1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Pp
open Names
open Univ
open Term
open Termops
open Namegen
open Sign
open Pre_env
open Environ
open Evd
open Reductionops
open Pretype_errors
open Retyping
(****************************************************)
(* Expanding/testing/exposing existential variables *)
(****************************************************)
(* flush_and_check_evars fails if an existential is undefined *)
exception Uninstantiated_evar of existential_key
let rec flush_and_check_evars sigma c =
match kind_of_term c with
| Evar (evk,_ as ev) ->
(match existential_opt_value sigma ev with
| None -> raise (Uninstantiated_evar evk)
| Some c -> flush_and_check_evars sigma c)
| _ -> map_constr (flush_and_check_evars sigma) c
let nf_evar = Pretype_errors.nf_evar
let j_nf_evar = Pretype_errors.j_nf_evar
let jl_nf_evar = Pretype_errors.jl_nf_evar
let jv_nf_evar = Pretype_errors.jv_nf_evar
let tj_nf_evar = Pretype_errors.tj_nf_evar
let nf_named_context_evar sigma ctx =
Sign.map_named_context (Reductionops.nf_evar sigma) ctx
let nf_rel_context_evar sigma ctx =
Sign.map_rel_context (Reductionops.nf_evar sigma) ctx
let nf_env_evar sigma env =
let nc' = nf_named_context_evar sigma (Environ.named_context env) in
let rel' = nf_rel_context_evar sigma (Environ.rel_context env) in
push_rel_context rel' (reset_with_named_context (val_of_named_context nc') env)
let nf_evar_info evc info =
{ info with
evar_concl = Reductionops.nf_evar evc info.evar_concl;
evar_hyps = map_named_val (Reductionops.nf_evar evc) info.evar_hyps;
evar_body = match info.evar_body with
| Evar_empty -> Evar_empty
| Evar_defined c -> Evar_defined (Reductionops.nf_evar evc c) }
let nf_evars evm =
Evd.fold
(fun ev evi evm' -> Evd.add evm' ev (nf_evar_info evm evi))
evm Evd.empty
let nf_evars_undefined evm =
Evd.fold_undefined
(fun ev evi evm' -> Evd.add evm' ev (nf_evar_info evm evi))
evm (defined_evars evm)
let nf_evar_map evd = Evd.evars_reset_evd (nf_evars evd) evd
let nf_evar_map_undefined evd = Evd.evars_reset_evd (nf_evars_undefined evd) evd
(*-------------------*)
(* Auxiliary functions for the conversion algorithms modulo evars
*)
let has_undefined_evars_or_sorts evd t =
let rec has_ev t =
match kind_of_term t with
| Evar (ev,args) ->
(match evar_body (Evd.find evd ev) with
| Evar_defined c ->
has_ev c; Array.iter has_ev args
| Evar_empty ->
raise NotInstantiatedEvar)
| Sort s when is_sort_variable evd s -> raise Not_found
| _ -> iter_constr has_ev t in
try let _ = has_ev t in false
with (Not_found | NotInstantiatedEvar) -> true
let is_ground_term evd t =
not (has_undefined_evars_or_sorts evd t)
let is_ground_env evd env =
let is_ground_decl = function
(_,Some b,_) -> is_ground_term evd b
| _ -> true in
List.for_all is_ground_decl (rel_context env) &&
List.for_all is_ground_decl (named_context env)
(* Memoization is safe since evar_map and environ are applicative
structures *)
let is_ground_env = memo1_2 is_ground_env
(* Return the head evar if any *)
exception NoHeadEvar
let head_evar =
let rec hrec c = match kind_of_term c with
| Evar (evk,_) -> evk
| Case (_,_,c,_) -> hrec c
| App (c,_) -> hrec c
| Cast (c,_,_) -> hrec c
| _ -> raise NoHeadEvar
in
hrec
(* Expand head evar if any (currently consider only applications but I
guess it should consider Case too) *)
let whd_head_evar_stack sigma c =
let rec whrec (c, l as s) =
match kind_of_term c with
| Evar (evk,args as ev) when Evd.is_defined sigma evk
-> whrec (existential_value sigma ev, l)
| Cast (c,_,_) -> whrec (c, l)
| App (f,args) -> whrec (f, Array.fold_right (fun a l -> a::l) args l)
| _ -> s
in
whrec (c, [])
let whd_head_evar sigma c = applist (whd_head_evar_stack sigma c)
let noccur_evar env evd evk c =
let rec occur_rec k c = match kind_of_term c with
| Evar (evk',args' as ev') ->
(match safe_evar_value evd ev' with
| Some c -> occur_rec k c
| None ->
if evk = evk' then raise Occur else Array.iter (occur_rec k) args')
| Rel i when i > k ->
(match pi2 (Environ.lookup_rel (i-k) env) with
| None -> ()
| Some b -> occur_rec k (lift i b))
| _ -> iter_constr_with_binders succ occur_rec k c
in
try occur_rec 0 c; true with Occur -> false
let normalize_evar evd ev =
match kind_of_term (whd_evar evd (mkEvar ev)) with
| Evar (evk,args) -> (evk,args)
| _ -> assert false
(**********************)
(* Creating new metas *)
(**********************)
(* Generator of metavariables *)
let new_meta =
let meta_ctr = ref 0 in
Summary.declare_summary "meta counter"
{ Summary.freeze_function = (fun () -> !meta_ctr);
Summary.unfreeze_function = (fun n -> meta_ctr := n);
Summary.init_function = (fun () -> meta_ctr := 0) };
fun () -> incr meta_ctr; !meta_ctr
let mk_new_meta () = mkMeta(new_meta())
let collect_evars emap c =
let rec collrec acc c =
match kind_of_term c with
| Evar (evk,_) ->
if Evd.is_undefined emap evk then evk::acc
else (* No recursion on the evar instantiation *) acc
| _ ->
fold_constr collrec acc c in
list_uniquize (collrec [] c)
let push_dependent_evars sigma emap =
Evd.fold_undefined (fun ev {evar_concl = ccl} (sigma',emap') ->
List.fold_left
(fun (sigma',emap') ev ->
(Evd.add sigma' ev (Evd.find emap' ev),Evd.remove emap' ev))
(sigma',emap') (collect_evars emap' ccl))
emap (sigma,emap)
let push_duplicated_evars sigma emap c =
let rec collrec (one,(sigma,emap) as acc) c =
match kind_of_term c with
| Evar (evk,_) when not (Evd.mem sigma evk) ->
if List.mem evk one then
let sigma' = Evd.add sigma evk (Evd.find emap evk) in
let emap' = Evd.remove emap evk in
(one,(sigma',emap'))
else
(evk::one,(sigma,emap))
| _ ->
fold_constr collrec acc c
in
snd (collrec ([],(sigma,emap)) c)
(* replaces a mapping of existentials into a mapping of metas.
Problem if an evar appears in the type of another one (pops anomaly) *)
let evars_to_metas sigma (emap, c) =
let emap = nf_evar_map_undefined emap in
let sigma',emap' = push_dependent_evars sigma emap in
let sigma',emap' = push_duplicated_evars sigma' emap' c in
(* if an evar has been instantiated in [emap] (as part of typing [c])
then it is instantiated in [sigma]. *)
let repair_evars sigma emap =
fold_undefined begin fun ev _ sigma' ->
try
let info = find emap ev in
match evar_body info with
| Evar_empty -> sigma'
| Evar_defined body -> define ev body sigma'
with Not_found -> sigma'
end sigma sigma
in
let sigma' = repair_evars sigma' emap in
let change_exist evar =
let ty = nf_betaiota emap (existential_type emap evar) in
let n = new_meta() in
mkCast (mkMeta n, DEFAULTcast, ty) in
let rec replace c =
match kind_of_term c with
| Evar (evk,_ as ev) when Evd.mem emap' evk -> change_exist ev
| _ -> map_constr replace c in
(sigma', replace c)
(* The list of non-instantiated existential declarations (order is important) *)
let non_instantiated sigma =
let listev = Evd.undefined_list sigma in
List.map (fun (ev,evi) -> (ev,nf_evar_info sigma evi)) listev
(************************)
(* Manipulating filters *)
(************************)
let apply_subfilter filter subfilter =
fst (List.fold_right (fun oldb (l,filter) ->
if oldb then List.hd filter::l,List.tl filter else (false::l,filter))
filter ([], List.rev subfilter))
let extract_subfilter initial_filter refined_filter =
snd (list_filter2 (fun b1 b2 -> b1) (initial_filter,refined_filter))
(**********************)
(* Creating new evars *)
(**********************)
(* Generator of existential names *)
let new_untyped_evar =
let evar_ctr = ref 0 in
Summary.declare_summary "evar counter"
{ Summary.freeze_function = (fun () -> !evar_ctr);
Summary.unfreeze_function = (fun n -> evar_ctr := n);
Summary.init_function = (fun () -> evar_ctr := 0) };
fun () -> incr evar_ctr; existential_of_int !evar_ctr
(*------------------------------------*
* functional operations on evar sets *
*------------------------------------*)
(* [push_rel_context_to_named_context] builds the defining context and the
* initial instance of an evar. If the evar is to be used in context
*
* Gamma = a1 ... an xp ... x1
* \- named part -/ \- de Bruijn part -/
*
* then the x1...xp are turned into variables so that the evar is declared in
* context
*
* a1 ... an xp ... x1
* \----------- named part ------------/
*
* but used applied to the initial instance "a1 ... an Rel(p) ... Rel(1)"
* so that ev[a1:=a1 ... an:=an xp:=Rel(p) ... x1:=Rel(1)] is correctly typed
* in context Gamma.
*
* Remark 1: The instance is reverted in practice (i.e. Rel(1) comes first)
* Remark 2: If some of the ai or xj are definitions, we keep them in the
* instance. This is necessary so that no unfolding of local definitions
* happens when inferring implicit arguments (consider e.g. the problem
* "x:nat; x':=x; f:forall y, y=y -> Prop |- f _ (refl_equal x')" which
* produces the equation "?y[x,x']=?y[x,x']" =? "x'=x'": we want
* the hole to be instantiated by x', not by x (which would have been
* the case in [invert_definition] if x' had disappeared from the instance).
* Note that at any time, if, in some context env, the instance of
* declaration x:A is t and the instance of definition x':=phi(x) is u, then
* we have the property that u and phi(t) are convertible in env.
