.lookup_rel n env in
T.lift n ty
| T.Var id ->
(try
let (_,_,ty) = Environ.lookup_named id env in
ty
with Not_found ->
Util.anomaly ("type_of: variable "^(Names.string_of_id id)^" unbound"))
| T.Const c ->
let cb = Environ.lookup_constant c env in
Typeops.type_of_constant_type env (cb.Declarations.const_type)
| T.Evar ev -> Evd.existential_type sigma ev
| T.Ind ind -> Inductiveops.type_of_inductive env ind
| T.Construct cstr -> Inductiveops.type_of_constructor env cstr
| T.Case (_,p,c,lf) ->
let Inductiveops.IndType(_,realargs) =
try Inductiveops.find_rectype env sigma (type_of env c)
with Not_found -> Util.anomaly "type_of: Bad recursive type" in
let t = Reductionops.whd_beta sigma (T.applist (p, realargs)) in
(match Term.kind_of_term (DoubleTypeInference.whd_betadeltaiotacprop env sigma (type_of env t)) with
| T.Prod _ -> Reductionops.whd_beta sigma (T.applist (t, [c]))
| _ -> t)
| T.Lambda (name,c1,c2) ->
T.mkProd (name, c1, type_of (Environ.push_rel (name,None,c1) env) c2)
| T.LetIn (name,b,c1,c2) ->
T.subst1 b (type_of (Environ.push_rel (name,Some b,c1) env) c2)
| T.Fix ((_,i),(_,tys,_)) -> tys.(i)
| T.CoFix (i,(_,tys,_)) -> tys.(i)
| T.App(f,args)->
T.strip_outer_cast
(subst_type env sigma (type_of env f) (Array.to_list args))
| T.Cast (c,_, t) -> t
| T.Sort _ | T.Prod _ ->
match sort_of env cstr with
Coq_sort T.InProp -> T.mkProp
| Coq_sort T.InSet -> T.mkSet
| Coq_sort T.InType -> T.mkType Univ.type1_univ (* ERROR HERE *)
| CProp -> T.mkConst DoubleTypeInference.cprop
and sort_of env t =
match Term.kind_of_term t with
| T.Cast (c,_, s) when T.isSort s -> family_of_term s
| T.Sort (T.Prop c) -> Coq_sort T.InType
| T.Sort (T.Type u) -> Coq_sort T.InType
| T.Prod (name,t,c2) ->
(match sort_of env t,sort_of (Environ.push_rel (name,None,t) env) c2 with
| _, (Coq_sort T.InProp as s) -> s
| Coq_sort T.InProp, (Coq_sort T.InSet as s)
| Coq_sort T.InSet, (Coq_sort T.InSet as s) -> s
| Coq_sort T.InType, (Coq_sort T.InSet as s)
| CProp, (Coq_sort T.InSet as s) when
Environ.engagement env = Some Declarations.ImpredicativeSet -> s
| Coq_sort T.InType, Coq_sort T.InSet
| CProp, Coq_sort T.InSet -> Coq_sort T.InType
| _, (Coq_sort T.InType as s) -> s (*Type Univ.dummy_univ*)
| _, (CProp as s) -> s)
| T.App(f,args) -> sort_of_atomic_type env sigma (type_of env f) args
| T.Lambda _ | T.Fix _ | T.Construct _ ->
Util.anomaly "sort_of: Not a type (1)"
| _ -> outsort env sigma (type_of env t)
and sort_family_of env t =
match T.kind_of_term t with
| T.Cast (c,_, s) when T.isSort s -> family_of_term s
| T.Sort (T.Prop c) -> Coq_sort T.InType
| T.Sort (T.Type u) -> Coq_sort T.InType
| T.Prod (name,t,c2) -> sort_family_of (Environ.push_rel (name,None,t) env) c2
| T.App(f,args) ->
sort_of_atomic_type env sigma (type_of env f) args
| T.Lambda _ | T.Fix _ | T.Construct _ ->
Util.anomaly "sort_of: Not a type (1)"
| _ -> outsort env sigma (type_of env t)
in type_of, sort_of, sort_family_of
let get_type_of env sigma c = let f,_,_ = typeur sigma [] in f env c
let get_sort_family_of env sigma c = let _,_,f = typeur sigma [] in f env c
end
;;
let get_sort_family_of env evar_map ty =
CPropRetyping.get_sort_family_of env evar_map ty
;;
let type_as_sort env evar_map ty =
