1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Util
open Term
open Sign
open Names
open Libnames
open Mod_subst
open Pp (* debug *)
(*i*)
(* Representation/approximation of terms to use in the dnet:
*
* - no meta or evar (use ['a pattern] for that)
*
* - [Rel]s and [Sort]s are not taken into account (that's why we need
* a second pass of linear filterin on the results - it's not a perfect
* term indexing structure)
* - Foralls and LetIns are represented by a context DCtx (a list of
* generalization, similar to rel_context, and coded with DCons and
* DNil). This allows for matching under an unfinished context
*)
module DTerm =
struct
type 't t =
| DRel
| DSort
| DRef of global_reference
| DCtx of 't * 't (* (binding list, subterm) = Prods and LetIns *)
| DLambda of 't * 't
| DApp of 't * 't (* binary app *)
| DCase of case_info * 't * 't * 't array
| DFix of int array * int * 't array * 't array
| DCoFix of int * 't array * 't array
(* special constructors only inside the left-hand side of DCtx or
DApp. Used to encode lists of foralls/letins/apps as contexts *)
| DCons of ('t * 't option) * 't
| DNil
type dconstr = dconstr t
(* debug *)
let rec pr_dconstr f : 'a t -> std_ppcmds = function
| DRel -> str "*"
| DSort -> str "Sort"
| DRef _ -> str "Ref"
| DCtx (ctx,t) -> f ctx ++ spc() ++ str "|-" ++ spc () ++ f t
| DLambda (t1,t2) -> str "fun"++ spc() ++ f t1 ++ spc() ++ str"->" ++ spc() ++ f t2
| DApp (t1,t2) -> f t1 ++ spc() ++ f t2
| DCase (_,t1,t2,ta) -> str "case"
| DFix _ -> str "fix"
| DCoFix _ -> str "cofix"
| DCons ((t,dopt),tl) -> f t ++ (match dopt with
Some t' -> str ":=" ++ f t'
| None -> str "") ++ spc() ++ str "::" ++ spc() ++ f tl
| DNil -> str "[]"
(*
* Functional iterators for the t datatype
* a.k.a boring and error-prone boilerplate code
*)
let map f = function
| (DRel | DSort | DNil | DRef _) as c -> c
| DCtx (ctx,c) -> DCtx (f ctx, f c)
| DLambda (t,c) -> DLambda (f t, f c)
| DApp (t,u) -> DApp (f t,f u)
| DCase (ci,p,c,bl) -> DCase (ci, f p, f c, Array.map f bl)
| DFix (ia,i,ta,ca) ->
DFix (ia,i,Array.map f ta,Array.map f ca)
| DCoFix(i,ta,ca) ->
DCoFix (i,Array.map f ta,Array.map f ca)
| DCons ((t,topt),u) -> DCons ((f t,Option.map f topt), f u)
let compare x y =
let make_name n =
match n with
| DRef(ConstRef con) ->
DRef(ConstRef(constant_of_kn(canonical_con con)))
| DRef(IndRef (kn,i)) ->
DRef(IndRef(mind_of_kn(canonical_mind kn),i))
| DRef(ConstructRef ((kn,i),j ))->
DRef(ConstructRef((mind_of_kn(canonical_mind kn),i),j))
| k -> k in
Pervasives.compare (make_name x) (make_name y)
let fold f acc = function
| (DRel | DNil | DSort | DRef _) -> acc
| DCtx (ctx,c) -> f (f acc ctx) c
| DLambda (t,c) -> f (f acc t) c
| DApp (t,u) -> f (f acc t) u
| DCase (ci,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl
| DFix (ia,i,ta,ca) ->
Array.fold_left f (Array.fold_left f acc ta) ca
| DCoFix(i,ta,ca) ->
Array.fold_left f (Array.fold_left f acc ta) ca
| DCons ((t,topt),u) -> f (Option.fold_left f (f acc t) topt) u
let choose f = function
| (DRel | DSort | DNil | DRef _) -> invalid_arg "choose"
| DCtx (ctx,c) -> f ctx
| DLambda (t,c) -> f t
| DApp (t,u) -> f u
| DCase (ci,p,c,bl) -> f c
| DFix (ia,i,ta,ca) -> f ta.(0)
| DCoFix (i,ta,ca) -> f ta.(0)
| DCons ((t,topt),u) -> f u
let fold2 (f:'a -> 'b -> 'c -> 'a) (acc:'a) (c1:'b t) (c2:'c t) : 'a =
let head w = map (fun _ -> ()) w in
if compare (head c1) (head c2) <> 0
then invalid_arg "fold2:compare" else
match c1,c2 with
| (DRel, DRel | DNil, DNil | DSort, DSort | DRef _, DRef _) -> acc
| (DCtx (c1,t1), DCtx (c2,t2)
