1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Util
open Univ
open Names
open Term
open Declarations
open Inductive
open Inductiveops
open Environ
open Sign
open Glob_term
open Nameops
open Termops
open Namegen
open Libnames
open Nametab
open Evd
open Mod_subst
let dl = dummy_loc
(****************************************************************************)
(* Tools for printing of Cases *)
let encode_inductive r =
let indsp = global_inductive r in
let constr_lengths = mis_constr_nargs indsp in
(indsp,constr_lengths)
(* Parameterization of the translation from constr to ast *)
(* Tables for Cases printing under a "if" form, a "let" form, *)
let has_two_constructors lc =
Array.length lc = 2 (* & lc.(0) = 0 & lc.(1) = 0 *)
let isomorphic_to_tuple lc = (Array.length lc = 1)
let encode_bool r =
let (x,lc) = encode_inductive r in
if not (has_two_constructors lc) then
user_err_loc (loc_of_reference r,"encode_if",
str "This type has not exactly two constructors.");
x
let encode_tuple r =
let (x,lc) = encode_inductive r in
if not (isomorphic_to_tuple lc) then
user_err_loc (loc_of_reference r,"encode_tuple",
str "This type cannot be seen as a tuple type.");
x
module PrintingInductiveMake =
functor (Test : sig
val encode : reference -> inductive
val member_message : std_ppcmds -> bool -> std_ppcmds
val field : string
val title : string
end) ->
struct
type t = inductive
let encode = Test.encode
let subst subst (kn, ints as obj) =
let kn' = subst_ind subst kn in
if kn' == kn then obj else
kn', ints
let printer ind = pr_global_env Idset.empty (IndRef ind)
let key = ["Printing";Test.field]
let title = Test.title
let member_message x = Test.member_message (printer x)
let synchronous = true
end
module PrintingCasesIf =
PrintingInductiveMake (struct
let encode = encode_bool
let field = "If"
let title = "Types leading to pretty-printing of Cases using a `if' form: "
let member_message s b =
str "Cases on elements of " ++ s ++
str
(if b then " are printed using a `if' form"
else " are not printed using a `if' form")
end)
module PrintingCasesLet =
PrintingInductiveMake (struct
let encode = encode_tuple
let field = "Let"
let title =
"Types leading to a pretty-printing of Cases using a `let' form:"
let member_message s b =
str "Cases on elements of " ++ s ++
str
(if b then " are printed using a `let' form"
else " are not printed using a `let' form")
end)
module PrintingIf = Goptions.MakeRefTable(PrintingCasesIf)
module PrintingLet = Goptions.MakeRefTable(PrintingCasesLet)
(* Flags.for printing or not wildcard and synthetisable types *)
open Goptions
let wildcard_value = ref true
let force_wildcard () = !wildcard_value
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "forced wildcard";
optkey = ["Printing";"Wildcard"];
optread = force_wildcard;
optwrite = (:=) wildcard_value }
let synth_type_value = ref true
let synthetize_type () = !synth_type_value
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "pattern matching return type synthesizability";
optkey = ["Printing";"Synth"];
optread = synthetize_type;
optwrite = (:=) synth_type_value }
let reverse_matching_value = ref true
let reverse_matching () = !reverse_matching_value
let _ = declare_bool_option
{ optsync = true;
optdepr = false;
optname = "pattern-matching reversibility";
optkey = ["Printing";"Matching"];
optread = reverse_matching;
optwrite = (:=) reverse_matching_value }
(* Auxiliary function for MutCase printing *)
(* [computable] tries to tell if the predicate typing the result is inferable*)
let computable p k =
(* We first remove as many lambda as the arity, then we look
if it remains a lambda for a dependent elimination. This function
works for normal eta-expanded term. For non eta-expanded or
non-normal terms, it may affirm the pred is synthetisable
because of an undetected ultimate dependent variable in the second
clause, or else, it may affirms the pred non synthetisable
because of a non normal term in the fourth clause.