(* CCorn code *)
family_of_term (DoubleTypeInference.whd_betadeltaiotacprop env evar_map ty)
;;
let is_a_Prop =
function
"Prop"
| "CProp" -> true
| _ -> false
;;
(* Main Functions *)
type anntypes =
{annsynthesized : Acic.aconstr ; annexpected : Acic.aconstr option}
;;
let gen_id seed =
let res = "i" ^ string_of_int !seed in
incr seed ;
res
;;
let fresh_id seed ids_to_terms constr_to_ids ids_to_father_ids =
fun father t ->
let res = gen_id seed in
Hashtbl.add ids_to_father_ids res father ;
Hashtbl.add ids_to_terms res t ;
Acic.CicHash.add constr_to_ids t res ;
res
;;
let source_id_of_id id = "#source#" ^ id;;
let acic_of_cic_context' computeinnertypes seed ids_to_terms constr_to_ids
ids_to_father_ids ids_to_inner_sorts ids_to_inner_types
?(fake_dependent_products=false) env idrefs evar_map t expectedty
=
let module D = DoubleTypeInference in
let module E = Environ in
let module N = Names in
let module A = Acic in
let module T = Term in
let fresh_id' = fresh_id seed ids_to_terms constr_to_ids ids_to_father_ids in
(* CSC: do you have any reasonable substitute for 503? *)
let terms_to_types = Acic.CicHash.create 503 in
D.double_type_of env evar_map t expectedty terms_to_types ;
let rec aux computeinnertypes father passed_lambdas_or_prods_or_letins env
idrefs ?(subst=None,[]) tt
=
let fresh_id'' = fresh_id' father tt in
let aux' = aux computeinnertypes (Some fresh_id'') [] in
let string_of_sort_family =
function
Coq_sort T.InProp -> "Prop"
| Coq_sort T.InSet -> "Set"
| Coq_sort T.InType -> "Type"
| CProp -> "CProp"
in
let string_of_sort t =
string_of_sort_family
(type_as_sort env evar_map t)
in
let ainnertypes,innertype,innersort,expected_available =
let {D.synthesized = synthesized; D.expected = expected} =
if computeinnertypes then
try
Acic.CicHash.find terms_to_types tt
with e when e <> Sys.Break ->
(*CSC: Warning: it really happens, for example in Ring_theory!!! *)
Pp.ppnl (Pp.(++) (Pp.str "BUG: this subterm was not visited during the double-type-inference: ") (Printer.pr_lconstr tt)) ; assert false
else
(* We are already in an inner-type and Coscoy's double *)
(* type inference algorithm has not been applied. *)
(* We need to refresh the universes because we are doing *)
(* type inference on an already inferred type. *)
{D.synthesized =
Reductionops.nf_beta evar_map
(CPropRetyping.get_type_of env evar_map
(Termops.refresh_universes tt)) ;
D.expected = None}
in
(* Debugging only:
print_endline "TERMINE:" ; flush stdout ;
Pp.ppnl (Printer.pr_lconstr tt) ; flush stdout ;
print_endline "TIPO:" ; flush stdout ;
Pp.ppnl (Printer.pr_lconstr synthesized) ; flush stdout ;
print_endline "ENVIRONMENT:" ; flush stdout ;
Pp.ppnl (Printer.pr_context_of env) ; flush stdout ;
print_endline "FINE_ENVIRONMENT" ; flush stdout ;
*)
let innersort =
let synthesized_innersort =
get_sort_family_of env evar_map synthesized
in
match expected with
None -> synthesized_innersort
| Some ty ->
let expected_innersort =
get_sort_family_of env evar_map ty
in
match expected_innersort, synthesized_innersort with
CProp, _
| _, CProp -> CProp
| _, _ -> expected_innersort
in
(* Debugging only:
print_endline "PASSATO" ; flush stdout ;
*)
let ainnertypes,expected_available =
if computeinnertypes then