| DApp (c1,t1), DApp (c2,t2)
| DLambda (c1,t1), DLambda (c2,t2)) -> f (f acc c1 c2) t1 t2
| DCase (ci,p1,c1,bl1),DCase (_,p2,c2,bl2) ->
array_fold_left2 f (f (f acc p1 p2) c1 c2) bl1 bl2
| DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) ->
array_fold_left2 f (array_fold_left2 f acc ta1 ta2) ca1 ca2
| DCoFix(i,ta1,ca1), DCoFix(_,ta2,ca2) ->
array_fold_left2 f (array_fold_left2 f acc ta1 ta2) ca1 ca2
| DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) ->
f (Option.fold_left2 f (f acc t1 t2) topt1 topt2) u1 u2
| _ -> assert false
let map2 (f:'a -> 'b -> 'c) (c1:'a t) (c2:'b t) : 'c t =
let head w = map (fun _ -> ()) w in
if compare (head c1) (head c2) <> 0
then invalid_arg "map2_t:compare" else
match c1,c2 with
| (DRel, DRel | DSort, DSort | DNil, DNil | DRef _, DRef _) as cc ->
let (c,_) = cc in c
| DCtx (c1,t1), DCtx (c2,t2) -> DCtx (f c1 c2, f t1 t2)
| DLambda (t1,c1), DLambda (t2,c2) -> DLambda (f t1 t2, f c1 c2)
| DApp (t1,u1), DApp (t2,u2) -> DApp (f t1 t2,f u1 u2)
| DCase (ci,p1,c1,bl1), DCase (_,p2,c2,bl2) ->
DCase (ci, f p1 p2, f c1 c2, array_map2 f bl1 bl2)
| DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) ->
DFix (ia,i,array_map2 f ta1 ta2,array_map2 f ca1 ca2)
| DCoFix (i,ta1,ca1), DCoFix (_,ta2,ca2) ->
DCoFix (i,array_map2 f ta1 ta2,array_map2 f ca1 ca2)
| DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) ->
DCons ((f t1 t2,Option.lift2 f topt1 topt2), f u1 u2)
| _ -> assert false
let terminal = function
| (DRel | DSort | DNil | DRef _) -> true
| _ -> false
end
(*
* Terms discrimination nets
* Uses the general dnet datatype on DTerm.t
* (here you can restart reading)
*)
(*
* Construction of the module
*)
module type IDENT =
sig
type t
val compare : t -> t -> int
val subst : substitution -> t -> t
val constr_of : t -> constr
end
module type OPT =
sig
val reduce : constr -> constr
val direction : bool
end
module Make =
functor (Ident : IDENT) ->
functor (Opt : OPT) ->
struct
module TDnet : Dnet.S with type ident=Ident.t
and type 'a structure = 'a DTerm.t
and type meta = metavariable
= Dnet.Make(DTerm)(Ident)
(struct
type t = metavariable
let compare = Pervasives.compare
end)
type t = TDnet.t
type ident = TDnet.ident
type 'a pattern = 'a TDnet.pattern
type term_pattern = term_pattern DTerm.t pattern
type idset = TDnet.Idset.t
type result = ident * (constr*existential_key) * Termops.subst
open DTerm
open TDnet
let rec pat_of_constr c : term_pattern =
match kind_of_term c with
| Rel _ -> Term DRel
| Sort _ -> Term DSort
| Var i -> Term (DRef (VarRef i))
| Const c -> Term (DRef (ConstRef c))
| Ind i -> Term (DRef (IndRef i))
| Construct c -> Term (DRef (ConstructRef c))
| Term.Meta _ -> assert false
| Evar (i,_) -> Meta i
| Case (ci,c1,c2,ca) ->
Term(DCase(ci,pat_of_constr c1,pat_of_constr c2,Array.map pat_of_constr ca))
| Fix ((ia,i),(_,ta,ca)) ->
Term(DFix(ia,i,Array.map pat_of_constr ta, Array.map pat_of_constr ca))
| CoFix (i,(_,ta,ca)) ->
Term(DCoFix(i,Array.map pat_of_constr ta,Array.map pat_of_constr ca))
| Cast (c,_,_) -> pat_of_constr c
| Lambda (_,t,c) -> Term(DLambda (pat_of_constr t, pat_of_constr c))
| (Prod (_,_,_) | LetIn(_,_,_,_)) ->
let (ctx,c) = ctx_of_constr (Term DNil) c in Term (DCtx (ctx,c))
| App (f,ca) ->
Array.fold_left (fun c a -> Term (DApp (c,a)))
(pat_of_constr f) (Array.map pat_of_constr ca)
and ctx_of_constr ctx c : term_pattern * term_pattern =
match kind_of_term c with
| Prod (_,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t,None),ctx))) c
| LetIn(_,d,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t, Some (pat_of_constr d)),ctx))) c
