1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Util
open Names
open Term
open Closure
open Reduction
open Reductionops
open Termops
open Environ
open Recordops
open Evarutil
open Libnames
open Evd
let debug_unification = ref (false)
let _ = Goptions.declare_bool_option {
Goptions.optsync = true; Goptions.optdepr = false;
Goptions.optname =
"Print states sended to Evarconv unification";
Goptions.optkey = ["Debug";"Unification"];
Goptions.optread = (fun () -> !debug_unification);
Goptions.optwrite = (fun a -> debug_unification:=a);
}
type flex_kind_of_term =
| Rigid of constr
| PseudoRigid of constr (* approximated as rigid but not necessarily so *)
| MaybeFlexible of constr (* approx'ed as reducible but not necessarily so *)
| Flexible of existential
let flex_kind_of_term c l =
match kind_of_term c with
| Rel _ | Const _ | Var _ -> MaybeFlexible c
| Lambda _ when l<>[] -> MaybeFlexible c
| LetIn _ -> MaybeFlexible c
| Evar ev -> Flexible ev
| Lambda _ | Prod _ | Sort _ | Ind _ | Construct _ | CoFix _ -> Rigid c
| Meta _ | Case _ | Fix _ -> PseudoRigid c
| Cast _ | App _ -> assert false
let eval_flexible_term ts env c =
match kind_of_term c with
| Const c ->
if is_transparent_constant ts c
then constant_opt_value env c
else None
| Rel n ->
(try let (_,v,_) = lookup_rel n env in Option.map (lift n) v
with Not_found -> None)
| Var id ->
(try
if is_transparent_variable ts id then
let (_,v,_) = lookup_named id env in v
else None
with Not_found -> None)
| LetIn (_,b,_,c) -> Some (subst1 b c)
| Lambda _ -> Some c
| _ -> assert false
let evar_apprec ts env evd stack c =
let sigma = evd in
let rec aux s =
let (t,stack) = whd_betaiota_deltazeta_for_iota_state ts env sigma s in
match kind_of_term t with
| Evar (evk,_ as ev) when Evd.is_defined sigma evk ->
aux (Evd.existential_value sigma ev, stack)
| _ -> (t, list_of_stack stack)
in aux (c, append_stack_list stack empty_stack)
let apprec_nohdbeta ts env evd c =
match kind_of_term (fst (Reductionops.whd_stack evd c)) with
| (Case _ | Fix _) -> applist (evar_apprec ts env evd [] c)
| _ -> c
let position_problem l2r = function
| CONV -> None
| CUMUL -> Some l2r
(* [check_conv_record (t1,l1) (t2,l2)] tries to decompose the problem
(t1 l1) = (t2 l2) into a problem
l1 = params1@c1::extra_args1
l2 = us2@extra_args2
(t1 params1 c1) = (proji params (c xs))
(t2 us2) = (cstr us)
extra_args1 = extra_args2
by finding a record R and an object c := [xs:bs](Build_R params v1..vn)
with vi = (cstr us), for which we know that the i-th projection proji
satisfies
(proji params (c xs)) = (cstr us)
Rem: such objects, usable for conversion, are defined in the objdef
table; practically, it amounts to "canonically" equip t2 into a
object c in structure R (since, if c1 were not an evar, the
projection would have been reduced) *)
let check_conv_record (t1,l1) (t2,l2) =
try
let proji = global_of_constr t1 in
let canon_s,l2_effective =
try
match kind_of_term t2 with
Prod (_,a,b) -> (* assert (l2=[]); *)
if dependent (mkRel 1) b then raise Not_found
else lookup_canonical_conversion (proji, Prod_cs),[a;pop b]
| Sort s ->
lookup_canonical_conversion
(proji, Sort_cs (family_of_sort s)),[]
| _ ->
let c2 = global_of_constr t2 in
lookup_canonical_conversion (proji, Const_cs c2),l2
with Not_found ->
lookup_canonical_conversion (proji,Default_cs),[]
in
let { o_DEF = c; o_INJ=n; o_TABS = bs;
o_TPARAMS = params; o_NPARAMS = nparams; o_TCOMPS = us } = canon_s in
let params1, c1, extra_args1 =
match list_chop nparams l1 with