*)
let push_rel_context_to_named_context env typ =
(* compute the instances relative to the named context and rel_context *)
let ids = List.map pi1 (named_context env) in
let inst_vars = List.map mkVar ids in
let inst_rels = List.rev (rel_list 0 (nb_rel env)) in
(* move the rel context to a named context and extend the named instance *)
(* with vars of the rel context *)
(* We do keep the instances corresponding to local definition (see above) *)
let (subst, _, env) =
Sign.fold_rel_context
(fun (na,c,t) (subst, avoid, env) ->
let id = next_name_away na avoid in
let d = (id,Option.map (substl subst) c,substl subst t) in
(mkVar id :: subst, id::avoid, push_named d env))
(rel_context env) ~init:([], ids, env) in
(named_context_val env, substl subst typ, inst_rels@inst_vars, subst)
(*------------------------------------*
* Entry points to define new evars *
*------------------------------------*)
let default_source = (dummy_loc,InternalHole)
let new_pure_evar evd sign ?(src=default_source) ?filter ?candidates typ =
let newevk = new_untyped_evar() in
let evd = evar_declare sign newevk typ ~src ?filter ?candidates evd in
(evd,newevk)
let new_evar_instance sign evd typ ?src ?filter ?candidates instance =
assert (not !Flags.debug ||
list_distinct (ids_of_named_context (named_context_of_val sign)));
let evd,newevk = new_pure_evar evd sign ?src ?filter ?candidates typ in
(evd,mkEvar (newevk,Array.of_list instance))
(* [new_evar] declares a new existential in an env env with type typ *)
(* Converting the env into the sign of the evar to define *)
let new_evar evd env ?src ?filter ?candidates typ =
let sign,typ',instance,subst = push_rel_context_to_named_context env typ in
let candidates = Option.map (List.map (substl subst)) candidates in
let instance =
match filter with
| None -> instance
| Some filter -> list_filter_with filter instance in
new_evar_instance sign evd typ' ?src ?filter ?candidates instance
let new_type_evar ?src ?filter evd env =
let evd', s = new_sort_variable evd in
new_evar evd' env ?src ?filter (mkSort s)
(* The same using side-effect *)
let e_new_evar evdref env ?(src=(dummy_loc,InternalHole)) ?filter ?candidates ty =
let (evd',ev) = new_evar !evdref env ~src:src ?filter ?candidates ty in
evdref := evd';
ev
(*------------------------------------*
* Restricting existing evars *
*------------------------------------*)
let restrict_evar_key evd evk filter candidates =
if filter = None && candidates = None then
evd,evk
else
let evi = Evd.find_undefined evd evk in
let oldfilter = evar_filter evi in
if filter = Some oldfilter && candidates = None then
evd,evk
else
let filter =
match filter with
| None -> evar_filter evi
| Some filter -> filter in
let candidates =
match candidates with None -> evi.evar_candidates | _ -> candidates in
let ccl = evi.evar_concl in
let sign = evar_hyps evi in
let src = evi.evar_source in
let evd,newevk = new_pure_evar evd sign ccl ~src ~filter ?candidates in
let ctxt = snd (list_filter2 (fun b c -> b) (filter,evar_context evi)) in
let id_inst = Array.of_list (List.map (fun (id,_,_) -> mkVar id) ctxt) in
Evd.define evk (mkEvar(newevk,id_inst)) evd,newevk
(* Restrict an applied evar and returns its restriction in the same context *)
let restrict_applied_evar evd (evk,argsv) filter candidates =
let evd,newevk = restrict_evar_key evd evk filter candidates in
let newargsv = match filter with
| None -> (* optim *) argsv
| Some filter ->
let evi = Evd.find evd evk in
let subfilter = extract_subfilter (evar_filter evi) filter in
array_filter_with subfilter argsv in
evd,(newevk,newargsv)
(* Restrict an evar in the current evar_map *)
let restrict_evar evd evk filter candidates =
fst (restrict_evar_key evd evk filter candidates)
(* Restrict an evar in the current evar_map *)
let restrict_instance evd evk filter argsv =
match filter with None -> argsv | Some filter ->
let evi = Evd.find evd evk in
array_filter_with (extract_subfilter (evar_filter evi) filter) argsv
(* This assumes an evar with identity instance and generalizes it over only
the De Bruijn part of the context *)
let generalize_evar_over_rels sigma (ev,args) =
let evi = Evd.find sigma ev in
let sign = named_context_of_val evi.evar_hyps in
List.fold_left2
(fun (c,inst as x) a d ->
if isRel a then (mkNamedProd_or_LetIn d c,a::inst) else x)
(evi.evar_concl,[]) (Array.to_list args) sign
(***************************************)
(* Managing chains of local definitons *)
(***************************************)
(* Expand rels and vars that are bound to other rels or vars so that
dependencies in variables are canonically associated to the most ancient
variable in its family of aliased variables *)
let compute_var_aliases sign =
List.fold_right (fun (id,b,c) aliases ->
match b with
| Some t ->
(match kind_of_term t with
| Var id' ->
let aliases_of_id =
try Idmap.find id' aliases with Not_found -> [] in
Idmap.add id (aliases_of_id@[t]) aliases
| _ ->
Idmap.add id [t] aliases)
| None -> aliases)
sign Idmap.empty
let compute_rel_aliases var_aliases rels =
snd (List.fold_right (fun (_,b,t) (n,aliases) ->
(n-1,
match b with
| Some t ->
(match kind_of_term t with
| Var id' ->
let aliases_of_n =
try Idmap.find id' var_aliases with Not_found -> [] in
Intmap.add n (aliases_of_n@[t]) aliases
| Rel p ->
let aliases_of_n =
try Intmap.find (p+n) aliases with Not_found -> [] in
Intmap.add n (aliases_of_n@[mkRel (p+n)]) aliases
| _ ->
Intmap.add n [lift n t] aliases)
| None -> aliases))
rels (List.length rels,Intmap.empty))
let make_alias_map env =
(* We compute the chain of aliases for each var and rel *)
let var_aliases = compute_var_aliases (named_context env) in
let rel_aliases = compute_rel_aliases var_aliases (rel_context env) in
(var_aliases,rel_aliases)
let lift_aliases n (var_aliases,rel_aliases as aliases) =
if n = 0 then aliases else
(var_aliases,
Intmap.fold (fun p l -> Intmap.add (p+n) (List.map (lift n) l))
rel_aliases Intmap.empty)
let get_alias_chain_of aliases x = match kind_of_term x with
| Rel n -> (try Intmap.find n (snd aliases) with Not_found -> [])
| Var id -> (try Idmap.find id (fst aliases) with Not_found -> [])
| _ -> []
let normalize_alias_opt aliases x =
match get_alias_chain_of aliases x with
| [] -> None
| a::_ when isRel a or isVar a -> Some a
| [_] -> None
| _::a::_ -> Some a
let normalize_alias aliases x =
match normalize_alias_opt aliases x with
| Some a -> a
| None -> x
let normalize_alias_var var_aliases id =
destVar (normalize_alias (var_aliases,Intmap.empty) (mkVar id))
let extend_alias (_,b,_) (var_aliases,rel_aliases) =
let rel_aliases =
Intmap.fold (fun n l -> Intmap.add (n+1) (List.map (lift 1) l))
rel_aliases Intmap.empty in
let rel_aliases =
match b with
| Some t ->
(match kind_of_term t with
| Var id' ->
let aliases_of_binder =
try Idmap.find id' var_aliases with Not_found -> [] in
Intmap.add 1 (aliases_of_binder@[t]) rel_aliases
| Rel p ->
let aliases_of_binder =
try Intmap.find (p+1) rel_aliases with Not_found -> [] in
Intmap.add 1 (aliases_of_binder@[mkRel (p+1)]) rel_aliases
| _ ->
Intmap.add 1 [lift 1 t] rel_aliases)
| None -> rel_aliases in
(var_aliases, rel_aliases)
let expand_alias_once aliases x =
match get_alias_chain_of aliases x with
| [] -> None
| l -> Some (list_last l)
let rec expansions_of_var aliases x =
match get_alias_chain_of aliases x with
| [] -> [x]
| a::_ as l when isRel a || isVar a -> x :: List.rev l
| _::l -> x :: List.rev l
let expansion_of_var aliases x =
match get_alias_chain_of aliases x with
| [] -> x
| a::_ -> a
let rec expand_vars_in_term_using aliases t = match kind_of_term t with
| Rel _ | Var _ ->
normalize_alias aliases t
| _ ->
map_constr_with_full_binders
extend_alias expand_vars_in_term_using aliases t
let expand_vars_in_term env = expand_vars_in_term_using (make_alias_map env)
let free_vars_and_rels_up_alias_expansion aliases c =
let acc1 = ref Intset.empty and acc2 = ref Idset.empty in
let cache_rel = ref Intset.empty and cache_var = ref Idset.empty in
let is_in_cache depth = function
| Rel n -> Intset.mem (n-depth) !cache_rel
| Var s -> Idset.mem s !cache_var
| _ -> false in
let put_in_cache depth = function
| Rel n -> cache_rel := Intset.add (n-depth) !cache_rel
| Var s -> cache_var := Idset.add s !cache_var
| _ -> () in
let rec frec (aliases,depth) c =
match kind_of_term c with
| Rel _ | Var _ as ck ->
if is_in_cache depth ck then () else begin
put_in_cache depth ck;
let c = expansion_of_var aliases c in
match kind_of_term c with
| Var id -> acc2 := Idset.add id !acc2
| Rel n -> if n >= depth+1 then acc1 := Intset.add (n-depth) !acc1
| _ -> frec (aliases,depth) c end
| Const _ | Ind _ | Construct _ ->
acc2 := List.fold_right Idset.add (vars_of_global (Global.env()) c) !acc2
| _ ->
iter_constr_with_full_binders
(fun d (aliases,depth) -> (extend_alias d aliases,depth+1))
frec (aliases,depth) c
in
frec (aliases,0) c;
(!acc1,!acc2)
(************************************)
(* Removing a dependency in an evar *)
(************************************)
type clear_dependency_error =
| OccurHypInSimpleClause of identifier option
| EvarTypingBreak of existential
exception ClearDependencyError of identifier * clear_dependency_error
open Store.Field
let cleared = Store.field ()
let rec check_and_clear_in_constr evdref err ids c =
(* returns a new constr where all the evars have been 'cleaned'
(ie the hypotheses ids have been removed from the contexts of
evars) *)
let check id' =
if List.mem id' ids then