A solution could be to store, in the MutCase, the eta-expanded
normal form of pred to decide if it depends on its variables
Lorsque le prdicat est dpendant de manire certaine, on
ne dclare pas le prdicat synthtisable (mme si la
variable dpendante ne l'est pas effectivement) parce que
sinon on perd la rciprocit de la synthse (qui, lui,
engendrera un prdicat non dpendant) *)
let sign,ccl = decompose_lam_assum p in
(rel_context_length sign = k+1)
&&
noccur_between 1 (k+1) ccl
let lookup_name_as_displayed env t s =
let rec lookup avoid n c = match kind_of_term c with
| Prod (name,_,c') ->
(match compute_displayed_name_in RenamingForGoal avoid name c' with
| (Name id,avoid') -> if id=s then Some n else lookup avoid' (n+1) c'
| (Anonymous,avoid') -> lookup avoid' (n+1) (pop c'))
| LetIn (name,_,_,c') ->
(match compute_displayed_name_in RenamingForGoal avoid name c' with
| (Name id,avoid') -> if id=s then Some n else lookup avoid' (n+1) c'
| (Anonymous,avoid') -> lookup avoid' (n+1) (pop c'))
| Cast (c,_,_) -> lookup avoid n c
| _ -> None
in lookup (ids_of_named_context (named_context env)) 1 t
let lookup_index_as_renamed env t n =
let rec lookup n d c = match kind_of_term c with
| Prod (name,_,c') ->
(match compute_displayed_name_in RenamingForGoal [] name c' with
(Name _,_) -> lookup n (d+1) c'
| (Anonymous,_) ->
if n=0 then
Some (d-1)
else if n=1 then
Some d
else
lookup (n-1) (d+1) c')
| LetIn (name,_,_,c') ->
(match compute_displayed_name_in RenamingForGoal [] name c' with
| (Name _,_) -> lookup n (d+1) c'
| (Anonymous,_) ->
if n=0 then
Some (d-1)
else if n=1 then
Some d
else
lookup (n-1) (d+1) c'
)
| Cast (c,_,_) -> lookup n d c
| _ -> if n=0 then Some (d-1) else None
in lookup n 1 t
(**********************************************************************)
(* Fragile algorithm to reverse pattern-matching compilation *)
let update_name na ((_,e),c) =
match na with
| Name _ when force_wildcard () & noccurn (list_index na e) c ->
Anonymous
| _ ->
na
let rec decomp_branch n nal b (avoid,env as e) c =
let flag = if b then RenamingForGoal else RenamingForCasesPattern in
if n=0 then (List.rev nal,(e,c))
else
let na,c,f =
match kind_of_term (strip_outer_cast c) with
| Lambda (na,_,c) -> na,c,compute_displayed_let_name_in
| LetIn (na,_,_,c) -> na,c,compute_displayed_name_in
| _ ->
Name (id_of_string "x"),(applist (lift 1 c, [mkRel 1])),
compute_displayed_name_in in
let na',avoid' = f flag avoid na c in
decomp_branch (n-1) (na'::nal) b (avoid',add_name na' env) c
let rec build_tree na isgoal e ci cl =
let mkpat n rhs pl = PatCstr(dl,(ci.ci_ind,n+1),pl,update_name na rhs) in
let cnl = ci.ci_cstr_ndecls in
List.flatten
(list_tabulate (fun i -> contract_branch isgoal e (cnl.(i),mkpat i,cl.(i)))
(Array.length cl))
and align_tree nal isgoal (e,c as rhs) = match nal with
| [] -> [[],rhs]
| na::nal ->
match kind_of_term c with
| Case (ci,p,c,cl) when c = mkRel (list_index na (snd e))
& (* don't contract if p dependent *)
computable p (ci.ci_pp_info.ind_nargs) ->
let clauses = build_tree na isgoal e ci cl in
List.flatten
(List.map (fun (pat,rhs) ->
let lines = align_tree nal isgoal rhs in
List.map (fun (hd,rest) -> pat::hd,rest) lines)
clauses)
| _ ->
let pat = PatVar(dl,update_name na rhs) in
let mat = align_tree nal isgoal rhs in
List.map (fun (hd,rest) -> pat::hd,rest) mat
and contract_branch isgoal e (cn,mkpat,b) =
let nal,rhs = decomp_branch cn [] isgoal e b in
let mat = align_tree nal isgoal rhs in
List.map (fun (hd,rhs) -> (mkpat rhs hd,rhs)) mat
(**********************************************************************)