| params1, c1::extra_args1 -> params1, c1, extra_args1
| _ -> raise Not_found in
let us2,extra_args2 = list_chop (List.length us) l2_effective in
c,bs,(params,params1),(us,us2),(extra_args1,extra_args2),c1,
(n,applist(t2,l2))
with Failure _ | Not_found ->
raise Not_found
(* Precondition: one of the terms of the pb is an uninstantiated evar,
* possibly applied to arguments. *)
let rec ise_try evd = function
[] -> assert false
| [f] -> f evd
| f1::l ->
let (evd',b) = f1 evd in
if b then (evd',b) else ise_try evd l
let ise_and evd l =
let rec ise_and i = function
[] -> assert false
| [f] -> f i
| f1::l ->
let (i',b) = f1 i in
if b then ise_and i' l else (evd,false) in
ise_and evd l
let ise_list2 evd f l1 l2 =
let rec ise_list2 i l1 l2 =
match l1,l2 with
[], [] -> (i, true)
| [x], [y] -> f i x y
| x::l1, y::l2 ->
let (i',b) = f i x y in
if b then ise_list2 i' l1 l2 else (evd,false)
| _ -> (evd, false) in
ise_list2 evd l1 l2
let ise_array2 evd f v1 v2 =
let rec allrec i = function
| -1 -> (i,true)
| n ->
let (i',b) = f i v1.(n) v2.(n) in
if b then allrec i' (n-1) else (evd,false)
in
let lv1 = Array.length v1 in
if lv1 = Array.length v2 then allrec evd (pred lv1)
else (evd,false)
let rec evar_conv_x ts env evd pbty term1 term2 =
let term1 = whd_head_evar evd term1 in
let term2 = whd_head_evar evd term2 in
(* Maybe convertible but since reducing can erase evars which [evar_apprec]
could have found, we do it only if the terms are free of evar.
Note: incomplete heuristic... *)
let ground_test =
if is_ground_term evd term1 && is_ground_term evd term2 then
if is_trans_fconv pbty ts env evd term1 term2 then
Some true
else if is_ground_env evd env then Some false
else None
else None in
match ground_test with
Some b -> (evd,b)
| None ->
(* Until pattern-unification is used consistently, use nohdbeta to not
destroy beta-redexes that can be used for 1st-order unification *)
let term1 = apprec_nohdbeta ts env evd term1 in
let term2 = apprec_nohdbeta ts env evd term2 in
if is_undefined_evar evd term1 then
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem true pbty,destEvar term1,term2)
else if is_undefined_evar evd term2 then
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem false pbty,destEvar term2,term1)
else
evar_eqappr_x ts env evd pbty
(decompose_app term1) (decompose_app term2)
and evar_eqappr_x ?(rhs_is_already_stuck = false)
ts env evd pbty (term1,l1 as appr1) (term2,l2 as appr2) =
let eta env evd onleft term l term' l' =
assert (l = []);
let (na,c,body) = destLambda term in
let c = nf_evar evd c in
let env' = push_rel (na,None,c) env in
let appr1 = evar_apprec ts env' evd [] body in
let appr2 = (lift 1 term', List.map (lift 1) l' @ [mkRel 1]) in
if onleft then evar_eqappr_x ts env' evd CONV appr1 appr2
else evar_eqappr_x ts env' evd CONV appr2 appr1
in
(* Evar must be undefined since we have flushed evars *)
let () = if !debug_unification then
let open Pp in
let pr_state (tm,l) =
h 0 (Termops.print_constr tm ++ str "|" ++ cut ()
++ prlist_with_sep pr_semicolon
(fun x -> hov 1 (Termops.print_constr x)) l) in
pp (v 0 (pr_state appr1 ++ cut () ++ pr_state appr2 ++ cut ()) ++ fnl ()) in
match (flex_kind_of_term term1 l1, flex_kind_of_term term2 l2) with
| Flexible (sp1,al1 as ev1), Flexible (sp2,al2 as ev2) ->
let f1 i =
if List.length l1 > List.length l2 then
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
ise_and i
[(fun i -> solve_simple_eqn (evar_conv_x ts) env i
(position_problem false pbty,ev2,applist(term1,deb1)));
(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) rest1 l2)]