raise (ClearDependencyError (id',err))
in
match kind_of_term c with
| Var id' ->
check id'; c
| ( Const _ | Ind _ | Construct _ ) ->
let vars = Environ.vars_of_global (Global.env()) c in
List.iter check vars; c
| Evar (evk,l as ev) ->
if Evd.is_defined !evdref evk then
(* If evk is already defined we replace it by its definition *)
let nc = whd_evar !evdref c in
(check_and_clear_in_constr evdref err ids nc)
else
(* We check for dependencies to elements of ids in the
evar_info corresponding to e and in the instance of
arguments. Concurrently, we build a new evar
corresponding to e where hypotheses of ids have been
removed *)
let evi = Evd.find_undefined !evdref evk in
let ctxt = Evd.evar_filtered_context evi in
let (nhyps,nargs,rids) =
List.fold_right2
(fun (rid,ob,c as h) a (hy,ar,ri) ->
(* Check if some id to clear occurs in the instance
a of rid in ev and remember the dependency *)
match
List.filter (fun id -> List.mem id ids) (Idset.elements (collect_vars a))
with
| id :: _ -> (hy,ar,(rid,id)::ri)
| _ ->
(* Check if some rid to clear in the context of ev
has dependencies in another hyp of the context of ev
and transitively remember the dependency *)
match List.filter (fun (id,_) -> occur_var_in_decl (Global.env()) id h) ri with
| (_,id') :: _ -> (hy,ar,(rid,id')::ri)
| _ ->
(* No dependency at all, we can keep this ev's context hyp *)
(h::hy,a::ar,ri))
ctxt (Array.to_list l) ([],[],[]) in
(* Check if some rid to clear in the context of ev has dependencies
in the type of ev and adjust the source of the dependency *)
let nconcl =
try check_and_clear_in_constr evdref (EvarTypingBreak ev)
(List.map fst rids) (evar_concl evi)
with ClearDependencyError (rid,err) ->
raise (ClearDependencyError (List.assoc rid rids,err)) in
if rids = [] then c else begin
let env = Sign.fold_named_context push_named nhyps ~init:(empty_env) in
let ev'= e_new_evar evdref env ~src:(evar_source evk !evdref) nconcl in
evdref := Evd.define evk ev' !evdref;
let (evk',_) = destEvar ev' in
(* spiwack: hacking session to mark the old [evk] as having been "cleared" *)
let evi = Evd.find !evdref evk in
let extra = evi.evar_extra in
let extra' = cleared.set true extra in
let evi' = { evi with evar_extra = extra' } in
evdref := Evd.add !evdref evk evi' ;
(* spiwack: /hacking session *)
mkEvar(evk', Array.of_list nargs)
end
| _ -> map_constr (check_and_clear_in_constr evdref err ids) c
let clear_hyps_in_evi evdref hyps concl ids =
(* clear_hyps_in_evi erases hypotheses ids in hyps, checking if some
hypothesis does not depend on a element of ids, and erases ids in
the contexts of the evars occuring in evi *)
let nconcl =
check_and_clear_in_constr evdref (OccurHypInSimpleClause None) ids concl in
let nhyps =
let check_context (id,ob,c) =
let err = OccurHypInSimpleClause (Some id) in
(id, Option.map (check_and_clear_in_constr evdref err ids) ob,
check_and_clear_in_constr evdref err ids c)
in
let check_value vk =
match !vk with
| VKnone -> vk
| VKvalue (v,d) ->
if (List.for_all (fun e -> not (Idset.mem e d)) ids) then
(* v does depend on any of ids, it's ok *)
vk
else
(* v depends on one of the cleared hyps: we forget the computed value *)
ref VKnone
in
remove_hyps ids check_context check_value hyps
in
(nhyps,nconcl)
(********************************)
(* Managing pattern-unification *)
(********************************)
let rec expand_and_check_vars aliases = function
| [] -> []
| a::l when isRel a or isVar a ->
let a = expansion_of_var aliases a in
if isRel a or isVar a then a :: expand_and_check_vars aliases l
else raise Exit
| _ ->
raise Exit
module Constrhash = Hashtbl.Make
(struct type t = constr
let equal = eq_constr
let hash = hash_constr
end)
let rec constr_list_distinct l =
let visited = Constrhash.create 23 in
let rec loop = function
| h::t ->
if Constrhash.mem visited h then false
else (Constrhash.add visited h h; loop t)
| [] -> true
in loop l
let get_actual_deps aliases l t =
if occur_meta_or_existential t then
(* Probably no restrictions on allowed vars in presence of evars *)
l
else
(* Probably strong restrictions coming from t being evar-closed *)
let (fv_rels,fv_ids) = free_vars_and_rels_up_alias_expansion aliases t in
List.filter (fun c ->
match kind_of_term c with
| Var id -> Idset.mem id fv_ids
| Rel n -> Intset.mem n fv_rels
| _ -> assert false) l
let remove_instance_local_defs evd evk args =
let evi = Evd.find evd evk in
let rec aux = function
| (_,Some _,_)::sign, a::args -> aux (sign,args)
| (_,None,_)::sign, a::args -> a::aux (sign,args)
| [], [] -> []
| _ -> assert false in
aux (evar_filtered_context evi, args)
(* Check if an applied evar "?X[args] l" is a Miller's pattern *)
let find_unification_pattern_args env l t =
if List.for_all (fun x -> isRel x || isVar x) l (* common failure case *) then
let aliases = make_alias_map env in
match (try Some (expand_and_check_vars aliases l) with Exit -> None) with
| Some l as x when constr_list_distinct (get_actual_deps aliases l t) -> x
| _ -> None
else
None
let is_unification_pattern_meta env nb m l t =
(* Variables from context and rels > nb are implicitly all there *)
(* so we need to be a rel <= nb *)
if List.for_all (fun x -> isRel x && destRel x <= nb) l then
match find_unification_pattern_args env l t with
| Some _ as x when not (dependent (mkMeta m) t) -> x
| _ -> None
else
None
let is_unification_pattern_evar env evd (evk,args) l t =
if List.for_all (fun x -> isRel x || isVar x) l & noccur_evar env evd evk t
then
let args = remove_instance_local_defs evd evk (Array.to_list args) in
let n = List.length args in
match find_unification_pattern_args env (args @ l) t with
| Some l -> Some (list_skipn n l)
| _ -> None
else
None
let is_unification_pattern_pure_evar env evd (evk,args) t =
is_unification_pattern_evar env evd (evk,args) [] t <> None
let is_unification_pattern (env,nb) evd f l t =
match kind_of_term f with
| Meta m -> is_unification_pattern_meta env nb m l t
| Evar ev -> is_unification_pattern_evar env evd ev l t
| _ -> None
(* From a unification problem "?X l = c", build "\x1...xn.(term1 l2)"
(pattern unification). It is assumed that l is made of rel's that
are distinct and not bound to aliases. *)
(* It is also assumed that c does not contain metas because metas
*implicitly* depend on Vars but lambda abstraction will not reflect this
dependency: ?X x = ?1 (?1 is a meta) will return \_.?1 while it should
return \y. ?1{x\y} (non constant function if ?1 depends on x) (BB) *)
let solve_pattern_eqn env l c =
let c' = List.fold_right (fun a c ->
let c' = subst_term (lift 1 a) (lift 1 c) in
match kind_of_term a with
(* Rem: if [a] links to a let-in, do as if it were an assumption *)
| Rel n ->
let d = map_rel_declaration (lift n) (lookup_rel n env) in
mkLambda_or_LetIn d c'
| Var id ->
let d = lookup_named id env in mkNamedLambda_or_LetIn d c'
| _ -> assert false)
l c in
(* Warning: we may miss some opportunity to eta-reduce more since c'
is not in normal form *)
whd_eta c'
(*****************************************)
(* Refining/solving unification problems *)
(*****************************************)
(* Knowing that [Gamma |- ev : T] and that [ev] is applied to [args],
* [make_projectable_subst ev args] builds the substitution [Gamma:=args].
* If a variable and an alias of it are bound to the same instance, we skip
* the alias (we just use eq_constr -- instead of conv --, since anyway,
* only instances that are variables -- or evars -- are later considered;
* morever, we can bet that similar instances came at some time from
* the very same substitution. The removal of aliased duplicates is
* useful to ensure the uniqueness of a projection.
*)
let make_projectable_subst aliases sigma evi args =
let sign = evar_filtered_context evi in
let evar_aliases = compute_var_aliases sign in
let (_,full_subst,cstr_subst) =
List.fold_right
(fun (id,b,c) (args,all,cstrs) ->
match b,args with
| None, a::rest ->
let a = whd_evar sigma a in
let cstrs =
let a',args = decompose_app_vect a in
match kind_of_term a' with
| Construct cstr ->
let l = try Constrmap.find cstr cstrs with Not_found -> [] in
Constrmap.add cstr ((args,id)::l) cstrs
| _ -> cstrs in
(rest,Idmap.add id [a,normalize_alias_opt aliases a,id] all,cstrs)
| Some c, a::rest ->
let a = whd_evar sigma a in
(match kind_of_term c with
| Var id' ->
let idc = normalize_alias_var evar_aliases id' in
let sub = try Idmap.find idc all with Not_found -> [] in
if List.exists (fun (c,_,_) -> eq_constr a c) sub then
(rest,all,cstrs)
else
(rest,
Idmap.add idc ((a,normalize_alias_opt aliases a,id)::sub) all,
cstrs)
| _ ->
(rest,Idmap.add id [a,normalize_alias_opt aliases a,id] all,cstrs))
| _ -> anomaly "Instance does not match its signature")
sign (array_rev_to_list args,Idmap.empty,Constrmap.empty) in
(full_subst,cstr_subst)
let make_pure_subst evi args =
snd (List.fold_right
(fun (id,b,c) (args,l) ->
match args with
| a::rest -> (rest, (id,a)::l)
| _ -> anomaly "Instance does not match its signature")
(evar_filtered_context evi) (array_rev_to_list args,[]))
(*------------------------------------*
* operations on the evar constraints *
*------------------------------------*)
(* We have a unification problem Σ; Γ |- ?e[u1..uq] = t : s where ?e is not yet
* declared in Σ but yet known to be declarable in some context x1:T1..xq:Tq.
* [define_evar_from_virtual_equation ... Γ Σ t (x1:T1..xq:Tq) .. (u1..uq) (x1..xq)]
* declares x1:T1..xq:Tq |- ?e : s such that ?e[u1..uq] = t holds.