(* Transform internal representation of pattern-matching into list of *)
(* clauses *)
let is_nondep_branch c n =
try
let sign,ccl = decompose_lam_n_assum n c in
noccur_between 1 (rel_context_length sign) ccl
with e when Errors.noncritical e -> (* Not eta-expanded or not reduced *)
false
let extract_nondep_branches test c b n =
let rec strip n r = if n=0 then r else
match r with
| GLambda (_,_,_,_,t) -> strip (n-1) t
| GLetIn (_,_,_,t) -> strip (n-1) t
| _ -> assert false in
if test c n then Some (strip n b) else None
let it_destRLambda_or_LetIn_names n c =
let rec aux n nal c =
if n=0 then (List.rev nal,c) else match c with
| GLambda (_,na,_,_,c) -> aux (n-1) (na::nal) c
| GLetIn (_,na,_,c) -> aux (n-1) (na::nal) c
| _ ->
(* eta-expansion *)
let rec next l =
let x = next_ident_away (id_of_string "x") l in
(* Not efficient but unusual and no function to get free glob_vars *)
(* if occur_glob_constr x c then next (x::l) else x in *)
x
in
let x = next (free_glob_vars c) in
let a = GVar (dl,x) in
aux (n-1) (Name x :: nal)
(match c with
| GApp (loc,p,l) -> GApp (loc,p,l@[a])
| _ -> (GApp (dl,c,[a])))
in aux n [] c
let detype_case computable detype detype_eqns testdep avoid data p c bl =
let (indsp,st,nparams,consnargsl,k) = data in
let synth_type = synthetize_type () in
let tomatch = detype c in
let alias, aliastyp, pred=
if (not !Flags.raw_print) & synth_type & computable & Array.length bl<>0
then
Anonymous, None, None
else
match Option.map detype p with
| None -> Anonymous, None, None
| Some p ->
let nl,typ = it_destRLambda_or_LetIn_names k p in
let n,typ = match typ with
| GLambda (_,x,_,t,c) -> x, c
| _ -> Anonymous, typ in
let aliastyp =
if List.for_all ((=) Anonymous) nl then None
else Some (dl,indsp,nparams,nl) in
n, aliastyp, Some typ
in
let constructs = Array.init (Array.length bl) (fun i -> (indsp,i+1)) in
let tag =
try
if !Flags.raw_print then
RegularStyle
else if st = LetPatternStyle then
st
else if PrintingLet.active indsp then
LetStyle
else if PrintingIf.active indsp then
IfStyle
else
st
with Not_found -> st
in
match tag with
| LetStyle when aliastyp = None ->
let bl' = Array.map detype bl in
let (nal,d) = it_destRLambda_or_LetIn_names consnargsl.(0) bl'.(0) in
GLetTuple (dl,nal,(alias,pred),tomatch,d)
| IfStyle when aliastyp = None ->
let bl' = Array.map detype bl in
let nondepbrs =
array_map3 (extract_nondep_branches testdep) bl bl' consnargsl in
if array_for_all ((<>) None) nondepbrs then
GIf (dl,tomatch,(alias,pred),
Option.get nondepbrs.(0),Option.get nondepbrs.(1))
else
let eqnl = detype_eqns constructs consnargsl bl in
GCases (dl,tag,pred,[tomatch,(alias,aliastyp)],eqnl)
| _ ->
let eqnl = detype_eqns constructs consnargsl bl in
GCases (dl,tag,pred,[tomatch,(alias,aliastyp)],eqnl)
let detype_sort = function
| Prop c -> GProp c
| Type u -> GType (Some u)
type binder_kind = BProd | BLambda | BLetIn
(**********************************************************************)
(* Main detyping function *)
let detype_anonymous = ref (fun loc n -> anomaly "detype: index to an anonymous variable")
let set_detype_anonymous f = detype_anonymous := f
let rec detype (isgoal:bool) avoid env t =
match kind_of_term (collapse_appl t) with
| Rel n ->
(try match lookup_name_of_rel n env with
| Name id -> GVar (dl, id)
| Anonymous -> !detype_anonymous dl n
with Not_found ->
let s = "_UNBOUND_REL_"^(string_of_int n)
in GVar (dl, id_of_string s))
| Meta n ->
(* Meta in constr are not user-parsable and are mapped to Evar *)
GEvar (dl, n, None)
| Var id ->
(try
