1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Univ
open Term
open Termops
open Namegen
open Sign
open Declarations
open Environ
open Reductionops
(* The following three functions are similar to the ones defined in
Inductive, but they expect an env *)
let type_of_inductive env ind =
let specif = Inductive.lookup_mind_specif env ind in
Inductive.type_of_inductive env specif
(* Return type as quoted by the user *)
let type_of_constructor env cstr =
let specif =
Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in
Inductive.type_of_constructor cstr specif
(* Return constructor types in user form *)
let type_of_constructors env ind =
let specif = Inductive.lookup_mind_specif env ind in
Inductive.type_of_constructors ind specif
(* Return constructor types in normal form *)
let arities_of_constructors env ind =
let specif = Inductive.lookup_mind_specif env ind in
Inductive.arities_of_constructors ind specif
(* [inductive_family] = [inductive_instance] applied to global parameters *)
type inductive_family = inductive * constr list
let make_ind_family (mis, params) = (mis,params)
let dest_ind_family (mis,params) = (mis,params)
let map_ind_family f (mis,params) = (mis, List.map f params)
let liftn_inductive_family n d = map_ind_family (liftn n d)
let lift_inductive_family n = liftn_inductive_family n 1
let substnl_ind_family l n = map_ind_family (substnl l n)
type inductive_type = IndType of inductive_family * constr list
let make_ind_type (indf, realargs) = IndType (indf,realargs)
let dest_ind_type (IndType (indf,realargs)) = (indf,realargs)
let map_inductive_type f (IndType (indf, realargs)) =
IndType (map_ind_family f indf, List.map f realargs)
let liftn_inductive_type n d = map_inductive_type (liftn n d)
let lift_inductive_type n = liftn_inductive_type n 1
let substnl_ind_type l n = map_inductive_type (substnl l n)
let mkAppliedInd (IndType ((ind,params), realargs)) =
applist (mkInd ind,params@realargs)
(* Does not consider imbricated or mutually recursive types *)
let mis_is_recursive_subset listind rarg =
let rec one_is_rec rvec =
List.exists
(fun ra ->
match dest_recarg ra with
| Mrec (_,i) -> List.mem i listind
| _ -> false) rvec
in
array_exists one_is_rec (dest_subterms rarg)
let mis_is_recursive (ind,mib,mip) =
mis_is_recursive_subset (interval 0 (mib.mind_ntypes-1))
mip.mind_recargs
let mis_nf_constructor_type (ind,mib,mip) j =
let specif = mip.mind_nf_lc
and ntypes = mib.mind_ntypes
and nconstr = Array.length mip.mind_consnames in
let make_Ik k = mkInd ((fst ind),ntypes-k-1) in
if j > nconstr then error "Not enough constructors in the type.";
substl (list_tabulate make_Ik ntypes) specif.(j-1)
(* Arity of constructors excluding parameters and local defs *)
let mis_constr_nargs indsp =
let (mib,mip) = Global.lookup_inductive indsp in
let recargs = dest_subterms mip.mind_recargs in
Array.map List.length recargs
let mis_constr_nargs_env env (kn,i) =
let mib = Environ.lookup_mind kn env in
let mip = mib.mind_packets.(i) in
let recargs = dest_subterms mip.mind_recargs in
Array.map List.length recargs
let mis_constructor_nargs_env env ((kn,i),j) =
let mib = Environ.lookup_mind kn env in
let mip = mib.mind_packets.(i) in
recarg_length mip.mind_recargs j + mib.mind_nparams
let constructor_nrealargs env (ind,j) =
let (_,mip) = Inductive.lookup_mind_specif env ind in
recarg_length mip.mind_recargs j
let constructor_nrealhyps env (ind,j) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_consnrealdecls.(j-1)
let get_full_arity_sign env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_arity_ctxt
let nconstructors ind =
let (mib,mip) = Inductive.lookup_mind_specif (Global.env()) ind in