else
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
ise_and i
[(fun i -> solve_simple_eqn (evar_conv_x ts) env i
(position_problem true pbty,ev1,applist(term2,deb2)));
(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 rest2)]
and f2 i =
if sp1 = sp2 then
ise_and i
[(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 l2);
(fun i -> solve_refl (evar_conv_x ts) env i sp1 al1 al2,
true)]
else (i,false)
in
ise_try evd [f1; f2]
| Flexible ev1, MaybeFlexible flex2 ->
let f1 i =
match is_unification_pattern_evar env evd ev1 l1 (applist appr2) with
| Some l1' ->
(* Miller-Pfenning's patterns unification *)
(* Preserve generality (except that CCI has no eta-conversion) *)
let t2 = nf_evar evd (applist appr2) in
let t2 = solve_pattern_eqn env l1' t2 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem true pbty,ev1,t2)
| None -> (i,false)
and f2 i =
if
List.length l1 <= List.length l2
then
(* Try first-order unification *)
(* (heuristic that gives acceptable results in practice) *)
let (deb2,rest2) =
list_chop (List.length l2-List.length l1) l2 in
ise_and i
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 rest2);
(fun i -> evar_conv_x ts env i pbty term1 (applist(term2,deb2)))]
else (i,false)
and f3 i =
match eval_flexible_term ts env flex2 with
| Some v2 ->
evar_eqappr_x ts env i pbty appr1 (evar_apprec ts env i l2 v2)
| None -> (i,false)
in
ise_try evd [f1; f2; f3]
| MaybeFlexible flex1, Flexible ev2 ->
let f1 i =
match is_unification_pattern_evar env evd ev2 l2 (applist appr1) with
| Some l1' ->
(* Miller-Pfenning's patterns unification *)
(* Preserve generality (except that CCI has no eta-conversion) *)
let t1 = nf_evar evd (applist appr1) in
let t1 = solve_pattern_eqn env l2 t1 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem false pbty,ev2,t1)
| None -> (i,false)
and f2 i =
if
List.length l2 <= List.length l1
then
(* Try first-order unification *)
(* (heuristic that gives acceptable results in practice) *)
let (deb1,rest1) = list_chop (List.length l1-List.length l2) l1 in
ise_and i
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) rest1 l2);
(fun i -> evar_conv_x ts env i pbty (applist(term1,deb1)) term2)]
else (i,false)
and f3 i =
match eval_flexible_term ts env flex1 with
| Some v1 ->
evar_eqappr_x ts env i pbty (evar_apprec ts env i l1 v1) appr2
| None -> (i,false)
in
ise_try evd [f1; f2; f3]
| MaybeFlexible flex1, MaybeFlexible flex2 -> begin
match kind_of_term flex1, kind_of_term flex2 with
| LetIn (na,b1,t1,c'1), LetIn (_,b2,_,c'2) ->
let f1 i =
ise_and i
[(fun i -> evar_conv_x ts env i CONV b1 b2);
(fun i ->
let b = nf_evar i b1 in
let t = nf_evar i t1 in
evar_conv_x ts (push_rel (na,Some b,t) env) i pbty c'1 c'2);
(fun i -> ise_list2 i (fun i -> evar_conv_x ts env i CONV) l1 l2)]
and f2 i =
let appr1 = evar_apprec ts env i l1 (subst1 b1 c'1)
and appr2 = evar_apprec ts env i l2 (subst1 b2 c'2)
in evar_eqappr_x ts env i pbty appr1 appr2
in
ise_try evd [f1; f2]
| _, _ ->
let f1 i =
if eq_constr flex1 flex2 then
ise_list2 i (fun i -> evar_conv_x ts env i CONV) l1 l2
else
(i,false)
and f2 i =
(try conv_record ts env i
(try check_conv_record appr1 appr2
with Not_found -> check_conv_record appr2 appr1)
with Not_found -> (i,false))
and f3 i =
(* heuristic: unfold second argument first, exception made
if the first argument is a beta-redex (expand a constant
only if necessary) or the second argument is potentially
usable as a canonical projection or canonical value *)