let _ = Global.lookup_named id in GRef (dl, VarRef id)
with e when Errors.noncritical e ->
GVar (dl, id))
| Sort s -> GSort (dl,detype_sort s)
| Cast (c1,REVERTcast,c2) when not !Flags.raw_print ->
detype isgoal avoid env c1
| Cast (c1,k,c2) ->
GCast(dl,detype isgoal avoid env c1, CastConv (k, detype isgoal avoid env c2))
| Prod (na,ty,c) -> detype_binder isgoal BProd avoid env na ty c
| Lambda (na,ty,c) -> detype_binder isgoal BLambda avoid env na ty c
| LetIn (na,b,_,c) -> detype_binder isgoal BLetIn avoid env na b c
| App (f,args) ->
GApp (dl,detype isgoal avoid env f,
array_map_to_list (detype isgoal avoid env) args)
| Const sp -> GRef (dl, ConstRef sp)
| Evar (ev,cl) ->
GEvar (dl, ev,
Some (List.map (detype isgoal avoid env) (Array.to_list cl)))
| Ind ind_sp ->
GRef (dl, IndRef ind_sp)
| Construct cstr_sp ->
GRef (dl, ConstructRef cstr_sp)
| Case (ci,p,c,bl) ->
let comp = computable p (ci.ci_pp_info.ind_nargs) in
detype_case comp (detype isgoal avoid env)
(detype_eqns isgoal avoid env ci comp)
is_nondep_branch avoid
(ci.ci_ind,ci.ci_pp_info.style,ci.ci_npar,
ci.ci_cstr_ndecls,ci.ci_pp_info.ind_nargs)
(Some p) c bl
| Fix (nvn,recdef) -> detype_fix isgoal avoid env nvn recdef
| CoFix (n,recdef) -> detype_cofix isgoal avoid env n recdef
and detype_fix isgoal avoid env (vn,_ as nvn) (names,tys,bodies) =
let def_avoid, def_env, lfi =
Array.fold_left
(fun (avoid, env, l) na ->
let id = next_name_away na avoid in
(id::avoid, add_name (Name id) env, id::l))
(avoid, env, []) names in
let n = Array.length tys in
let v = array_map3
(fun c t i -> share_names isgoal (i+1) [] def_avoid def_env c (lift n t))
bodies tys vn in
GRec(dl,GFix (Array.map (fun i -> Some i, GStructRec) (fst nvn), snd nvn),Array.of_list (List.rev lfi),
Array.map (fun (bl,_,_) -> bl) v,
Array.map (fun (_,_,ty) -> ty) v,
Array.map (fun (_,bd,_) -> bd) v)
and detype_cofix isgoal avoid env n (names,tys,bodies) =
let def_avoid, def_env, lfi =
Array.fold_left
(fun (avoid, env, l) na ->
let id = next_name_away na avoid in
(id::avoid, add_name (Name id) env, id::l))
(avoid, env, []) names in
let ntys = Array.length tys in
let v = array_map2
(fun c t -> share_names isgoal 0 [] def_avoid def_env c (lift ntys t))
bodies tys in
GRec(dl,GCoFix n,Array.of_list (List.rev lfi),
Array.map (fun (bl,_,_) -> bl) v,
Array.map (fun (_,_,ty) -> ty) v,
Array.map (fun (_,bd,_) -> bd) v)
and share_names isgoal n l avoid env c t =
match kind_of_term c, kind_of_term t with
(* factorize even when not necessary to have better presentation *)
| Lambda (na,t,c), Prod (na',t',c') ->
let na = match (na,na') with
Name _, _ -> na
| _, Name _ -> na'
| _ -> na in
let t = detype isgoal avoid env t in
let id = next_name_away na avoid in
let avoid = id::avoid and env = add_name (Name id) env in
share_names isgoal (n-1) ((Name id,Explicit,None,t)::l) avoid env c c'
(* May occur for fix built interactively *)
| LetIn (na,b,t',c), _ when n > 0 ->
let t' = detype isgoal avoid env t' in
let b = detype isgoal avoid env b in
let id = next_name_away na avoid in
let avoid = id::avoid and env = add_name (Name id) env in
share_names isgoal n ((Name id,Explicit,Some b,t')::l) avoid env c (lift 1 t)
(* Only if built with the f/n notation or w/o let-expansion in types *)
| _, LetIn (_,b,_,t) when n > 0 ->
share_names isgoal n l avoid env c (subst1 b t)
(* If it is an open proof: we cheat and eta-expand *)
| _, Prod (na',t',c') when n > 0 ->
let t' = detype isgoal avoid env t' in
let id = next_name_away na' avoid in
let avoid = id::avoid and env = add_name (Name id) env in
let appc = mkApp (lift 1 c,[|mkRel 1|]) in