Array.length mip.mind_consnames
(* Length of arity (w/o local defs) *)
let inductive_nargs env ind =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
(rel_context_length (mib.mind_params_ctxt), mip.mind_nrealargs_ctxt)
let allowed_sorts env (kn,i as ind) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
mip.mind_kelim
(* Annotation for cases *)
let make_case_info env ind style =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let print_info = { ind_nargs = mip.mind_nrealargs_ctxt; style = style } in
{ ci_ind = ind;
ci_npar = mib.mind_nparams;
ci_cstr_ndecls = mip.mind_consnrealdecls;
ci_pp_info = print_info }
(*s Useful functions *)
type constructor_summary = {
cs_cstr : constructor;
cs_params : constr list;
cs_nargs : int;
cs_args : rel_context;
cs_concl_realargs : constr array
}
let lift_constructor n cs = {
cs_cstr = cs.cs_cstr;
cs_params = List.map (lift n) cs.cs_params;
cs_nargs = cs.cs_nargs;
cs_args = lift_rel_context n cs.cs_args;
cs_concl_realargs = Array.map (liftn n (cs.cs_nargs+1)) cs.cs_concl_realargs
}
(* Accept less parameters than in the signature *)
let instantiate_params t args sign =
let rec inst s t = function
| ((_,None,_)::ctxt,a::args) ->
(match kind_of_term t with
| Prod(_,_,t) -> inst (a::s) t (ctxt,args)
| _ -> anomaly"instantiate_params: type, ctxt and args mismatch")
| ((_,(Some b),_)::ctxt,args) ->
(match kind_of_term t with
| LetIn(_,_,_,t) -> inst ((substl s b)::s) t (ctxt,args)
| _ -> anomaly"instantiate_params: type, ctxt and args mismatch")
| _, [] -> substl s t
| _ -> anomaly"instantiate_params: type, ctxt and args mismatch"
in inst [] t (List.rev sign,args)
let get_constructor (ind,mib,mip,params) j =
assert (j <= Array.length mip.mind_consnames);
let typi = mis_nf_constructor_type (ind,mib,mip) j in
let typi = instantiate_params typi params mib.mind_params_ctxt in
let (args,ccl) = decompose_prod_assum typi in
let (_,allargs) = decompose_app ccl in
let vargs = list_skipn (List.length params) allargs in
{ cs_cstr = ith_constructor_of_inductive ind j;
cs_params = params;
cs_nargs = rel_context_length args;
cs_args = args;
cs_concl_realargs = Array.of_list vargs }
let get_constructors env (ind,params) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
Array.init (Array.length mip.mind_consnames)
(fun j -> get_constructor (ind,mib,mip,params) (j+1))
(* substitution in a signature *)
let substnl_rel_context subst n sign =
let rec aux n = function
| d::sign -> substnl_decl subst n d :: aux (n+1) sign
| [] -> []
in List.rev (aux n (List.rev sign))
let substl_rel_context subst = substnl_rel_context subst 0
let rec instantiate_context sign args =
let rec aux subst = function
| (_,None,_)::sign, a::args -> aux (a::subst) (sign,args)
| (_,Some b,_)::sign, args -> aux (substl subst b::subst) (sign,args)
| [], [] -> subst
| _ -> anomaly "Signature/instance mismatch in inductive family"
in aux [] (List.rev sign,args)
let get_arity env (ind,params) =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let parsign =
(* Dynamically detect if called with an instance of recursively
uniform parameter only or also of non recursively uniform
parameters *)
let parsign = mib.mind_params_ctxt in
let nnonrecparams = mib.mind_nparams - mib.mind_nparams_rec in
if List.length params = rel_context_nhyps parsign - nnonrecparams then
snd (list_chop nnonrecparams mib.mind_params_ctxt)
else
parsign in
let arproperlength = List.length mip.mind_arity_ctxt - List.length parsign in
let arsign,_ = list_chop arproperlength mip.mind_arity_ctxt in
let subst = instantiate_context parsign params in