*)
let define_evar_from_virtual_equation define_fun env evd t_in_env sign filter inst_in_env =
let ty_t_in_env = Retyping.get_type_of env evd t_in_env in
let evd,evar_in_env = new_evar_instance sign evd ty_t_in_env ~filter inst_in_env in
let t_in_env = whd_evar evd t_in_env in
let evd = define_fun env evd (destEvar evar_in_env) t_in_env in
let ids = List.map pi1 (named_context_of_val sign) in
let inst_in_sign = List.map mkVar (list_filter_with filter ids) in
let evar_in_sign = mkEvar (fst (destEvar evar_in_env), Array.of_list inst_in_sign) in
(evd,whd_evar evd evar_in_sign)
(* We have x1..xq |- ?e1 : τ and had to solve something like
* Σ; Γ |- ?e1[u1..uq] = (...\y1 ... \yk ... c), where c is typically some
* ?e2[v1..vn], hence flexible. We had to go through k binders and now
* virtually have x1..xq, y1'..yk' | ?e1' : τ' and the equation
* Γ, y1..yk |- ?e1'[u1..uq y1..yk] = c.
* [materialize_evar Γ evd k (?e1[u1..uq]) τ'] extends Σ with the declaration
* of ?e1' and returns both its instance ?e1'[x1..xq y1..yk] in an extension
* of the context of e1 so that e1 can be instantiated by
* (...\y1' ... \yk' ... ?e1'[x1..xq y1'..yk']),
* and the instance ?e1'[u1..uq y1..yk] so that the remaining equation
* ?e1'[u1..uq y1..yk] = c can be registered
*
* Note that, because invert_definition does not check types, we need to
* guess the types of y1'..yn' by inverting the types of y1..yn along the
* substitution u1..uq.
*)
let materialize_evar define_fun env evd k (evk1,args1) ty_in_env =
let evi1 = Evd.find_undefined evd evk1 in
let env1,rel_sign = env_rel_context_chop k env in
let sign1 = evar_hyps evi1 in
let filter1 = evar_filter evi1 in
let ids1 = List.map pi1 (named_context_of_val sign1) in
let inst_in_sign = List.map mkVar (list_filter_with filter1 ids1) in
let (sign2,filter2,inst2_in_env,inst2_in_sign,_,evd,_) =
List.fold_right (fun (na,b,t_in_env as d) (sign,filter,inst_in_env,inst_in_sign,env,evd,avoid) ->
let id = next_name_away na avoid in
let evd,t_in_sign =
define_evar_from_virtual_equation define_fun env evd t_in_env
sign filter inst_in_env in
let evd,b_in_sign = match b with
| None -> evd,None
| Some b ->
let evd,b = define_evar_from_virtual_equation define_fun env evd b
sign filter inst_in_env in
evd,Some b in
(push_named_context_val (id,b_in_sign,t_in_sign) sign,true::filter,
(mkRel 1)::(List.map (lift 1) inst_in_env),
(mkRel 1)::(List.map (lift 1) inst_in_sign),
push_rel d env,evd,id::avoid))
rel_sign
(sign1,filter1,Array.to_list args1,inst_in_sign,env1,evd,ids1)
in
let evd,ev2ty_in_sign =
define_evar_from_virtual_equation define_fun env evd ty_in_env
sign2 filter2 inst2_in_env in
let evd,ev2_in_sign =
new_evar_instance sign2 evd ev2ty_in_sign ~filter:filter2 inst2_in_sign in
let ev2_in_env = (fst (destEvar ev2_in_sign), Array.of_list inst2_in_env) in
(evd, ev2_in_sign, ev2_in_env)
let restrict_upon_filter evd evk p args =
let newfilter = List.map p args in
if List.for_all (fun id -> id) newfilter then
None
else
let oldfullfilter = evar_filter (Evd.find_undefined evd evk) in
Some (apply_subfilter oldfullfilter newfilter)
(* Inverting constructors in instances (common when inferring type of match) *)
let find_projectable_constructor env evd cstr k args cstr_subst =
try
let l = Constrmap.find cstr cstr_subst in
let args = Array.map (lift (-k)) args in
let l =
List.filter (fun (args',id) ->
(* is_conv is maybe too strong (and source of useless computation) *)
(* (at least expansion of aliases is needed) *)
array_for_all2 (is_conv env evd) args args') l in
List.map snd l
with Not_found ->
[]
(* [find_projectable_vars env sigma y subst] finds all vars of [subst]
* that project on [y]. It is able to find solutions to the following
* two kinds of problems:
*
* - ?n[...;x:=y;...] = y
* - ?n[...;x:=?m[args];...] = y with ?m[args] = y recursively solvable
*
* (see test-suite/success/Fixpoint.v for an example of application of
* the second kind of problem).
*
* The seek for [y] is up to variable aliasing. In case of solutions that
* differ only up to aliasing, the binding that requires the less
* steps of alias reduction is kept. At the end, only one solution up
* to aliasing is kept.
*
* [find_projectable_vars] also unifies against evars that themselves mention
* [y] and recursively.
*
* In short, the following situations give the following solutions:
*
* problem evar ctxt soluce remark
* z1; z2:=z1 |- ?ev[z1;z2] = z1 y1:A; y2:=y1 y1 \ thanks to defs kept in
* z1; z2:=z1 |- ?ev[z1;z2] = z2 y1:A; y2:=y1 y2 / subst and preferring =
* z1; z2:=z1 |- ?ev[z1] = z2 y1:A y1 thanks to expand_var
* z1; z2:=z1 |- ?ev[z2] = z1 y1:A y1 thanks to expand_var
* z3 |- ?ev[z3;z3] = z3 y1:A; y2:=y1 y2 see make_projectable_subst
*
* Remark: [find_projectable_vars] assumes that identical instances of
* variables in the same set of aliased variables are already removed (see
* [make_projectable_subst])
*)
type evar_projection =
| ProjectVar
| ProjectEvar of existential * evar_info * identifier * evar_projection
exception NotUnique
exception NotUniqueInType of (identifier * evar_projection) list
let rec assoc_up_to_alias sigma aliases y yc = function
| [] -> raise Not_found
| (c,cc,id)::l ->
let c' = whd_evar sigma c in
if eq_constr y c' then id
else
if l <> [] then assoc_up_to_alias sigma aliases y yc l
else
(* Last chance, we reason up to alias conversion *)
match (if c == c' then cc else normalize_alias_opt aliases c') with
| Some cc when eq_constr yc cc -> id
| _ -> if eq_constr yc c then id else raise Not_found
let rec find_projectable_vars with_evars aliases sigma y subst =
let yc = normalize_alias aliases y in
let is_projectable idc idcl subst' =
(* First test if some [id] aliased to [idc] is bound to [y] in [subst] *)
try
let id = assoc_up_to_alias sigma aliases y yc idcl in
(id,ProjectVar)::subst'
with Not_found ->
(* Then test if [idc] is (indirectly) bound in [subst] to some evar *)
(* projectable on [y] *)
if with_evars then
let idcl' = List.filter (fun (c,_,id) -> isEvar c) idcl in
match idcl' with
| [c,_,id] ->
begin
let (evk,argsv as t) = destEvar c in
let evi = Evd.find sigma evk in
let subst,_ = make_projectable_subst aliases sigma evi argsv in
let l = find_projectable_vars with_evars aliases sigma y subst in
match l with
| [id',p] -> (id,ProjectEvar (t,evi,id',p))::subst'
| _ -> subst'
end
| [] -> subst'
| _ -> anomaly "More than one non var in aliases class of evar instance"
else
subst' in
Idmap.fold is_projectable subst []
(* [filter_solution] checks if one and only one possible projection exists
* among a set of solutions to a projection problem *)
let filter_solution = function
| [] -> raise Not_found
| (id,p)::_::_ -> raise NotUnique
| [id,p] -> (mkVar id, p)
let project_with_effects aliases sigma effects t subst =
let c, p =
filter_solution (find_projectable_vars false aliases sigma t subst) in
effects := p :: !effects;
c
let rec find_solution_type evarenv = function
| (id,ProjectVar)::l -> pi3 (lookup_named id evarenv)
| [id,ProjectEvar _] -> (* bugged *) pi3 (lookup_named id evarenv)
| (id,ProjectEvar _)::l -> find_solution_type evarenv l
| [] -> assert false
(* In case the solution to a projection problem requires the instantiation of
* subsidiary evars, [do_projection_effects] performs them; it
* also try to instantiate the type of those subsidiary evars if their
* type is an evar too.
*
* Note: typing creates new evar problems, which induces a recursive dependency
* with [define]. To avoid a too large set of recursive functions, we
* pass [define] to [do_projection_effects] as a parameter.
*)
let rec do_projection_effects define_fun env ty evd = function
| ProjectVar -> evd
| ProjectEvar ((evk,argsv),evi,id,p) ->
let evd = Evd.define evk (mkVar id) evd in
(* TODO: simplify constraints involving evk *)
let evd = do_projection_effects define_fun env ty evd p in
let ty = whd_betadeltaiota env evd (Lazy.force ty) in
if not (isSort ty) then
(* Don't try to instantiate if a sort because if evar_concl is an
evar it may commit to a univ level which is not the right
one (however, regarding coercions, because t is obtained by
unif, we know that no coercion can be inserted) *)
let subst = make_pure_subst evi argsv in
let ty' = replace_vars subst evi.evar_concl in
let ty' = whd_evar evd ty' in
if isEvar ty' then define_fun env evd (destEvar ty') ty else evd
else
evd
(* Assuming Σ; Γ, y1..yk |- c, [invert_arg_from_subst Γ k Σ [x1:=u1..xn:=un] c]
* tries to return φ(x1..xn) such that equation φ(u1..un) = c is valid.
* The strategy is to imitate the structure of c and then to invert
* the variables of c (i.e. rels or vars of Γ) using the algorithm
* implemented by project_with_effects/find_projectable_vars.
* It returns either a unique solution or says whether 0 or more than
* 1 solutions is found.
*
* Precondition: Σ; Γ, y1..yk |- c /\ Σ; Γ |- u1..un
* Postcondition: if φ(x1..xn) is returned then
* Σ; Γ, y1..yk |- φ(u1..un) = c /\ x1..xn |- φ(x1..xn)
*
* The effects correspond to evars instantiated while trying to project.
*
* [invert_arg_from_subst] is used on instances of evars. Since the
* evars are flexible, these instances are potentially erasable. This
* is why we don't investigate whether evars in the instances of evars
* are unifiable, to the contrary of [invert_definition].