share_names isgoal (n-1) ((Name id,Explicit,None,t')::l) avoid env appc c'
(* If built with the f/n notation: we renounce to share names *)
| _ ->
if n>0 then msg_warn "Detyping.detype: cannot factorize fix enough";
let c = detype isgoal avoid env c in
let t = detype isgoal avoid env t in
(List.rev l,c,t)
and detype_eqns isgoal avoid env ci computable constructs consnargsl bl =
try
if !Flags.raw_print or not (reverse_matching ()) then raise Exit;
let mat = build_tree Anonymous isgoal (avoid,env) ci bl in
List.map (fun (pat,((avoid,env),c)) -> (dl,[],[pat],detype isgoal avoid env c))
mat
with e when Errors.noncritical e ->
Array.to_list
(array_map3 (detype_eqn isgoal avoid env) constructs consnargsl bl)
and detype_eqn isgoal avoid env constr construct_nargs branch =
let make_pat x avoid env b ids =
if force_wildcard () & noccurn 1 b then
PatVar (dl,Anonymous),avoid,(add_name Anonymous env),ids
else
let id = next_name_away_in_cases_pattern x avoid in
PatVar (dl,Name id),id::avoid,(add_name (Name id) env),id::ids
in
let rec buildrec ids patlist avoid env n b =
if n=0 then
(dl, ids,
[PatCstr(dl, constr, List.rev patlist,Anonymous)],
detype isgoal avoid env b)
else
match kind_of_term b with
| Lambda (x,_,b) ->
let pat,new_avoid,new_env,new_ids = make_pat x avoid env b ids in
buildrec new_ids (pat::patlist) new_avoid new_env (n-1) b
| LetIn (x,_,_,b) ->
let pat,new_avoid,new_env,new_ids = make_pat x avoid env b ids in
buildrec new_ids (pat::patlist) new_avoid new_env (n-1) b
| Cast (c,_,_) -> (* Oui, il y a parfois des cast *)
buildrec ids patlist avoid env n c
| _ -> (* eta-expansion : n'arrivera plus lorsque tous les
termes seront construits partir de la syntaxe Cases *)
(* nommage de la nouvelle variable *)
let new_b = applist (lift 1 b, [mkRel 1]) in
let pat,new_avoid,new_env,new_ids =
make_pat Anonymous avoid env new_b ids in
buildrec new_ids (pat::patlist) new_avoid new_env (n-1) new_b
in
buildrec [] [] avoid env construct_nargs branch
and detype_binder isgoal bk avoid env na ty c =
let flag = if isgoal then RenamingForGoal else RenamingElsewhereFor (env,c) in
let na',avoid' =
if bk = BLetIn then compute_displayed_let_name_in flag avoid na c
else compute_displayed_name_in flag avoid na c in
let r = detype isgoal avoid' (add_name na' env) c in
match bk with
| BProd -> GProd (dl, na',Explicit,detype false avoid env ty, r)
| BLambda -> GLambda (dl, na',Explicit,detype false avoid env ty, r)
| BLetIn -> GLetIn (dl, na',detype false avoid env ty, r)
let rec detype_rel_context where avoid env sign =
let where = Option.map (fun c -> it_mkLambda_or_LetIn c sign) where in
let rec aux avoid env = function
| [] -> []
| (na,b,t)::rest ->
let na',avoid' =
match where with
| None -> na,avoid
| Some c ->
if b<>None then
compute_displayed_let_name_in
(RenamingElsewhereFor (env,c)) avoid na c
else
compute_displayed_name_in
(RenamingElsewhereFor (env,c)) avoid na c in
let b = Option.map (detype false avoid env) b in
let t = detype false avoid env t in
(na',Explicit,b,t) :: aux avoid' (add_name na' env) rest
in aux avoid env (List.rev sign)
(**********************************************************************)
(* Module substitution: relies on detyping *)
let rec subst_cases_pattern subst pat =
match pat with
| PatVar _ -> pat
| PatCstr (loc,((kn,i),j),cpl,n) ->
let kn' = subst_ind subst kn
and cpl' = list_smartmap (subst_cases_pattern subst) cpl in
if kn' == kn && cpl' == cpl then pat else
PatCstr (loc,((kn',i),j),cpl',n)
let rec subst_glob_constr subst raw =
match raw with