let rec is_unnamed (hd, args) = match kind_of_term hd with
| (Var _|Construct _|Ind _|Const _|Prod _|Sort _) -> false
| (Case _|Fix _|CoFix _|Meta _|Rel _)-> true
| Evar _ -> false (* immediate solution without Canon Struct *)
| Lambda _ -> assert(args = []); true
| LetIn (_,b,_,c) ->
is_unnamed (evar_apprec ts env i args (subst1 b c))
| App _| Cast _ -> assert false in
let rhs_is_stuck_and_unnamed () =
match eval_flexible_term ts env flex2 with
| None -> false
| Some v2 -> is_unnamed (evar_apprec ts env i l2 v2) in
let rhs_is_already_stuck =
rhs_is_already_stuck || rhs_is_stuck_and_unnamed () in
if isLambda flex1 || rhs_is_already_stuck then
match eval_flexible_term ts env flex1 with
| Some v1 ->
evar_eqappr_x ~rhs_is_already_stuck
ts env i pbty (evar_apprec ts env i l1 v1) appr2
| None ->
match eval_flexible_term ts env flex2 with
| Some v2 ->
evar_eqappr_x ts env i pbty appr1 (evar_apprec ts env i l2 v2)
| None -> (i,false)
else
match eval_flexible_term ts env flex2 with
| Some v2 ->
evar_eqappr_x ts env i pbty appr1 (evar_apprec ts env i l2 v2)
| None ->
match eval_flexible_term ts env flex1 with
| Some v1 ->
evar_eqappr_x ts env i pbty (evar_apprec ts env i l1 v1) appr2
| None -> (i,false)
in
ise_try evd [f1; f2; f3]
end
| Rigid c1, Rigid c2 when isLambda c1 & isLambda c2 ->
let (na,c1,c'1) = destLambda c1 in
let (_,c2,c'2) = destLambda c2 in
assert (l1=[] & l2=[]);
ise_and evd
[(fun i -> evar_conv_x ts env i CONV c1 c2);
(fun i ->
let c = nf_evar i c1 in
evar_conv_x ts (push_rel (na,None,c) env) i CONV c'1 c'2)]
| Flexible ev1, (Rigid _ | PseudoRigid _) ->
(match is_unification_pattern_evar env evd ev1 l1 (applist appr2) with
| Some l1 ->
(* Miller-Pfenning's pattern unification *)
(* Preserve generality thanks to eta-conversion) *)
let t2 = nf_evar evd (applist appr2) in
let t2 = solve_pattern_eqn env l1 t2 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem true pbty,ev1,t2)
| None ->
if isLambda term2 then
eta env evd false term2 l2 term1 l1
else
(* Postpone the use of an heuristic *)
add_conv_pb (pbty,env,applist appr1,applist appr2) evd,
true)
| (Rigid _ | PseudoRigid _), Flexible ev2 ->
(match is_unification_pattern_evar env evd ev2 l2 (applist appr1) with
| Some l2 ->
(* Miller-Pfenning's pattern unification *)
(* Preserve generality thanks to eta-conversion) *)
let t1 = nf_evar evd (applist appr1) in
let t1 = solve_pattern_eqn env l2 t1 in
solve_simple_eqn (evar_conv_x ts) env evd
(position_problem false pbty,ev2,t1)
| None ->
if isLambda term1 then
eta env evd true term1 l1 term2 l2
else
(* Postpone the use of an heuristic *)
add_conv_pb (pbty,env,applist appr1,applist appr2) evd,
true)
| MaybeFlexible flex1, (Rigid _ | PseudoRigid _) ->
let f3 i =
(try conv_record ts env i (check_conv_record appr1 appr2)
with Not_found -> (i,false))
and f4 i =
match eval_flexible_term ts env flex1 with
| Some v1 ->
evar_eqappr_x ts env i pbty (evar_apprec ts env i l1 v1) appr2
| None ->
if isLambda term2 then
eta env i false term2 l2 term1 l1
else
(i,false)
in
ise_try evd [f3; f4]
| (Rigid _ | PseudoRigid _), MaybeFlexible flex2 ->
let f3 i =
(try conv_record ts env i (check_conv_record appr2 appr1)
with Not_found -> (i,false))
and f4 i =
match eval_flexible_term ts env flex2 with
| Some v2 ->
evar_eqappr_x ts env i pbty appr1 (evar_apprec ts env i l2 v2)
| None ->
if isLambda term1 then
eta env i true term1 l1 term2 l2
else
(i,false)
in
ise_try evd [f3; f4]
(* Eta-expansion *)
| Rigid c1, _ when isLambda c1 ->
eta env evd true term1 l1 term2 l2
| _, Rigid c2 when isLambda c2 ->