let annexpected,expected_available =
match expected with
None -> None,false
| Some expectedty' ->
Some (aux false (Some fresh_id'') [] env idrefs expectedty'),
true
in
Some
{annsynthesized =
aux false (Some fresh_id'') [] env idrefs synthesized ;
annexpected = annexpected
}, expected_available
else
None,false
in
ainnertypes,synthesized, string_of_sort_family innersort,
expected_available
in
let add_inner_type id =
match ainnertypes with
None -> ()
| Some ainnertypes -> Hashtbl.add ids_to_inner_types id ainnertypes
in
(* explicit_substitute_and_eta_expand_if_required h t t' *)
(* where [t] = [] and [tt] = [h]{[t']} ("{.}" denotes explicit *)
(* named substitution) or [tt] = (App [h]::[t]) (and [t'] = []) *)
(* check if [h] is a term that requires an explicit named *)
(* substitution and, in that case, uses the first arguments of *)
(* [t] as the actual arguments of the substitution. If there *)
(* are not enough parameters in the list [t], then eta-expansion *)
(* is performed. *)
let
explicit_substitute_and_eta_expand_if_required h t t'
compute_result_if_eta_expansion_not_required
=
let subst,residual_args,uninst_vars =
let variables,basedir =
try
let g = Libnames.global_of_constr h in
let sp =
match g with
Libnames.ConstructRef ((induri,_),_)
| Libnames.IndRef (induri,_) ->
Nametab.path_of_global (Libnames.IndRef (induri,0))
| Libnames.VarRef id ->
(* Invariant: variables are never cooked in Coq *)
raise Not_found
| _ -> Nametab.path_of_global g
in
Dischargedhypsmap.get_discharged_hyps sp,
get_module_path_of_full_path sp
with Not_found ->
(* no explicit substitution *)
[], Libnames.dirpath_of_string "dummy"
in
(* returns a triple whose first element is *)
(* an explicit named substitution of "type" *)
(* (variable * argument) list, whose *)
(* second element is the list of residual *)
(* arguments and whose third argument is *)
(* the list of uninstantiated variables *)
let rec get_explicit_subst variables arguments =
match variables,arguments with
[],_ -> [],arguments,[]
| _,[] -> [],[],variables
| he1::tl1,he2::tl2 ->
let subst,extra_args,uninst = get_explicit_subst tl1 tl2 in
let (he1_sp, he1_id) = Libnames.repr_path he1 in
let he1' = remove_module_dirpath_from_dirpath ~basedir he1_sp in
let he1'' =
String.concat "/"
(List.map Names.string_of_id (List.rev he1')) ^ "/"
^ (Names.string_of_id he1_id) ^ ".var"
in
(he1'',he2)::subst, extra_args, uninst
in
get_explicit_subst variables t'
in
let uninst_vars_length = List.length uninst_vars in
if uninst_vars_length > 0 then
(* Not enough arguments provided. We must eta-expand! *)
let un_args,_ =
T.decompose_prod_n uninst_vars_length
(CPropRetyping.get_type_of env evar_map tt)
in
let eta_expanded =
let arguments =
List.map (T.lift uninst_vars_length) t @
Termops.rel_list 0 uninst_vars_length
in
Unshare.unshare
(T.lamn uninst_vars_length un_args
(T.applistc h arguments))
in
D.double_type_of env evar_map eta_expanded
None terms_to_types ;
Hashtbl.remove ids_to_inner_types fresh_id'' ;
aux' env idrefs eta_expanded
else
compute_result_if_eta_expansion_not_required subst residual_args
in
(* Now that we have all the auxiliary functions we *)
(* can finally proceed with the main case analysis. *)