| GRef (loc,ref) ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
detype false [] [] t
| GVar _ -> raw
| GEvar _ -> raw
| GPatVar _ -> raw
| GApp (loc,r,rl) ->
let r' = subst_glob_constr subst r
and rl' = list_smartmap (subst_glob_constr subst) rl in
if r' == r && rl' == rl then raw else
GApp(loc,r',rl')
| GLambda (loc,n,bk,r1,r2) ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
GLambda (loc,n,bk,r1',r2')
| GProd (loc,n,bk,r1,r2) ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
GProd (loc,n,bk,r1',r2')
| GLetIn (loc,n,r1,r2) ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
GLetIn (loc,n,r1',r2')
| GCases (loc,sty,rtno,rl,branches) ->
let rtno' = Option.smartmap (subst_glob_constr subst) rtno
and rl' = list_smartmap (fun (a,x as y) ->
let a' = subst_glob_constr subst a in
let (n,topt) = x in
let topt' = Option.smartmap
(fun (loc,(sp,i),x,y as t) ->
let sp' = subst_ind subst sp in
if sp == sp' then t else (loc,(sp',i),x,y)) topt in
if a == a' && topt == topt' then y else (a',(n,topt'))) rl
and branches' = list_smartmap
(fun (loc,idl,cpl,r as branch) ->
let cpl' =
list_smartmap (subst_cases_pattern subst) cpl
and r' = subst_glob_constr subst r in
if cpl' == cpl && r' == r then branch else
(loc,idl,cpl',r'))
branches
in
if rtno' == rtno && rl' == rl && branches' == branches then raw else
GCases (loc,sty,rtno',rl',branches')
| GLetTuple (loc,nal,(na,po),b,c) ->
let po' = Option.smartmap (subst_glob_constr subst) po
and b' = subst_glob_constr subst b
and c' = subst_glob_constr subst c in
if po' == po && b' == b && c' == c then raw else
GLetTuple (loc,nal,(na,po'),b',c')
| GIf (loc,c,(na,po),b1,b2) ->
let po' = Option.smartmap (subst_glob_constr subst) po
and b1' = subst_glob_constr subst b1
and b2' = subst_glob_constr subst b2
and c' = subst_glob_constr subst c in
if c' == c & po' == po && b1' == b1 && b2' == b2 then raw else
GIf (loc,c',(na,po'),b1',b2')
| GRec (loc,fix,ida,bl,ra1,ra2) ->
let ra1' = array_smartmap (subst_glob_constr subst) ra1
and ra2' = array_smartmap (subst_glob_constr subst) ra2 in
let bl' = array_smartmap
(list_smartmap (fun (na,k,obd,ty as dcl) ->
let ty' = subst_glob_constr subst ty in
let obd' = Option.smartmap (subst_glob_constr subst) obd in
if ty'==ty & obd'==obd then dcl else (na,k,obd',ty')))
bl in
if ra1' == ra1 && ra2' == ra2 && bl'==bl then raw else
GRec (loc,fix,ida,bl',ra1',ra2')
| GSort _ -> raw
| GHole (loc,ImplicitArg (ref,i,b)) ->
let ref',_ = subst_global subst ref in
if ref' == ref then raw else
GHole (loc,InternalHole)
| GHole (loc, (BinderType _ | QuestionMark _ | CasesType | InternalHole |
TomatchTypeParameter _ | GoalEvar | ImpossibleCase | MatchingVar _)) ->
raw
| GCast (loc,r1,k) ->
(match k with
CastConv (k,r2) ->
let r1' = subst_glob_constr subst r1 and r2' = subst_glob_constr subst r2 in
if r1' == r1 && r2' == r2 then raw else
GCast (loc,r1', CastConv (k,r2'))
| CastCoerce ->
let r1' = subst_glob_constr subst r1 in
if r1' == r1 then raw else GCast (loc,r1',k))
(* Utilities to transform kernel cases to simple pattern-matching problem *)
let simple_cases_matrix_of_branches ind brs =
List.map (fun (i,n,b) ->
let nal,c = it_destRLambda_or_LetIn_names n b in
let mkPatVar na = PatVar (dummy_loc,na) in
let p = PatCstr (dummy_loc,(ind,i+1),List.map mkPatVar nal,Anonymous) in
let ids = map_succeed Nameops.out_name nal in
(dummy_loc,ids,[p],c))
brs
let return_type_of_predicate ind nparams nrealargs_ctxt pred =
let nal,p = it_destRLambda_or_LetIn_names (nrealargs_ctxt+1) pred in
(List.hd nal, Some (dummy_loc, ind, nparams, List.tl nal)), Some p
|