eta env evd false term2 l2 term1 l1
| Rigid c1, Rigid c2 -> begin
match kind_of_term c1, kind_of_term c2 with
| Sort s1, Sort s2 when l1=[] & l2=[] ->
(try
let evd' =
if pbty = CONV
then Evd.set_eq_sort evd s1 s2
else Evd.set_leq_sort evd s1 s2
in (evd', true)
with Univ.UniverseInconsistency _ -> (evd, false)
| e when Errors.noncritical e -> (evd, false))
| Prod (n,c1,c'1), Prod (_,c2,c'2) when l1=[] & l2=[] ->
ise_and evd
[(fun i -> evar_conv_x ts env i CONV c1 c2);
(fun i ->
let c = nf_evar i c1 in
evar_conv_x ts (push_rel (n,None,c) env) i pbty c'1 c'2)]
| Ind sp1, Ind sp2 ->
if eq_ind sp1 sp2 then
ise_list2 evd (fun i -> evar_conv_x ts env i CONV) l1 l2
else (evd, false)
| Construct sp1, Construct sp2 ->
if eq_constructor sp1 sp2 then
ise_list2 evd (fun i -> evar_conv_x ts env i CONV) l1 l2
else (evd, false)
| CoFix (i1,(_,tys1,bds1 as recdef1)), CoFix (i2,(_,tys2,bds2)) ->
if i1=i2 then
ise_and evd
[(fun i -> ise_array2 i
(fun i -> evar_conv_x ts env i CONV) tys1 tys2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x ts (push_rec_types recdef1 env) i CONV)
bds1 bds2);
(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 l2)]
else (evd,false)
| (Ind _ | Construct _ | Sort _ | Prod _ | CoFix _), _ -> (evd,false)
| _, (Ind _ | Construct _ | Sort _ | Prod _ | CoFix _) -> (evd,false)
| (App _ | Meta _ | Cast _ | Case _ | Fix _), _ -> assert false
| (LetIn _ | Rel _ | Var _ | Const _ | Evar _), _ -> assert false
| (Lambda _), _ -> assert false
end
| PseudoRigid c1, PseudoRigid c2 -> begin
match kind_of_term c1, kind_of_term c2 with
| Case (_,p1,c1,cl1), Case (_,p2,c2,cl2) ->
ise_and evd
[(fun i -> evar_conv_x ts env i CONV p1 p2);
(fun i -> evar_conv_x ts env i CONV c1 c2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x ts env i CONV) cl1 cl2);
(fun i -> ise_list2 i (fun i -> evar_conv_x ts env i CONV) l1 l2)]
| Fix (li1,(_,tys1,bds1 as recdef1)), Fix (li2,(_,tys2,bds2)) ->
if li1=li2 then
ise_and evd
[(fun i -> ise_array2 i
(fun i -> evar_conv_x ts env i CONV) tys1 tys2);
(fun i -> ise_array2 i
(fun i -> evar_conv_x ts (push_rec_types recdef1 env) i CONV)
bds1 bds2);
(fun i -> ise_list2 i
(fun i -> evar_conv_x ts env i CONV) l1 l2)]
else (evd,false)
| (Meta _ | Case _ | Fix _ | CoFix _),
(Meta _ | Case _ | Fix _ | CoFix _) -> (evd,false)
| (App _ | Ind _ | Construct _ | Sort _ | Prod _), _ -> assert false
| _, (App _ | Ind _ | Construct _ | Sort _ | Prod _) -> assert false
| (LetIn _ | Cast _), _ -> assert false
| _, (LetIn _ | Cast _) -> assert false
| (Lambda _ | Rel _ | Var _ | Const _ | Evar _), _ -> assert false
| _, (Lambda _ | Rel _ | Var _ | Const _ | Evar _) -> assert false
end
| PseudoRigid _, Rigid _ -> (evd,false)
| Rigid _, PseudoRigid _ -> (evd,false)
and conv_record trs env evd (c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) =
let (evd',ks,_) =
List.fold_left
(fun (i,ks,m) b ->
if m=n then (i,t2::ks, m-1) else
let dloc = (dummy_loc,InternalHole) in
let (i',ev) = new_evar i env ~src:dloc (substl ks b) in
(i', ev :: ks, m - 1))
(evd,[],List.length bs - 1) bs
in
ise_and evd'
[(fun i ->
ise_list2 i
(fun i x1 x -> evar_conv_x trs env i CONV x1 (substl ks x))
params1 params);
(fun i ->
ise_list2 i
(fun i u1 u -> evar_conv_x trs env i CONV u1 (substl ks u))
us2 us);
(fun i -> evar_conv_x trs env i CONV c1 (applist (c,(List.rev ks))));
(fun i -> ise_list2 i (fun i -> evar_conv_x trs env i CONV) ts ts1)]
(* getting rid of the optional argument rhs_is_already_stuck *)
let evar_eqappr_x ts env evd pbty appr1 appr2 =