match T.kind_of_term tt with
T.Rel n ->
let id =
match List.nth (E.rel_context env) (n - 1) with
(N.Name id,_,_) -> id
| (N.Anonymous,_,_) -> Nameops.make_ident "_" None
in
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort && expected_available then
add_inner_type fresh_id'' ;
A.ARel (fresh_id'', n, List.nth idrefs (n-1), id)
| T.Var id ->
let pvars = Termops.ids_of_named_context (E.named_context env) in
let pvars = List.map N.string_of_id pvars in
let path = get_uri_of_var (N.string_of_id id) pvars in
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort && expected_available then
add_inner_type fresh_id'' ;
A.AVar
(fresh_id'', path ^ "/" ^ (N.string_of_id id) ^ ".var")
| T.Evar (n,l) ->
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort && expected_available then
add_inner_type fresh_id'' ;
A.AEvar
(fresh_id'', n, Array.to_list (Array.map (aux' env idrefs) l))
| T.Meta _ -> Util.anomaly "Meta met during exporting to XML"
| T.Sort s -> A.ASort (fresh_id'', s)
| T.Cast (v,_, t) ->
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort then
add_inner_type fresh_id'' ;
A.ACast (fresh_id'', aux' env idrefs v, aux' env idrefs t)
| T.Prod (n,s,t) ->
let n' =
match n with
N.Anonymous -> N.Anonymous
| _ ->
if not fake_dependent_products && T.noccurn 1 t then
N.Anonymous
else
N.Name
(Namegen.next_name_away n (Termops.ids_of_context env))
in
Hashtbl.add ids_to_inner_sorts fresh_id''
(string_of_sort innertype) ;
let sourcetype = CPropRetyping.get_type_of env evar_map s in
Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'')
(string_of_sort sourcetype) ;
let new_passed_prods =
let father_is_prod =
match father with
None -> false
| Some father' ->
match
Term.kind_of_term (Hashtbl.find ids_to_terms father')
with
T.Prod _ -> true
| _ -> false
in
(fresh_id'', n', aux' env idrefs s)::
(if father_is_prod then
passed_lambdas_or_prods_or_letins
else [])
in
let new_env = E.push_rel (n', None, s) env in
let new_idrefs = fresh_id''::idrefs in
(match Term.kind_of_term t with
T.Prod _ ->
aux computeinnertypes (Some fresh_id'') new_passed_prods
new_env new_idrefs t
| _ ->
A.AProds (new_passed_prods, aux' new_env new_idrefs t))
| T.Lambda (n,s,t) ->
let n' =
match n with
N.Anonymous -> N.Anonymous
| _ ->
N.Name (Namegen.next_name_away n (Termops.ids_of_context env))
in
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
let sourcetype = CPropRetyping.get_type_of env evar_map s in
Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'')
(string_of_sort sourcetype) ;
let father_is_lambda =
match father with
None -> false
| Some father' ->
match
Term.kind_of_term (Hashtbl.find ids_to_terms father')
with
T.Lambda _ -> true
| _ -> false
in
if is_a_Prop innersort &&
((not father_is_lambda) || expected_available)
then add_inner_type fresh_id'' ;
let new_passed_lambdas =
(fresh_id'',n', aux' env idrefs s)::
(if father_is_lambda then
passed_lambdas_or_prods_or_letins
else []) in
let new_env = E.push_rel (n', None, s) env in
let new_idrefs = fresh_id''::idrefs in
(match Term.kind_of_term t with
T.Lambda _ ->
aux computeinnertypes (Some fresh_id'') new_passed_lambdas
new_env new_idrefs t
| _ ->
let t' = aux' new_env new_idrefs t in
(* eta-expansion for explicit named substitutions *)