*)
type projectibility_kind =
| NoUniqueProjection
| UniqueProjection of constr * evar_projection list
type projectibility_status =
| CannotInvert
| Invertible of projectibility_kind
let invert_arg_from_subst evd aliases k0 subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders =
let effects = ref [] in
let rec aux k t =
let t = whd_evar evd t in
match kind_of_term t with
| Rel i when i>k0+k -> aux' k (mkRel (i-k))
| Var id -> aux' k t
| _ -> map_constr_with_binders succ aux k t
and aux' k t =
try project_with_effects aliases evd effects t subst_in_env_extended_with_k_binders
with Not_found ->
match expand_alias_once aliases t with
| None -> raise Not_found
| Some c -> aux k c in
try
let c = aux 0 c_in_env_extended_with_k_binders in
Invertible (UniqueProjection (c,!effects))
with
| Not_found -> CannotInvert
| NotUnique -> Invertible NoUniqueProjection
let invert_arg fullenv evd aliases k evk subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders =
let res = invert_arg_from_subst evd aliases k subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders in
match res with
| Invertible (UniqueProjection (c,_)) when not (noccur_evar fullenv evd evk c)
->
CannotInvert
| _ ->
res
let effective_projections =
map_succeed (function Invertible c -> c | _ -> failwith"")
let instance_of_projection f env t evd projs =
let ty = lazy (nf_evar evd (Retyping.get_type_of env evd t)) in
match projs with
| NoUniqueProjection -> raise NotUnique
| UniqueProjection (c,effects) ->
(List.fold_left (do_projection_effects f env ty) evd effects, c)
exception NotEnoughInformationToInvert
let extract_unique_projections projs =
List.map (function
| Invertible (UniqueProjection (c,_)) -> c
| _ ->
(* For instance, there are evars with non-invertible arguments and *)
(* we cannot arbitrarily restrict these evars before knowing if there *)
(* will really be used; it can also be due to some argument *)
(* (typically a rel) that is not inversible and that cannot be *)
(* inverted either because it is needed for typing the conclusion *)
(* of the evar to project *)
raise NotEnoughInformationToInvert) projs
let extract_candidates sols =
try
Some
(List.map (function (id,ProjectVar) -> mkVar id | _ -> raise Exit) sols)
with Exit ->
None
let filter_of_projection = function Invertible _ -> true | _ -> false
let invert_invertible_arg fullenv evd aliases k (evk,argsv) args' =
let evi = Evd.find_undefined evd evk in
let subst,_ = make_projectable_subst aliases evd evi argsv in
let projs =
array_map_to_list (invert_arg fullenv evd aliases k evk subst) args' in
Array.of_list (extract_unique_projections projs)
(* Redefines an evar with a smaller context (i.e. it may depend on less
* variables) such that c becomes closed.
* Example: in "fun (x:?1) (y:list ?2[x]) => x = y :> ?3[x,y] /\ x = nil bool"
* ?3 <-- ?1 no pb: env of ?3 is larger than ?1's
* ?1 <-- list ?2 pb: ?2 may depend on x, but not ?1.
* What we do is that ?2 is defined by a new evar ?4 whose context will be
* a prefix of ?2's env, included in ?1's env.
*
* If "hyps |- ?e : T" and "filter" selects a subset hyps' of hyps then
* [do_restrict_hyps evd ?e filter] sets ?e:=?e'[hyps'] and returns ?e'
* such that "hyps' |- ?e : T"
*)
let filter_effective_candidates evi filter candidates =
match filter with
| None -> candidates
| Some filter ->
let ids = List.map pi1 (list_filter_with filter (evar_context evi)) in
List.filter (fun a -> list_subset (Idset.elements (collect_vars a)) ids)
candidates
let filter_candidates evd evk filter candidates_update =
let evi = Evd.find_undefined evd evk in
let candidates = match candidates_update with
| None -> evi.evar_candidates
| Some _ -> candidates_update
in
match candidates with
| None -> None
| Some l ->
let l' = filter_effective_candidates evi filter l in
if List.length l = List.length l' && candidates_update = None then
None
else
Some l'
let closure_of_filter evd evk filter =
let evi = Evd.find_undefined evd evk in
let vars = collect_vars (nf_evar evd (evar_concl evi)) in
let test (id,c,_) b = b || Idset.mem id vars || c <> None in
let newfilter = List.map2 test (evar_context evi) filter in
if newfilter = evar_filter evi then None else Some newfilter
let restrict_hyps evd evk filter candidates =
(* What to do with dependencies?
Assume we have x:A, y:B(x), z:C(x,y) |- ?e:T(x,y,z) and restrict on y.
- If y is in a non-erasable position in C(x,y) (i.e. it is not below an
occurrence of x in the hnf of C), then z should be removed too.
- If y is in a non-erasable position in T(x,y,z) then the problem is
unsolvable.
Computing whether y is erasable or not may be costly and the
interest for this early detection in practice is not obvious. We let
it for future work. In any case, thanks to the use of filters, the whole
(unrestricted) context remains consistent. *)
let candidates = filter_candidates evd evk (Some filter) candidates in
let typablefilter = closure_of_filter evd evk filter in
(typablefilter,candidates)
exception EvarSolvedWhileRestricting of evar_map * constr
let do_restrict_hyps evd (evk,args as ev) filter candidates =
let filter,candidates = match filter with
| None -> None,candidates
| Some filter -> restrict_hyps evd evk filter candidates in
match candidates,filter with
| Some [], _ -> error "Not solvable."
| Some [nc],_ ->
let evd = Evd.define evk nc evd in
raise (EvarSolvedWhileRestricting (evd,whd_evar evd (mkEvar ev)))
| None, None -> evd,ev
| _ -> restrict_applied_evar evd ev filter candidates
(* [postpone_non_unique_projection] postpones equation of the form ?e[?] = c *)
(* ?e is assumed to have no candidates *)
let postpone_non_unique_projection env evd (evk,argsv as ev) sols rhs =
let rhs = expand_vars_in_term env rhs in
let filter =
restrict_upon_filter evd evk
(* Keep only variables that occur in rhs *)
(* This is not safe: is the variable is a local def, its body *)
(* may contain references to variables that are removed, leading to *)
(* a ill-formed context. We would actually need a notion of filter *)
(* that says that the body is hidden. Note that expand_vars_in_term *)
(* expands only rels and vars aliases, not rels or vars bound to an *)
(* arbitrary complex term *)
(fun a -> not (isRel a || isVar a)
|| dependent a rhs || List.exists (fun (id,_) -> isVarId id a) sols)
(Array.to_list argsv) in
let filter = match filter with
| None -> None
| Some filter -> closure_of_filter evd evk filter in
let candidates = extract_candidates sols in
if candidates <> None then
restrict_evar evd evk filter candidates
else
(* We made an approximation by not expanding a local definition *)
let evd,ev = restrict_applied_evar evd ev filter None in
let pb = (Reduction.CONV,env,mkEvar ev,rhs) in
Evd.add_conv_pb pb evd
(* [postpone_evar_evar] postpones an equation of the form ?e1[?1] = ?e2[?2] *)
let postpone_evar_evar f env evd filter1 ev1 filter2 ev2 =
(* Leave an equation between (restrictions of) ev1 andv ev2 *)
try
let evd,ev1' = do_restrict_hyps evd ev1 filter1 None in
try
let evd,ev2' = do_restrict_hyps evd ev2 filter2 None in
add_conv_pb (Reduction.CONV,env,mkEvar ev1',mkEvar ev2') evd
with EvarSolvedWhileRestricting (evd,ev2) ->
(* ev2 solved on the fly *)
f env evd ev1' ev2
with EvarSolvedWhileRestricting (evd,ev1) ->
(* ev1 solved on the fly *)
f env evd ev2 ev1
(* [solve_evar_evar f Γ Σ ?e1[u1..un] ?e2[v1..vp]] applies an heuristic
* to solve the equation Σ; Γ ⊢ ?e1[u1..un] = ?e2[v1..vp]:
* - if there are at most one φj for each vj s.t. vj = φj(u1..un),
* we first restrict ?e2 to the subset v_k1..v_kq of the vj that are
* inversible and we set ?e1[x1..xn] := ?e2[φk1(x1..xn)..φkp(x1..xn)]
* (this is a case of pattern-unification)
* - symmetrically if there are at most one ψj for each uj s.t.
* uj = ψj(v1..vp),
* - otherwise, each position i s.t. ui does not occur in v1..vp has to
* be restricted and similarly for the vi, and we leave the equation
* as an open equation (performed by [postpone_evar])
*
* Warning: the notion of unique φj is relative to some given class
* of unification problems
*
* Note: argument f is the function used to instantiate evars.
*)
let are_canonical_instances args1 args2 env =
let n1 = Array.length args1 in
let n2 = Array.length args2 in
let rec aux n = function
| (id,_,c)::sign
when n < n1 && isVarId id args1.(n) && isVarId id args2.(n) ->
aux (n+1) sign
| [] ->
let rec aux2 n =
n = n1 ||
(isRelN (n1-n) args1.(n) && isRelN (n1-n) args2.(n) && aux2 (n+1))
in aux2 n
| _ -> false in
n1 = n2 & aux 0 (named_context env)
let filter_compatible_candidates conv_algo env evd evi args rhs c =
let c' = instantiate_evar (evar_filtered_context evi) c args in
let evd, b = conv_algo env evd Reduction.CONV rhs c' in
if b then Some (c,evd) else None
exception DoesNotPreserveCandidateRestriction
let restrict_candidates conv_algo env evd filter1 (evk1,argsv1) (evk2,argsv2) =
let evi1 = Evd.find evd evk1 in
let evi2 = Evd.find evd evk2 in
let cand1 = filter_candidates evd evk1 filter1 None in
let cand2 = evi2.evar_candidates in
match cand1, cand2 with
| _, None -> cand1
| None, Some _ -> raise DoesNotPreserveCandidateRestriction
| Some l1, Some l2 ->
let args1 = Array.to_list argsv1 in
let args2 = Array.to_list argsv2 in
let l1' = List.filter (fun c1 ->
let c1' = instantiate_evar (evar_filtered_context evi1) c1 args1 in
List.filter (fun c2 ->
(filter_compatible_candidates conv_algo env evd evi2 args2 c1' c2
<> None)) l2 <> []) l1 in
if List.length l1 = List.length l1' then None else Some l1'
exception CannotProject of bool list option
(* Assume that FV(?n[x1:=t1..xn:=tn]) belongs to some set U.
Can ?n be instantiated by a term u depending essentially on xi such that the
FV(u[x1:=t1..xn:=tn]) are in the set U?
- If ti is a variable, it has to be in U.
- If ti is a constructor, its parameters cannot be erased even if u
matches on it, so we have to discard ti if the parameters
contain variables not in U.