evar_eqappr_x ts env evd pbty appr1 appr2
(* We assume here |l1| <= |l2| *)
let first_order_unification ts env evd (ev1,l1) (term2,l2) =
let (deb2,rest2) = list_chop (List.length l2-List.length l1) l2 in
ise_and evd
(* First compare extra args for better failure message *)
[(fun i -> ise_list2 i (fun i -> evar_conv_x ts env i CONV) rest2 l1);
(fun i ->
(* Then instantiate evar unless already done by unifying args *)
let t2 = applist(term2,deb2) in
if is_defined_evar i ev1 then
evar_conv_x ts env i CONV t2 (mkEvar ev1)
else
solve_simple_eqn ~choose:true (evar_conv_x ts) env i (None,ev1,t2))]
let choose_less_dependent_instance evk evd term args =
let evi = Evd.find_undefined evd evk in
let subst = make_pure_subst evi args in
let subst' = List.filter (fun (id,c) -> eq_constr c term) subst in
if subst' = [] then evd, false else
Evd.define evk (mkVar (fst (List.hd subst'))) evd, true
let apply_on_subterm evdref f c t =
let rec applyrec (k,c as kc) t =
(* By using eq_constr, we make an approximation, for instance, we *)
(* could also be interested in finding a term u convertible to t *)
(* such that c occurs in u *)
if eq_constr c t then f k
else
match kind_of_term t with
| Evar (evk,args) when Evd.is_undefined !evdref evk ->
let ctx = evar_filtered_context (Evd.find_undefined !evdref evk) in
let g (_,b,_) a = if b = None then applyrec kc a else a in
mkEvar (evk, Array.of_list (List.map2 g ctx (Array.to_list args)))
| _ ->
map_constr_with_binders_left_to_right (fun d (k,c) -> (k+1,lift 1 c))
applyrec kc t
in
applyrec (0,c) t
let filter_possible_projections c ty ctxt args =
let fv1 = free_rels c in
let fv2 = collect_vars c in
let tyvars = collect_vars ty in
List.map2 (fun (id,b,_) a ->
b <> None ||
a == c ||
(* Here we make an approximation, for instance, we could also be *)
(* interested in finding a term u convertible to c such that a occurs *)
(* in u *)
isRel a && Intset.mem (destRel a) fv1 ||
isVar a && Idset.mem (destVar a) fv2 ||
Idset.mem id tyvars)
ctxt args
let initial_evar_data evi =
let ids = List.map pi1 (evar_context evi) in
(evar_filter evi, List.map mkVar ids)
let solve_evars = ref (fun _ -> failwith "solve_evars not installed")
let set_solve_evars f = solve_evars := f
(* We solve the problem env_rhs |- ?e[u1..un] = rhs knowing
* x1:T1 .. xn:Tn |- ev : ty
* by looking for a maximal well-typed abtraction over u1..un in rhs
*
* We first build C[e11..e1p1,..,en1..enpn] obtained from rhs by replacing
* all occurrences of u1..un by evars eij of type Ti' where itself Ti' has
* been obtained from the type of ui by also replacing all occurrences of
* u1..ui-1 by evars.
*
* Then, we use typing to infer the relations between the different
* occurrences. If some occurrence is still unconstrained after typing,
* we instantiate successively the unresolved occurrences of un by xn,
* of un-1 by xn-1, etc [the idea comes from Chung-Kil Hur, that he
* used for his Heq plugin; extensions to several arguments based on a
* proposition from Dan Grayson]
*)
let second_order_matching ts env_rhs evd (evk,args) argoccs rhs =
try
let args = Array.to_list args in
let evi = Evd.find_undefined evd evk in
let env_evar = evar_env evi in
let sign = named_context_val env_evar in
let ctxt = evar_filtered_context evi in
let filter = evar_filter evi in
let instance = List.map mkVar (List.map pi1 ctxt) in
let rec make_subst = function
| (id,_,t)::ctxt', c::l, occs::occsl when isVarId id c ->
if occs<>None then
error "Cannot force abstraction on identity instance."