(* can create nested Lambdas. Here we perform the *)
(* flattening. *)
match t' with
A.ALambdas (lambdas, t'') ->
A.ALambdas (lambdas@new_passed_lambdas, t'')
| _ ->
A.ALambdas (new_passed_lambdas, t')
)
| T.LetIn (n,s,t,d) ->
let id =
match n with
N.Anonymous -> N.id_of_string "_X"
| N.Name id -> id
in
let n' =
N.Name (Namegen.next_ident_away id (Termops.ids_of_context env))
in
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
let sourcesort =
get_sort_family_of env evar_map
(CPropRetyping.get_type_of env evar_map s)
in
Hashtbl.add ids_to_inner_sorts (source_id_of_id fresh_id'')
(string_of_sort_family sourcesort) ;
let father_is_letin =
match father with
None -> false
| Some father' ->
match
Term.kind_of_term (Hashtbl.find ids_to_terms father')
with
T.LetIn _ -> true
| _ -> false
in
if is_a_Prop innersort then
add_inner_type fresh_id'' ;
let new_passed_letins =
(fresh_id'',n', aux' env idrefs s)::
(if father_is_letin then
passed_lambdas_or_prods_or_letins
else []) in
let new_env = E.push_rel (n', Some s, t) env in
let new_idrefs = fresh_id''::idrefs in
(match Term.kind_of_term d with
T.LetIn _ ->
aux computeinnertypes (Some fresh_id'') new_passed_letins
new_env new_idrefs d
| _ -> A.ALetIns
(new_passed_letins, aux' new_env new_idrefs d))
| T.App (h,t) ->
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort then
add_inner_type fresh_id'' ;
let
compute_result_if_eta_expansion_not_required subst residual_args
=
let residual_args_not_empty = residual_args <> [] in
let h' =
if residual_args_not_empty then
aux' env idrefs ~subst:(None,subst) h
else
aux' env idrefs ~subst:(Some fresh_id'',subst) h
in
(* maybe all the arguments were used for the explicit *)
(* named substitution *)
if residual_args_not_empty then
A.AApp (fresh_id'', h'::residual_args)
else
h'
in
let t' =
Array.fold_right (fun x i -> (aux' env idrefs x)::i) t []
in
explicit_substitute_and_eta_expand_if_required h
(Array.to_list t) t'
compute_result_if_eta_expansion_not_required
| T.Const kn ->
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort && expected_available then
add_inner_type fresh_id'' ;
let compute_result_if_eta_expansion_not_required _ _ =
A.AConst (fresh_id'', subst, (uri_of_kernel_name (Constant kn)))
in
let (_,subst') = subst in
explicit_substitute_and_eta_expand_if_required tt []
(List.map snd subst')
compute_result_if_eta_expansion_not_required
| T.Ind (kn,i) ->
let compute_result_if_eta_expansion_not_required _ _ =
A.AInd (fresh_id'', subst, (uri_of_kernel_name (Inductive kn)), i)
in
let (_,subst') = subst in
explicit_substitute_and_eta_expand_if_required tt []
(List.map snd subst')
compute_result_if_eta_expansion_not_required
| T.Construct ((kn,i),j) ->
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort && expected_available then
add_inner_type fresh_id'' ;
let compute_result_if_eta_expansion_not_required _ _ =
A.AConstruct
(fresh_id'', subst, (uri_of_kernel_name (Inductive kn)), i, j)
in
let (_,subst') = subst in
explicit_substitute_and_eta_expand_if_required tt []
(List.map snd subst')
compute_result_if_eta_expansion_not_required
| T.Case ({T.ci_ind=(kn,i)},ty,term,a) ->
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort then