(substl_rel_context subst arsign, Inductive.inductive_sort_family mip)
(* Functions to build standard types related to inductive *)
let build_dependent_constructor cs =
applist
(mkConstruct cs.cs_cstr,
(List.map (lift cs.cs_nargs) cs.cs_params)
@(extended_rel_list 0 cs.cs_args))
let build_dependent_inductive env ((ind, params) as indf) =
let arsign,_ = get_arity env indf in
let nrealargs = List.length arsign in
applist
(mkInd ind,
(List.map (lift nrealargs) params)@(extended_rel_list 0 arsign))
(* builds the arity of an elimination predicate in sort [s] *)
let make_arity_signature env dep indf =
let (arsign,_) = get_arity env indf in
if dep then
(* We need names everywhere *)
name_context env
((Anonymous,None,build_dependent_inductive env indf)::arsign)
(* Costly: would be better to name once for all at definition time *)
else
(* No need to enforce names *)
arsign
let make_arity env dep indf s = mkArity (make_arity_signature env dep indf, s)
(* [p] is the predicate and [cs] a constructor summary *)
let build_branch_type env dep p cs =
let base = appvect (lift cs.cs_nargs p, cs.cs_concl_realargs) in
if dep then
it_mkProd_or_LetIn_name env
(applist (base,[build_dependent_constructor cs]))
cs.cs_args
else
it_mkProd_or_LetIn base cs.cs_args
(**************************************************)
let extract_mrectype t =
let (t, l) = decompose_app t in
match kind_of_term t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_mrectype env sigma c =
let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
match kind_of_term t with
| Ind ind -> (ind, l)
| _ -> raise Not_found
let find_rectype env sigma c =
let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
match kind_of_term t with
| Ind ind ->
let (mib,mip) = Inductive.lookup_mind_specif env ind in
if mib.mind_nparams > List.length l then raise Not_found;
let (par,rargs) = list_chop mib.mind_nparams l in
IndType((ind, par),rargs)
| _ -> raise Not_found
let find_inductive env sigma c =
let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
match kind_of_term t with
| Ind ind
when (fst (Inductive.lookup_mind_specif env ind)).mind_finite ->
(ind, l)
| _ -> raise Not_found
let find_coinductive env sigma c =
let (t, l) = decompose_app (whd_betadeltaiota env sigma c) in
match kind_of_term t with
| Ind ind
when not (fst (Inductive.lookup_mind_specif env ind)).mind_finite ->
(ind, l)
| _ -> raise Not_found
(***********************************************)
(* find appropriate names for pattern variables. Useful in the Case
and Inversion (case_then_using et case_nodep_then_using) tactics. *)
let is_predicate_explicitly_dep env pred arsign =
let rec srec env pval arsign =
let pv' = whd_betadeltaiota env Evd.empty pval in
match kind_of_term pv', arsign with
| Lambda (na,t,b), (_,None,_)::arsign ->
srec (push_rel_assum (na,t) env) b arsign
| Lambda (na,_,_), _ ->
(* The following code has an impact on the introduction names
given by the tactics "case" and "inversion": when the
elimination is not dependent, "case" uses Anonymous for
inductive types in Prop and names created by mkProd_name for
inductive types in Set/Type while "inversion" uses anonymous
for inductive types both in Prop and Set/Type !!
Previously, whether names were created or not relied on
whether the predicate created in Indrec.make_case_com had a
dependent arity or not. To avoid different predicates
printed the same in v8, all predicates built in indrec.ml
got a dependent arity (Aug 2004). The new way to decide
whether names have to be created or not is to use an
Anonymous or Named variable to enforce the expected
dependency status (of course, Anonymous implies non
dependent, but not conversely).