else
make_subst (ctxt',l,occsl)
| (id,_,t)::ctxt', c::l, occs::occsl ->
let evs = ref [] in
let ty = Retyping.get_type_of env_rhs evd c in
let filter' = filter_possible_projections c ty ctxt args in
let filter = List.map2 (&&) filter filter' in
(id,t,c,ty,evs,filter,occs) :: make_subst (ctxt',l,occsl)
| [], [], [] -> []
| _ -> anomaly "Signature, instance and occurrences list do not match" in
let rec set_holes evdref rhs = function
| (id,_,c,cty,evsref,filter,occs)::subst ->
let set_var k =
match occs with
| Some (false,[]) -> mkVar id
| Some _ -> error "Selection of specific occurrences not supported"
| None ->
let evty = set_holes evdref cty subst in
let instance = snd (list_filter2 (fun b c -> b) (filter,instance)) in
let evd,ev = new_evar_instance sign !evdref evty ~filter instance in
evdref := evd;
evsref := (fst (destEvar ev),evty)::!evsref;
ev in
set_holes evdref (apply_on_subterm evdref set_var c rhs) subst
| [] -> rhs in
let subst = make_subst (ctxt,args,argoccs) in
let evdref = ref evd in
let rhs = set_holes evdref rhs subst in
let evd = !evdref in
(* We instantiate the evars of which the value is forced by typing *)
let evd,rhs =
try !solve_evars env_evar evd rhs
with e when Pretype_errors.precatchable_exception e ->
(* Could not revert all subterms *)
raise Exit in
let rec abstract_free_holes evd = function
| (id,idty,c,_,evsref,_,_)::l ->
let rec force_instantiation evd = function
| (evk,evty)::evs ->
let evd =
if is_undefined evd evk then
(* We force abstraction over this unconstrained occurrence *)
(* and we use typing to propagate this instantiation *)
(* This is an arbitrary choice *)
let evd = Evd.define evk (mkVar id) evd in
let evd,b = evar_conv_x ts env_evar evd CUMUL idty evty in
if not b then error "Cannot find an instance";
let evd,b = reconsider_conv_pbs (evar_conv_x ts) evd in
if not b then error "Cannot find an instance";
evd
else
evd
in
force_instantiation evd evs
| [] ->
abstract_free_holes evd l
in
force_instantiation evd !evsref
| [] ->
Evd.define evk rhs evd in
abstract_free_holes evd subst, true
with Exit -> evd, false
let second_order_matching_with_args ts env evd ev l t =
(*
let evd,ev = evar_absorb_arguments env evd ev l in
let argoccs = array_map_to_list (fun _ -> None) (snd ev) in
second_order_matching ts env evd ev argoccs t
*)
(evd,false)
let apply_conversion_problem_heuristic ts env evd pbty t1 t2 =
let t1 = apprec_nohdbeta ts env evd (whd_head_evar evd t1) in
let t2 = apprec_nohdbeta ts env evd (whd_head_evar evd t2) in
let (term1,l1 as appr1) = decompose_app t1 in
let (term2,l2 as appr2) = decompose_app t2 in
match kind_of_term term1, kind_of_term term2 with
| Evar (evk1,args1), (Rel _|Var _) when l1 = [] & l2 = []
& List.for_all (fun a -> eq_constr a term2 or isEvar a)
(remove_instance_local_defs evd evk1 (Array.to_list args1)) ->
(* The typical kind of constraint coming from pattern-matching return
type inference *)
choose_less_dependent_instance evk1 evd term2 args1
| (Rel _|Var _), Evar (evk2,args2) when l1 = [] & l2 = []
& List.for_all (fun a -> eq_constr a term1 or isEvar a)
(remove_instance_local_defs evd evk2 (Array.to_list args2)) ->
(* The typical kind of constraint coming from pattern-matching return
type inference *)
choose_less_dependent_instance evk2 evd term1 args2
| Evar (evk1,args1), Evar (evk2,args2) when evk1 = evk2 ->
let f env evd pbty x y = (evd,is_trans_fconv pbty ts env evd x y) in
solve_refl ~can_drop:true f env evd evk1 args1 args2, true
| Evar ev1, Evar ev2 ->
solve_evar_evar ~force:true
(evar_define (evar_conv_x ts)) (evar_conv_x ts) env evd ev1 ev2, true
| Evar ev1,_ when List.length l1 <= List.length l2 ->
(* On "?n t1 .. tn = u u1 .. u(n+p)", try first-order unification *)
(* and otherwise second-order matching *)
ise_try evd
[(fun evd -> first_order_unification ts env evd (ev1,l1) appr2);
(fun evd ->
second_order_matching_with_args ts env evd ev1 l1 (applist appr2))]
| _,Evar ev2 when List.length l2 <= List.length l1 ->