add_inner_type fresh_id'' ;
let a' =
Array.fold_right (fun x i -> (aux' env idrefs x)::i) a []
in
A.ACase
(fresh_id'', (uri_of_kernel_name (Inductive kn)), i,
aux' env idrefs ty, aux' env idrefs term, a')
| T.Fix ((ai,i),(f,t,b)) ->
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort then add_inner_type fresh_id'' ;
let fresh_idrefs =
Array.init (Array.length t) (function _ -> gen_id seed) in
let new_idrefs =
(List.rev (Array.to_list fresh_idrefs)) @ idrefs
in
let f' =
let ids = ref (Termops.ids_of_context env) in
Array.map
(function
N.Anonymous -> Util.error "Anonymous fix function met"
| N.Name id as n ->
let res = N.Name (Namegen.next_name_away n !ids) in
ids := id::!ids ;
res
) f
in
A.AFix (fresh_id'', i,
Array.fold_right
(fun (id,fi,ti,bi,ai) i ->
let fi' =
match fi with
N.Name fi -> fi
| N.Anonymous -> Util.error "Anonymous fix function met"
in
(id, fi', ai,
aux' env idrefs ti,
aux' (E.push_rec_types (f',t,b) env) new_idrefs bi)::i)
(Array.mapi
(fun j x -> (fresh_idrefs.(j),x,t.(j),b.(j),ai.(j))) f'
) []
)
| T.CoFix (i,(f,t,b)) ->
Hashtbl.add ids_to_inner_sorts fresh_id'' innersort ;
if is_a_Prop innersort then add_inner_type fresh_id'' ;
let fresh_idrefs =
Array.init (Array.length t) (function _ -> gen_id seed) in
let new_idrefs =
(List.rev (Array.to_list fresh_idrefs)) @ idrefs
in
let f' =
let ids = ref (Termops.ids_of_context env) in
Array.map
(function
N.Anonymous -> Util.error "Anonymous fix function met"
| N.Name id as n ->
let res = N.Name (Namegen.next_name_away n !ids) in
ids := id::!ids ;
res
) f
in
A.ACoFix (fresh_id'', i,
Array.fold_right
(fun (id,fi,ti,bi) i ->
let fi' =
match fi with
N.Name fi -> fi
| N.Anonymous -> Util.error "Anonymous fix function met"
in
(id, fi',
aux' env idrefs ti,
aux' (E.push_rec_types (f',t,b) env) new_idrefs bi)::i)
(Array.mapi
(fun j x -> (fresh_idrefs.(j),x,t.(j),b.(j)) ) f'
) []
)
in
aux computeinnertypes None [] env idrefs t
;;
(* Obsolete [HH 1/2009]
let acic_of_cic_context metasenv context t =
let ids_to_terms = Hashtbl.create 503 in
let constr_to_ids = Acic.CicHash.create 503 in
let ids_to_father_ids = Hashtbl.create 503 in
let ids_to_inner_sorts = Hashtbl.create 503 in
let ids_to_inner_types = Hashtbl.create 503 in
let seed = ref 0 in
acic_of_cic_context' true seed ids_to_terms constr_to_ids ids_to_father_ids
ids_to_inner_sorts ids_to_inner_types metasenv context t,
ids_to_terms, ids_to_father_ids, ids_to_inner_sorts, ids_to_inner_types
;;
*)
let acic_object_of_cic_object sigma obj =
let module A = Acic in
let ids_to_terms = Hashtbl.create 503 in
let constr_to_ids = Acic.CicHash.create 503 in
let ids_to_father_ids = Hashtbl.create 503 in
let ids_to_inner_sorts = Hashtbl.create 503 in
let ids_to_inner_types = Hashtbl.create 503 in
let ids_to_conjectures = Hashtbl.create 11 in
let ids_to_hypotheses = Hashtbl.create 127 in
let hypotheses_seed = ref 0 in
let conjectures_seed = ref 0 in
let seed = ref 0 in
let acic_term_of_cic_term_context' =
acic_of_cic_context' true seed ids_to_terms constr_to_ids ids_to_father_ids
ids_to_inner_sorts ids_to_inner_types in
(*CSC: is this the right env to use? Hhmmm. There is a problem: in *)
(*CSC: Global.env () the object we are exporting is already defined, *)