- If ti is rigid, we have to discard it if it contains variables in U.
Note: when restricting as part of an equation ?n[x1:=t1..xn:=tn] = ?m[...]
then, occurrences of ?m in the ti can be seen, like variables, as occurrences
of subterms to eventually discard so as to be allowed to keep ti.
*)
let rec is_constrainable_in k (ev,(fv_rels,fv_ids) as g) t =
let f,args = decompose_app_vect t in
match kind_of_term f with
| Construct (ind,_) ->
let nparams =
(fst (Global.lookup_inductive ind)).Declarations.mind_nparams
in
if nparams > Array.length args
then true (* We don't try to be more clever *)
else
let params,_ = array_chop nparams args in
array_for_all (is_constrainable_in k g) params
| Ind _ -> array_for_all (is_constrainable_in k g) args
| Prod (_,t1,t2) -> is_constrainable_in k g t1 && is_constrainable_in k g t2
| Evar (ev',_) -> ev' <> ev (*If ev' needed, one may also try to restrict it*)
| Var id -> Idset.mem id fv_ids
| Rel n -> n <= k || Intset.mem n fv_rels
| Sort _ -> true
| _ -> (* We don't try to be more clever *) true
let has_constrainable_free_vars evd aliases k ev (fv_rels,fv_ids as fvs) t =
let t = expansion_of_var aliases t in
match kind_of_term t with
| Var id -> Idset.mem id fv_ids
| Rel n -> n <= k || Intset.mem n fv_rels
| _ -> is_constrainable_in k (ev,fvs) t
let ensure_evar_independent g env evd (evk1,argsv1 as ev1) (evk2,argsv2 as ev2)=
let filter1 =
restrict_upon_filter evd evk1 (noccur_evar env evd evk2)
(Array.to_list argsv1)
in
let candidates1 = restrict_candidates g env evd filter1 ev1 ev2 in
let evd,(evk1,_ as ev1) = do_restrict_hyps evd ev1 filter1 candidates1 in
let filter2 =
restrict_upon_filter evd evk2 (noccur_evar env evd evk1)
(Array.to_list argsv2)
in
let candidates2 = restrict_candidates g env evd filter2 ev2 ev1 in
let evd,ev2 = do_restrict_hyps evd ev2 filter2 candidates2 in
evd,ev1,ev2
exception EvarSolvedOnTheFly of evar_map * constr
let project_evar_on_evar g env evd aliases k2 (evk1,argsv1 as ev1) (evk2,argsv2 as ev2) =
(* Apply filtering on ev1 so that fvs(ev1) are in fvs(ev2). *)
let fvs2 = free_vars_and_rels_up_alias_expansion aliases (mkEvar ev2) in
let filter1 = restrict_upon_filter evd evk1
(has_constrainable_free_vars evd aliases k2 evk2 fvs2)
(Array.to_list argsv1) in
(* Only try pruning on variable substitutions, postpone otherwise. *)
(* Rules out non-linear instances. *)
if is_unification_pattern_pure_evar env evd ev2 (mkEvar ev1) then
try
let candidates1 = restrict_candidates g env evd filter1 ev1 ev2 in
let evd,(evk1',args1) = do_restrict_hyps evd ev1 filter1 candidates1 in
evd,mkEvar (evk1',invert_invertible_arg env evd aliases k2 ev2 args1)
with
| EvarSolvedWhileRestricting (evd,ev1) ->
raise (EvarSolvedOnTheFly (evd,ev1))
| DoesNotPreserveCandidateRestriction | NotEnoughInformationToInvert ->
raise (CannotProject filter1)
else
raise (CannotProject filter1)
let solve_evar_evar_l2r f g env evd aliases ev1 (evk2,_ as ev2) =
try
let evd,body = project_evar_on_evar g env evd aliases 0 ev1 ev2 in
Evd.define evk2 body evd
with EvarSolvedOnTheFly (evd,c) ->
f env evd ev2 c
let solve_evar_evar ?(force=false) f g env evd (evk1,args1 as ev1) (evk2,args2 as ev2) =
if are_canonical_instances args1 args2 env then
(* If instances are canonical, we solve the problem in linear time *)
let sign = evar_filtered_context (Evd.find evd evk2) in
let id_inst = list_map_to_array (fun (id,_,_) -> mkVar id) sign in
Evd.define evk2 (mkEvar(evk1,id_inst)) evd
else
let evd,ev1,ev2 =
(* If an evar occurs in the instance of the other evar and the
use of an heuristic is forced, we restrict *)
if force then ensure_evar_independent g env evd ev1 ev2 else (evd,ev1,ev2) in
let aliases = make_alias_map env in
try solve_evar_evar_l2r f g env evd aliases ev1 ev2
with CannotProject filter1 ->
try solve_evar_evar_l2r f g env evd aliases ev2 ev1
with CannotProject filter2 ->
postpone_evar_evar f env evd filter1 ev1 filter2 ev2
type conv_fun =
env -> evar_map -> conv_pb -> constr -> constr -> evar_map * bool
let check_evar_instance evd evk1 body conv_algo =
let evi = Evd.find evd evk1 in
let evenv = evar_unfiltered_env evi in
(* FIXME: The body might be ill-typed when this is called from w_merge *)
let ty =
try Retyping.get_type_of evenv evd body
with e when Errors.noncritical e -> error "Ill-typed evar instance"
in
let evd,b = conv_algo evenv evd Reduction.CUMUL ty evi.evar_concl in
if b then evd else
user_err_loc (fst (evar_source evk1 evd),"",
str "Unable to find a well-typed instantiation")
(* Solve pbs ?e[t1..tn] = ?e[u1..un] which arise often in fixpoint
* definitions. We try to unify the ti with the ui pairwise. The pairs
* that don't unify are discarded (i.e. ?e is redefined so that it does not
* depend on these args). *)
let solve_refl ?(can_drop=false) conv_algo env evd evk argsv1 argsv2 =
if array_equal eq_constr argsv1 argsv2 then evd else
(* Filter and restrict if needed *)
let untypedfilter =
restrict_upon_filter evd evk
(fun (a1,a2) -> snd (conv_algo env evd Reduction.CONV a1 a2))
(List.combine (Array.to_list argsv1) (Array.to_list argsv2)) in
let candidates = filter_candidates evd evk untypedfilter None in
let filter = match untypedfilter with
| None -> None
| Some filter -> closure_of_filter evd evk filter in
let evd,ev1 = restrict_applied_evar evd (evk,argsv1) filter candidates in
if fst ev1 = evk & can_drop then (* No refinement *) evd else
(* either progress, or not allowed to drop, e.g. to preserve possibly *)
(* informative equations such as ?e[x:=?y]=?e[x:=?y'] where we don't know *)
(* if e can depend on x until ?y is not resolved, or, conversely, we *)
(* don't know if ?y has to be unified with ?y, until e is resolved *)
let argsv2 = restrict_instance evd evk filter argsv2 in
let ev2 = (fst ev1,argsv2) in
(* Leave a unification problem *)
Evd.add_conv_pb (Reduction.CONV,env,mkEvar ev1,mkEvar ev2) evd
(* If the evar can be instantiated by a finite set of candidates known
in advance, we check which of them apply *)
exception NoCandidates
let solve_candidates conv_algo env evd (evk,argsv as ev) rhs =
let evi = Evd.find evd evk in
let args = Array.to_list argsv in
match evi.evar_candidates with
| None -> raise NoCandidates
| Some l ->
let l' =
list_map_filter
(filter_compatible_candidates conv_algo env evd evi args rhs) l in
match l' with
| [] -> error_cannot_unify env evd (mkEvar ev, rhs)
| [c,evd] ->
(* solve_candidates might have been called recursively in the mean *)
(* time and the evar been solved by the filtering process *)
if Evd.is_undefined evd evk then Evd.define evk c evd else evd
| l when List.length l < List.length l' ->
let candidates = List.map fst l in
restrict_evar evd evk None (Some candidates)
| l -> evd
(* We try to instantiate the evar assuming the body won't depend
* on arguments that are not Rels or Vars, or appearing several times
* (i.e. we tackle a generalization of Miller-Pfenning patterns unification)
*
* 1) Let "env |- ?ev[hyps:=args] = rhs" be the unification problem
* 2) We limit it to a patterns unification problem "env |- ev[subst] = rhs"
* where only Rel's and Var's are relevant in subst
* 3) We recur on rhs, "imitating" the term, and failing if some Rel/Var is
* not in the scope of ?ev. For instance, the problem
* "y:nat |- ?x[] = y" where "|- ?1:nat" is not satisfiable because
* ?1 would be instantiated by y which is not in the scope of ?1.
* 4) We try to "project" the term if the process of imitation fails
* and that only one projection is possible
*
* Note: we don't assume rhs in normal form, it may fail while it would
* have succeeded after some reductions.