(* On "u u1 .. u(n+p) = ?n t1 .. tn", try first-order unification *)
(* and otherwise second-order matching *)
ise_try evd
[(fun evd -> first_order_unification ts env evd (ev2,l2) appr1);
(fun evd ->
second_order_matching_with_args ts env evd ev2 l2 (applist appr1))]
| Evar ev1,_ ->
(* Try second-order pattern-matching *)
second_order_matching_with_args ts env evd ev1 l1 (applist appr2)
| _,Evar ev2 ->
(* Try second-order pattern-matching *)
second_order_matching_with_args ts env evd ev2 l2 (applist appr1)
| _ ->
(* Some head evar have been instantiated, or unknown kind of problem *)
evar_conv_x ts env evd pbty t1 t2
let check_problems_are_solved env evd =
match snd (extract_all_conv_pbs evd) with
| (pbty,env,t1,t2)::_ -> Pretype_errors.error_cannot_unify env evd (t1, t2)
| _ -> ()
let max_undefined_with_candidates evd =
(* If evar were ordered with highest index first, fold_undefined
would be going decreasingly and we could use fold_undefined to
find the undefined evar of maximum index (alternatively,
max_bindings from ocaml 3.12 could be used); instead we traverse
the whole map *)
let l = Evd.fold_undefined
(fun evk ev_info evars ->
match ev_info.evar_candidates with
| None -> evars
| Some l -> (evk,ev_info,l)::evars) evd [] in
match l with
| [] -> None
| a::l -> Some (list_last (a::l))
let rec solve_unconstrained_evars_with_canditates evd =
(* max_undefined is supposed to return the most recent, hence
possibly most dependent evar *)
match max_undefined_with_candidates evd with
| None -> evd
| Some (evk,ev_info,l) ->
let rec aux = function
| [] -> error "Unsolvable existential variables."
| a::l ->
try
let conv_algo = evar_conv_x full_transparent_state in
let evd = check_evar_instance evd evk a conv_algo in
let evd = Evd.define evk a evd in
let evd,b = reconsider_conv_pbs conv_algo evd in
if b then solve_unconstrained_evars_with_canditates evd
else aux l
with e when Pretype_errors.precatchable_exception e ->
aux l in
(* List.rev is there to favor most dependent solutions *)
(* and favor progress when used with the refine tactics *)
let evd = aux (List.rev l) in
solve_unconstrained_evars_with_canditates evd
let solve_unconstrained_impossible_cases evd =
Evd.fold_undefined (fun evk ev_info evd' ->
match ev_info.evar_source with
| _,ImpossibleCase -> Evd.define evk (j_type (coq_unit_judge ())) evd'
| _ -> evd') evd evd
let consider_remaining_unif_problems ?(ts=full_transparent_state) env evd =
let evd = solve_unconstrained_evars_with_canditates evd in
let rec aux evd pbs progress stuck =
match pbs with
| (pbty,env,t1,t2 as pb) :: pbs ->
let evd', b = apply_conversion_problem_heuristic ts env evd pbty t1 t2 in
if b then
let (evd', rest) = extract_all_conv_pbs evd' in
if rest = [] then aux evd' pbs true stuck
else (* Unification got actually stuck, postpone *)
aux evd pbs progress (pb :: stuck)
else Pretype_errors.error_cannot_unify env evd (t1, t2)
| _ ->
if progress then aux evd stuck false []
else
match stuck with
| [] -> (* We're finished *) evd
| (pbty,env,t1,t2) :: _ ->
(* There remains stuck problems *)
Pretype_errors.error_cannot_unify env evd (t1, t2)
in
let (evd,pbs) = extract_all_conv_pbs evd in
let heuristic_solved_evd = aux evd pbs false [] in
check_problems_are_solved env heuristic_solved_evd;
solve_unconstrained_impossible_cases heuristic_solved_evd
(* Main entry points *)
let the_conv_x ?(ts=full_transparent_state) env t1 t2 evd =
match evar_conv_x ts env evd CONV t1 t2 with
(evd',true) -> evd'
| _ -> raise Reduction.NotConvertible
let the_conv_x_leq ?(ts=full_transparent_state) env t1 t2 evd =
match evar_conv_x ts env evd CUMUL t1 t2 with
(evd', true) -> evd'
| _ -> raise Reduction.NotConvertible
let e_conv ?(ts=full_transparent_state) env evdref t1 t2 =
match evar_conv_x ts env !evdref CONV t1 t2 with
(evd',true) -> evdref := evd'; true
| _ -> false
let e_cumul ?(ts=full_transparent_state) env evdref t1 t2 =
match evar_conv_x ts env !evdref CUMUL t1 t2 with
(evd',true) -> evdref := evd'; true
| _ -> false
|