(*CSC: either in the environment or in the named context (in the case *)
(*CSC: of variables. Is this a problem? *)
let env = Global.env () in
let acic_term_of_cic_term' ?fake_dependent_products =
acic_term_of_cic_term_context' ?fake_dependent_products env [] sigma in
(*CSC: the fresh_id is not stored anywhere. This _MUST_ be fixed using *)
(*CSC: a modified version of the already existent fresh_id function *)
let fresh_id () =
let res = "i" ^ string_of_int !seed in
incr seed ;
res
in
let aobj =
match obj with
A.Constant (id,bo,ty,params) ->
let abo =
match bo with
None -> None
| Some bo' -> Some (acic_term_of_cic_term' bo' (Some ty))
in
let aty = acic_term_of_cic_term' ty None in
A.AConstant (fresh_id (),id,abo,aty,params)
| A.Variable (id,bo,ty,params) ->
let abo =
match bo with
Some bo -> Some (acic_term_of_cic_term' bo (Some ty))
| None -> None
in
let aty = acic_term_of_cic_term' ty None in
A.AVariable (fresh_id (),id,abo,aty,params)
| A.CurrentProof (id,conjectures,bo,ty) ->
let aconjectures =
List.map
(function (i,canonical_context,term) as conjecture ->
let cid = "c" ^ string_of_int !conjectures_seed in
Hashtbl.add ids_to_conjectures cid conjecture ;
incr conjectures_seed ;
let canonical_env,idrefs',acanonical_context =
let rec aux env idrefs =
function
[] -> env,idrefs,[]
| ((n,decl_or_def) as hyp)::tl ->
let hid = "h" ^ string_of_int !hypotheses_seed in
let new_idrefs = hid::idrefs in
Hashtbl.add ids_to_hypotheses hid hyp ;
incr hypotheses_seed ;
match decl_or_def with
A.Decl t ->
let final_env,final_idrefs,atl =
aux (Environ.push_rel (Names.Name n,None,t) env)
new_idrefs tl
in
let at =
acic_term_of_cic_term_context' env idrefs sigma t None
in
final_env,final_idrefs,(hid,(n,A.Decl at))::atl
| A.Def (t,ty) ->
let final_env,final_idrefs,atl =
aux
(Environ.push_rel (Names.Name n,Some t,ty) env)
new_idrefs tl
in
let at =
acic_term_of_cic_term_context' env idrefs sigma t None
in
let dummy_never_used =
let s = "dummy_never_used" in
A.ARel (s,99,s,Names.id_of_string s)
in
final_env,final_idrefs,
(hid,(n,A.Def (at,dummy_never_used)))::atl
in
aux env [] canonical_context
in
let aterm =
acic_term_of_cic_term_context' canonical_env idrefs' sigma term
None
in
(cid,i,List.rev acanonical_context,aterm)
) conjectures in
let abo = acic_term_of_cic_term_context' env [] sigma bo (Some ty) in
let aty = acic_term_of_cic_term_context' env [] sigma ty None in
A.ACurrentProof (fresh_id (),id,aconjectures,abo,aty)
| A.InductiveDefinition (tys,params,paramsno) ->
let env' =
List.fold_right
(fun (name,_,arity,_) env ->
Environ.push_rel (Names.Name name, None, arity) env
) (List.rev tys) env in
let idrefs = List.map (function _ -> gen_id seed) tys in
let atys =
List.map2
(fun id (name,inductive,ty,cons) ->
let acons =
List.map
(function (name,ty) ->
(name,
acic_term_of_cic_term_context' ~fake_dependent_products:true
env' idrefs Evd.empty ty None)
) cons
in
let aty =
acic_term_of_cic_term' ~fake_dependent_products:true ty None
in
(id,name,inductive,aty,acons)
) (List.rev idrefs) tys
in
A.AInductiveDefinition (fresh_id (),atys,params,paramsno)
in
aobj,ids_to_terms,constr_to_ids,ids_to_father_ids,ids_to_inner_sorts,
ids_to_inner_types,ids_to_conjectures,ids_to_hypotheses
;;
|