At the end, this is only to preserve the compatibility: a
check whether the predicate is actually dependent or not
would indeed be more natural! *)
na <> Anonymous
| _ -> anomaly "Non eta-expanded dep-expanded \"match\" predicate"
in
srec env pred arsign
let is_elim_predicate_explicitly_dependent env pred indf =
let arsign,_ = get_arity env indf in
is_predicate_explicitly_dep env pred arsign
let set_names env n brty =
let (ctxt,cl) = decompose_prod_n_assum n brty in
it_mkProd_or_LetIn_name env cl ctxt
let set_pattern_names env ind brv =
let (mib,mip) = Inductive.lookup_mind_specif env ind in
let arities =
Array.map
(fun c ->
rel_context_length ((prod_assum c)) -
mib.mind_nparams)
mip.mind_nf_lc in
array_map2 (set_names env) arities brv
let type_case_branches_with_names env indspec p c =
let (ind,args) = indspec in
let (mib,mip as specif) = Inductive.lookup_mind_specif env ind in
let nparams = mib.mind_nparams in
let (params,realargs) = list_chop nparams args in
let lbrty = Inductive.build_branches_type ind specif params p in
(* Build case type *)
let conclty = Reduction.beta_appvect p (Array.of_list (realargs@[c])) in
(* Adjust names *)
if is_elim_predicate_explicitly_dependent env p (ind,params) then
(set_pattern_names env ind lbrty, conclty)
else (lbrty, conclty)
(* Type of Case predicates *)
let arity_of_case_predicate env (ind,params) dep k =
let arsign,_ = get_arity env (ind,params) in
let mind = build_dependent_inductive env (ind,params) in
let concl = if dep then mkArrow mind (mkSort k) else mkSort k in
it_mkProd_or_LetIn concl arsign
(***********************************************)
(* Inferring the sort of parameters of a polymorphic inductive type
knowing the sort of the conclusion *)
(* Compute the inductive argument types: replace the sorts
that appear in the type of the inductive by the sort of the
conclusion, and the other ones by fresh universes. *)
let rec instantiate_universes env scl is = function
| (_,Some _,_ as d)::sign, exp ->
d :: instantiate_universes env scl is (sign, exp)
| d::sign, None::exp ->
d :: instantiate_universes env scl is (sign, exp)
| (na,None,ty)::sign, Some u::exp ->
let ctx,_ = Reduction.dest_arity env ty in
let s =
(* Does the sort of parameter [u] appear in (or equal)
the sort of inductive [is] ? *)
if univ_depends u is then
scl (* constrained sort: replace by scl *)
else
(* unconstriained sort: replace by fresh universe *)
new_Type_sort() in
(na,None,mkArity(ctx,s)):: instantiate_universes env scl is (sign, exp)
| sign, [] -> sign (* Uniform parameters are exhausted *)
| [], _ -> assert false
(* Does not deal with universes, but only with Set/Type distinction *)
let type_of_inductive_knowing_conclusion env mip conclty =
match mip.mind_arity with
| Monomorphic s ->
s.mind_user_arity
| Polymorphic ar ->
let _,scl = Reduction.dest_arity env conclty in
let ctx = List.rev mip.mind_arity_ctxt in
let ctx =
instantiate_universes
env scl ar.poly_level (ctx,ar.poly_param_levels) in
mkArity (List.rev ctx,scl)
(***********************************************)
(* Guard condition *)
(* A function which checks that a term well typed verifies both
syntactic conditions *)
let control_only_guard env c =
let check_fix_cofix e c = match kind_of_term c with
| CoFix (_,(_,_,_) as cofix) ->
Inductive.check_cofix e cofix
| Fix (_,(_,_,_) as fix) ->
Inductive.check_fix e fix
| _ -> ()
in
let rec iter env c =
check_fix_cofix env c;
iter_constr_with_full_binders push_rel iter env c
in
iter env c
let subst_inductive subst (kn,i as ind) =
let kn' = Mod_subst.subst_ind subst kn in
if kn == kn' then ind else (kn',i)
|