*
* This is the work of [invert_definition Γ Σ ?ev[hyps:=args] c]
* Precondition: Σ; Γ, y1..yk |- c /\ Σ; Γ |- u1..un
* Postcondition: if φ(x1..xn) is returned then
* Σ; Γ, y1..yk |- φ(u1..un) = c /\ x1..xn |- φ(x1..xn)
*)
exception NotInvertibleUsingOurAlgorithm of constr
exception NotEnoughInformationToProgress of (identifier * evar_projection) list
exception NotEnoughInformationEvarEvar of constr
exception OccurCheckIn of evar_map * constr
let rec invert_definition conv_algo choose env evd (evk,argsv as ev) rhs =
let aliases = make_alias_map env in
let evdref = ref evd in
let progress = ref false in
let evi = Evd.find evd evk in
let subst,cstr_subst = make_projectable_subst aliases evd evi argsv in
(* Projection *)
let project_variable t =
(* Evar/Var problem: unifiable iff variable projectable from ev subst *)
try
let sols = find_projectable_vars true aliases !evdref t subst in
let c, p = match sols with
| [] -> raise Not_found
| [id,p] -> (mkVar id, p)
| (id,p)::_::_ ->
if choose then (mkVar id, p) else raise (NotUniqueInType sols)
in
let ty = lazy (Retyping.get_type_of env !evdref t) in
let evd = do_projection_effects (evar_define conv_algo) env ty !evdref p in
evdref := evd;
c
with
| Not_found -> raise (NotInvertibleUsingOurAlgorithm t)
| NotUniqueInType sols ->
if not !progress then
raise (NotEnoughInformationToProgress sols);
(* No unique projection but still restrict to where it is possible *)
(* materializing is necessary, but is restricting useful? *)
let ty = find_solution_type (evar_env evi) sols in
let sign = evar_filtered_context evi in
let ty' = instantiate_evar sign ty (Array.to_list argsv) in
let (evd,evar,(evk',argsv' as ev')) =
materialize_evar (evar_define conv_algo) env !evdref 0 ev ty' in
let ts = expansions_of_var aliases t in
let test c = isEvar c or List.mem c ts in
let filter = array_map_to_list test argsv' in
let filter = apply_subfilter (evar_filter (Evd.find_undefined evd evk)) filter in
let filter = closure_of_filter evd evk' filter in
let candidates = extract_candidates sols in
let evd =
if candidates <> None then restrict_evar evd evk' filter candidates
else
let evd,ev'' = restrict_applied_evar evd ev' filter None in
Evd.add_conv_pb (Reduction.CONV,env,mkEvar ev'',t) evd in
evdref := evd;
evar in
let rec imitate (env',k as envk) t =
let t = whd_evar !evdref t in
match kind_of_term t with
| Rel i when i>k ->
(match pi2 (Environ.lookup_rel (i-k) env') with
| None -> project_variable (mkRel (i-k))
| Some b ->
try project_variable (mkRel (i-k))
with NotInvertibleUsingOurAlgorithm _ -> imitate envk (lift i b))
| Var id ->
(match pi2 (Environ.lookup_named id env') with
| None -> project_variable t
| Some b ->
try project_variable t
with NotInvertibleUsingOurAlgorithm _ -> imitate envk b)
| Evar (evk',args' as ev') ->
if evk = evk' then raise (OccurCheckIn (evd,rhs));
(* Evar/Evar problem (but left evar is virtual) *)
let aliases = lift_aliases k aliases in
(try
let ev = (evk,Array.map (lift k) argsv) in
let evd,body = project_evar_on_evar conv_algo env' !evdref aliases k ev' ev in
evdref := evd;
body
with
| EvarSolvedOnTheFly (evd,t) -> evdref:=evd; imitate envk t
| CannotProject filter' ->
if not !progress then
raise (NotEnoughInformationEvarEvar t);
(* Make the virtual left evar real *)
let ty = get_type_of env' !evdref t in
let (evd,evar'',ev'') =
materialize_evar (evar_define conv_algo) env' !evdref k ev ty in
(* materialize_evar may instantiate ev' by another evar; adjust it *)
let (evk',args' as ev') = normalize_evar evd ev' in
let evd =
(* Try to project (a restriction of) the left evar ... *)
try
let evd,body = project_evar_on_evar conv_algo env' evd aliases 0 ev'' ev' in
Evd.define evk' body evd
with
| EvarSolvedOnTheFly _ -> assert false (* ev has no candidates *)
| CannotProject filter'' ->
(* ... or postpone the problem *)
postpone_evar_evar (evar_define conv_algo) env' evd filter'' ev'' filter' ev' in
evdref := evd;
evar'')
| _ ->
progress := true;
match
let c,args = decompose_app_vect t in
match kind_of_term c with
| Construct cstr when noccur_between 1 k t ->
(* This is common case when inferring the return clause of match *)
(* (currently rudimentary: we do not treat the case of multiple *)
(* possible inversions; we do not treat overlap with a possible *)
(* alternative inversion of the subterms of the constructor, etc)*)
(match find_projectable_constructor env evd cstr k args cstr_subst with
| _::_ as l -> Some (List.map mkVar l)
| _ -> None)
| _ -> None
with
| Some l ->
let ty = get_type_of env' !evdref t in
let candidates =
try
let t =
map_constr_with_full_binders (fun d (env,k) -> push_rel d env, k+1)
imitate envk t in
t::l
with e when Errors.noncritical e -> l in
(match candidates with
| [x] -> x
| _ ->
let (evd,evar'',ev'') =
materialize_evar (evar_define conv_algo) env' !evdref k ev ty in
evdref := restrict_evar evd (fst ev'') None (Some candidates);
evar'')
| None ->
(* Evar/Rigid problem (or assimilated if not normal): we "imitate" *)
map_constr_with_full_binders (fun d (env,k) -> push_rel d env, k+1)
imitate envk t in
let rhs = whd_beta evd rhs (* heuristic *) in
let body = imitate (env,0) rhs in
(!evdref,body)
(* [define] tries to solve the problem "?ev[args] = rhs" when "?ev" is
* an (uninstantiated) evar such that "hyps |- ?ev : typ". Otherwise said,
* [define] tries to find an instance lhs such that
* "lhs [hyps:=args]" unifies to rhs. The term "lhs" must be closed in
* context "hyps" and not referring to itself.
*)
and evar_define conv_algo ?(choose=false) env evd (evk,argsv as ev) rhs =
match kind_of_term rhs with
| Evar (evk2,argsv2 as ev2) ->
if evk = evk2 then
solve_refl ~can_drop:choose conv_algo env evd evk argsv argsv2
else
solve_evar_evar ~force:choose
(evar_define conv_algo) conv_algo env evd ev ev2
| _ ->
try solve_candidates conv_algo env evd ev rhs
with NoCandidates ->
try
let (evd',body) = invert_definition conv_algo choose env evd ev rhs in
if occur_meta body then error "Meta cannot occur in evar body.";
(* invert_definition may have instantiate some evars of rhs with evk *)
(* so we recheck acyclicity *)
if occur_evar evk body then raise (OccurCheckIn (evd',body));
(* needed only if an inferred type *)
let body = refresh_universes body in
(* Cannot strictly type instantiations since the unification algorithm
* does not unify applications from left to right.
* e.g problem f x == g y yields x==y and f==g (in that order)
* Another problem is that type variables are evars of type Type
let _ =
try
let env = evar_env evi in
let ty = evi.evar_concl in
Typing.check env evd' body ty
with e ->
pperrnl
(str "Ill-typed evar instantiation: " ++ fnl() ++
pr_evar_map evd' ++ fnl() ++
str "----> " ++ int ev ++ str " := " ++
print_constr body);
raise e in*)
let evd' = Evd.define evk body evd' in
check_evar_instance evd' evk body conv_algo
with
| NotEnoughInformationToProgress sols ->
postpone_non_unique_projection env evd ev sols rhs
| NotEnoughInformationEvarEvar t ->
add_conv_pb (Reduction.CONV,env,mkEvar ev,t) evd
| NotInvertibleUsingOurAlgorithm t ->
error_not_clean env evd evk t (evar_source evk evd)
| OccurCheckIn (evd,rhs) ->
(* last chance: rhs actually reduces to ev *)
let c = whd_betadeltaiota env evd rhs in
match kind_of_term c with
| Evar (evk',argsv2) when evk = evk' ->
solve_refl
(fun env sigma pb c c' -> (evd,is_fconv pb env sigma c c'))
env evd evk argsv argsv2
| _ ->
error_occur_check env evd evk rhs
(* This code (i.e. solve_pb, etc.) takes a unification
* problem, and tries to solve it. If it solves it, then it removes
* all the conversion problems, and re-runs conversion on each one, in
* the hopes that the new solution will aid in solving them.
*
* The kinds of problems it knows how to solve are those in which
* the usable arguments of an existential var are all themselves
* universal variables.
* The solution to this problem is to do renaming for the Var's,
* to make them match up with the Var's which are found in the
* hyps of the existential, to do a "pop" for each Rel which is
* not an argument of the existential, and a subst1 for each which
* is, again, with the corresponding variable. This is done by
* define
*
* Thus, we take the arguments of the existential which we are about
* to assign, and zip them with the identifiers in the hypotheses.
* Then, we process all the Var's in the arguments, and sort the
* Rel's into ascending order. Then, we just march up, doing
* subst1's and pop's.
*
* NOTE: We can do this more efficiently for the relative arguments,
* by building a long substituend by hand, but this is a pain in the
* ass.
*)
let status_changed lev (pbty,_,t1,t2) =
(try ExistentialSet.mem (head_evar t1) lev with NoHeadEvar -> false) or
(try ExistentialSet.mem (head_evar t2) lev with NoHeadEvar -> false)
let reconsider_conv_pbs conv_algo evd =
let (evd,pbs) = extract_changed_conv_pbs evd status_changed in
List.fold_left
(fun (evd,b as p) (pbty,env,t1,t2) ->
if b then conv_algo env evd pbty t1 t2 else p) (evd,true)
pbs
(* Tries to solve problem t1 = t2.
* Precondition: t1 is an uninstantiated evar
* Returns an optional list of evars that were instantiated, or None
* if the problem couldn't be solved. *)
(* Rq: uncomplete algorithm if pbty = CONV_X_LEQ ! *)
let solve_simple_eqn conv_algo ?(choose=false) env evd (pbty,(evk1,args1 as ev1),t2) =
try
let t2 = whd_betaiota evd t2 in (* includes whd_evar *)
let evd =
match pbty with
| Some true when isEvar t2 ->
add_conv_pb (Reduction.CUMUL,env,mkEvar ev1,t2) evd
| Some false when isEvar t2 ->
add_conv_pb (Reduction.CUMUL,env,t2,mkEvar ev1) evd
| _ ->
evar_define conv_algo ~choose env evd ev1 t2 in
reconsider_conv_pbs conv_algo evd
with e when precatchable_exception e ->
(evd,false)
(** The following functions return the set of evars immediately
contained in the object, including defined evars *)
let evars_of_term c =
let rec evrec acc c =
match kind_of_term c with
| Evar (n, l) -> Intset.add n (Array.fold_left evrec acc l)
| _ -> fold_constr evrec acc c
in
evrec Intset.empty c
(* spiwack: a few functions to gather evars on which goals depend. *)
let queue_set q is_dependent set =
Intset.iter (fun a -> Queue.push (is_dependent,a) q) set
let queue_term q is_dependent c =
queue_set q is_dependent (evars_of_term c)
let process_dependent_evar q acc evm is_dependent e =
let evi = Evd.find evm e in
(* Queues evars appearing in the types of the goal (conclusion, then
hypotheses), they are all dependent. *)
queue_term q true evi.evar_concl;
List.iter begin fun (_,b,t) ->
queue_term q true t;
match b with
| None -> ()
| Some b -> queue_term q true b
end (Environ.named_context_of_val evi.evar_hyps);
match evi.evar_body with
| Evar_empty ->
if is_dependent then Intmap.add e None acc else acc
| Evar_defined b ->
let subevars = evars_of_term b in
(* evars appearing in the definition of an evar [e] are marked
as dependent when [e] is dependent itself: if [e] is a
non-dependent goal, then, unless they are reach from another
path, these evars are just other non-dependent goals. *)
queue_set q is_dependent subevars;
if is_dependent then Intmap.add e (Some subevars) acc else acc
let gather_dependent_evars q evm =
let acc = ref Intmap.empty in
while not (Queue.is_empty q) do
let (is_dependent,e) = Queue.pop q in
(* checks if [e] has already been added to [!acc] *)
begin if not (Intmap.mem e !acc) then
acc := process_dependent_evar q !acc evm is_dependent e
end
done;
!acc
let gather_dependent_evars evm l =
let q = Queue.create () in
List.iter (fun a -> Queue.add (false,a) q) l;
gather_dependent_evars q evm
(* /spiwack *)
let evars_of_named_context nc =
List.fold_right (fun (_, b, t) s ->
Option.fold_left (fun s t ->
Intset.union s (evars_of_term t))
(Intset.union s (evars_of_term t)) b)
nc Intset.empty
let evars_of_evar_info evi =
Intset.union (evars_of_term evi.evar_concl)
(Intset.union
(match evi.evar_body with
| Evar_empty -> Intset.empty
| Evar_defined b -> evars_of_term b)
(evars_of_named_context (named_context_of_val evi.evar_hyps)))
(** The following functions return the set of undefined evars
contained in the object, the defined evars being traversed.
This is roughly a combination of the previous functions and
[nf_evar]. *)
let undefined_evars_of_term evd t =
let rec evrec acc c =
match kind_of_term c with
| Evar (n, l) ->
let acc = Array.fold_left evrec acc l in
(try match (Evd.find evd n).evar_body with
| Evar_empty -> Intset.add n acc
| Evar_defined c -> evrec acc c
with Not_found -> anomaly "undefined_evars_of_term: evar not found")
| _ -> fold_constr evrec acc c
in
evrec Intset.empty t
let undefined_evars_of_named_context evd nc =
List.fold_right (fun (_, b, t) s ->
Option.fold_left (fun s t ->
Intset.union s (undefined_evars_of_term evd t))
(Intset.union s (undefined_evars_of_term evd t)) b)
nc Intset.empty
let undefined_evars_of_evar_info evd evi =
Intset.union (undefined_evars_of_term evd evi.evar_concl)
(Intset.union
(match evi.evar_body with
| Evar_empty -> Intset.empty
| Evar_defined b -> undefined_evars_of_term evd b)
(undefined_evars_of_named_context evd
(named_context_of_val evi.evar_hyps)))
(* [check_evars] fails if some unresolved evar remains *)
let check_evars env initial_sigma sigma c =
let rec proc_rec c =
match kind_of_term c with
| Evar (evk,_ as ev) ->
(match existential_opt_value sigma ev with
| Some c -> proc_rec c
| None ->
if not (Evd.mem initial_sigma evk) then
let (loc,k) = evar_source evk sigma in
match k with
| ImplicitArg (gr, (i, id), false) -> ()
| _ ->
let evi = nf_evar_info sigma (Evd.find_undefined sigma evk) in
error_unsolvable_implicit loc env sigma evi k None)
| _ -> iter_constr proc_rec c
in proc_rec c
open Glob_term
(****************************************)
(* Operations on value/type constraints *)
(****************************************)
type type_constraint_type = (int * int) option * constr
type type_constraint = type_constraint_type option
type val_constraint = constr option
(* Old comment...
* Basically, we have the following kind of constraints (in increasing
* strength order):
* (false,(None,None)) -> no constraint at all
* (true,(None,None)) -> we must build a judgement which _TYPE is a kind
* (_,(None,Some ty)) -> we must build a judgement which _TYPE is ty
* (_,(Some v,_)) -> we must build a judgement which _VAL is v
* Maybe a concrete datatype would be easier to understand.
* We differentiate (true,(None,None)) from (_,(None,Some Type))
* because otherwise Case(s) would be misled, as in
* (n:nat) Case n of bool [_]nat end would infer the predicate Type instead
* of Set.
*)
(* The empty type constraint *)
let empty_tycon = None
let mk_tycon_type c = (None, c)
let mk_abstr_tycon_type n c = (Some (n, n), c) (* First component is initial abstraction, second
is current abstraction *)
(* Builds a type constraint *)
let mk_tycon ty = Some (mk_tycon_type ty)
let mk_abstr_tycon n ty = Some (mk_abstr_tycon_type n ty)
(* Constrains the value of a type *)
let empty_valcon = None
(* Builds a value constraint *)
let mk_valcon c = Some c
let idx = id_of_string "x"
(* Refining an evar to a product *)
let define_pure_evar_as_product evd evk =
let evi = Evd.find_undefined evd evk in
let evenv = evar_unfiltered_env evi in
let id = next_ident_away idx (ids_of_named_context (evar_context evi)) in
let evd1,dom = new_type_evar evd evenv ~filter:(evar_filter evi) in
let evd2,rng =
let newenv = push_named (id, None, dom) evenv in
let src = evar_source evk evd1 in
let filter = true::evar_filter evi in
new_type_evar evd1 newenv ~src ~filter in
let prod = mkProd (Name id, dom, subst_var id rng) in
let evd3 = Evd.define evk prod evd2 in
evd3,prod
(* Refine an applied evar to a product and returns its instantiation *)
let define_evar_as_product evd (evk,args) =
let evd,prod = define_pure_evar_as_product evd evk in
(* Quick way to compute the instantiation of evk with args *)
let na,dom,rng = destProd prod in
let evdom = mkEvar (fst (destEvar dom), args) in
let evrngargs = array_cons (mkRel 1) (Array.map (lift 1) args) in
let evrng = mkEvar (fst (destEvar rng), evrngargs) in
evd,mkProd (na, evdom, evrng)
(* Refine an evar with an abstraction
I.e., solve x1..xq |- ?e:T(x1..xq) with e:=λy:A.?e'[x1..xq,y] where:
- either T(x1..xq) = πy:A(x1..xq).B(x1..xq,y)
or T(x1..xq) = ?d[x1..xq] and we define ?d := πy:?A.?B
with x1..xq |- ?A:Type and x1..xq,y |- ?B:Type
- x1..xq,y:A |- ?e':B
*)
let define_pure_evar_as_lambda env evd evk =
let evi = Evd.find_undefined evd evk in
let evenv = evar_unfiltered_env evi in
let typ = whd_betadeltaiota env evd (evar_concl evi) in
let evd1,(na,dom,rng) = match kind_of_term typ with
| Prod (na,dom,rng) -> (evd,(na,dom,rng))
| Evar ev' -> let evd,typ = define_evar_as_product evd ev' in evd,destProd typ
| _ -> error_not_product_loc dummy_loc env evd typ in
let avoid = ids_of_named_context (evar_context evi) in
let id =
next_name_away_with_default_using_types "x" na avoid (whd_evar evd dom) in
let newenv = push_named (id, None, dom) evenv in
let filter = true::evar_filter evi in
let src = evar_source evk evd1 in
let evd2,body = new_evar evd1 newenv ~src (subst1 (mkVar id) rng) ~filter in
let lam = mkLambda (Name id, dom, subst_var id body) in
Evd.define evk lam evd2, lam
let define_evar_as_lambda env evd (evk,args) =
let evd,lam = define_pure_evar_as_lambda env evd evk in
(* Quick way to compute the instantiation of evk with args *)
let na,dom,body = destLambda lam in
let evbodyargs = array_cons (mkRel 1) (Array.map (lift 1) args) in
let evbody = mkEvar (fst (destEvar body), evbodyargs) in
evd,mkLambda (na, dom, evbody)
let rec evar_absorb_arguments env evd (evk,args as ev) = function
| [] -> evd,ev
| a::l ->
(* TODO: optimize and avoid introducing intermediate evars *)
let evd,lam = define_pure_evar_as_lambda env evd evk in
let _,_,body = destLambda lam in
let evk = fst (destEvar body) in
evar_absorb_arguments env evd (evk, array_cons a args) l
(* Refining an evar to a sort *)
let define_evar_as_sort evd (ev,args) =
let evd, s = new_sort_variable evd in
Evd.define ev (mkSort s) evd, s
(* We don't try to guess in which sort the type should be defined, since
any type has type Type. May cause some trouble, but not so far... *)
let judge_of_new_Type evd =
let evd', s = new_univ_variable evd in
evd', Typeops.judge_of_type s
(* Propagation of constraints through application and abstraction:
Given a type constraint on a functional term, returns the type
constraint on its domain and codomain. If the input constraint is
an evar instantiate it with the product of 2 new evars. *)
let unlift_tycon init cur c =
if cur = 1 then None, c
else Some (init, pred cur), c
let split_tycon loc env evd tycon =
let rec real_split evd c =
let t = whd_betadeltaiota env evd c in
match kind_of_term t with
| Prod (na,dom,rng) -> evd, (na, dom, rng)
| Evar ev (* ev is undefined because of whd_betadeltaiota *) ->
let (evd',prod) = define_evar_as_product evd ev in
let (_,dom,rng) = destProd prod in
evd',(Anonymous, dom, rng)
| App (c,args) when isEvar c ->
let (evd',lam) = define_evar_as_lambda env evd (destEvar c) in
real_split evd' (mkApp (lam,args))
| _ -> error_not_product_loc loc env evd c
in
match tycon with
| None -> evd,(Anonymous,None,None)
| Some (abs, c) ->
(match abs with
None ->
let evd', (n, dom, rng) = real_split evd c in
evd', (n, mk_tycon dom, mk_tycon rng)
| Some (init, cur) ->
evd, (Anonymous, None, Some (unlift_tycon init cur c)))
let valcon_of_tycon x =
match x with
| Some (None, t) -> Some t
| _ -> None
let lift_abstr_tycon_type n (abs, t) =
match abs with
None -> raise (Invalid_argument "lift_abstr_tycon_type: not an abstraction")
| Some (init, abs) ->
let abs' = abs + n in
if abs' < 0 then raise (Invalid_argument "lift_abstr_tycon_type")
else (Some (init, abs'), t)
let lift_tycon_type n (abs, t) = (abs, lift n t)
let lift_tycon n = Option.map (lift_tycon_type n)
let pr_tycon_type env (abs, t) =
match abs with
None -> Termops.print_constr_env env t
| Some (init, cur) -> str "Abstract (" ++ int init ++ str "," ++ int cur ++ str ") " ++ Termops.print_constr_env env t
let pr_tycon env = function
None -> str "None"
| Some t -> pr_tycon_type env t
|