| _ -> ctx,pat_of_constr c
let empty_ctx : term_pattern -> term_pattern = function
| Meta _ as c -> c
| Term (DCtx(_,_)) as c -> c
| c -> Term (DCtx (Term DNil, c))
(*
* Basic primitives
*)
let empty = TDnet.empty
let subst s t =
let sleaf id = Ident.subst s id in
let snode = function
| DTerm.DRef gr -> DTerm.DRef (fst (subst_global s gr))
| n -> n in
TDnet.map sleaf snode t
let union = TDnet.union
let add (c:constr) (id:Ident.t) (dn:t) =
let c = Opt.reduce c in
let c = empty_ctx (pat_of_constr c) in
TDnet.add dn c id
let new_meta_no =
let ctr = ref 0 in
fun () -> decr ctr; !ctr
let new_meta_no = Evarutil.new_untyped_evar
let neutral_meta = new_meta_no()
let new_meta () = Meta (new_meta_no())
let new_evar () = mkEvar(new_meta_no(),[||])
let rec remove_cap : term_pattern -> term_pattern = function
| Term (DCons (t,u)) -> Term (DCons (t,remove_cap u))
| Term DNil -> new_meta()
| Meta _ as m -> m
| _ -> assert false
let under_prod : term_pattern -> term_pattern = function
| Term (DCtx (t,u)) -> Term (DCtx (remove_cap t,u))
| Meta m -> Term (DCtx(new_meta(), Meta m))
| _ -> assert false
let init = let e = new_meta_no() in (mkEvar (e,[||]),e)
let rec e_subst_evar i (t:unit->constr) c =
match kind_of_term c with
| Evar (j,_) when i=j -> t()
| _ -> map_constr (e_subst_evar i t) c
let subst_evar i c = e_subst_evar i (fun _ -> c)
(* debug *)
let rec pr_term_pattern p =
(fun pr_t -> function
| Term t -> pr_t t
| Meta m -> str"["++Util.pr_int (Obj.magic m)++str"]"
) (pr_dconstr pr_term_pattern) p
let search_pat cpat dpat dn (up,plug) =
let whole_c = subst_evar plug cpat up in
(* if we are at the root, add an empty context *)
let dpat = if isEvar_or_Meta up then under_prod (empty_ctx dpat) else dpat in
TDnet.Idset.fold
(fun id acc ->
let c_id = Opt.reduce (Ident.constr_of id) in
let (ctx,wc) =
try Termops.align_prod_letin whole_c c_id
with Invalid_argument _ -> [],c_id in
let up = it_mkProd_or_LetIn up ctx in
let wc,whole_c = if Opt.direction then whole_c,wc else wc,whole_c in
try (id,(up,plug),Termops.filtering ctx Reduction.CUMUL wc whole_c)::acc
with Termops.CannotFilter -> (* msgnl(str"recon "++Termops.print_constr_env (Global.env()) wc); *) acc
) (TDnet.find_match dpat dn) []
let fold_pattern_neutral f =
fold_pattern (fun acc (mset,m,dn) -> if m=neutral_meta then acc else f m dn acc)
let fold_pattern_nonlin f =
let defined = ref Gmap.empty in
fold_pattern_neutral
( fun m dn acc ->
let dn = try TDnet.inter dn (Gmap.find m !defined) with Not_found -> dn in
defined := Gmap.add m dn !defined;
f m dn acc )
let fold_pattern_up f acc dpat cpat dn (up,plug) =
fold_pattern_nonlin
( fun m dn acc ->
f dn (subst_evar plug (e_subst_evar neutral_meta new_evar cpat) up, m) acc
) acc dpat dn
let possibly_under pat k dn (up,plug) =
let rec aux fst dn (up,plug) acc =
let cpat = pat() in
let dpat = pat_of_constr cpat in
let dpat = if fst then under_prod (empty_ctx dpat) else dpat in
(k dn (up,plug)) @
snd (fold_pattern_up (aux false) acc dpat cpat dn (up,plug)) in
aux true dn (up,plug) []
let eq_pat eq () = mkApp(eq,[|mkEvar(neutral_meta,[||]);new_evar();new_evar()|])
let app_pat () = mkApp(new_evar(),[|mkEvar(neutral_meta,[||])|])
(*
* High-level primitives describing specific search problems
*)
let search_pattern dn pat =
let pat = Opt.reduce pat in
search_pat pat (empty_ctx (pat_of_constr pat)) dn init
let search_concl dn pat =
let pat = Opt.reduce pat in
search_pat pat (under_prod (empty_ctx (pat_of_constr pat))) dn init
let search_eq_concl dn eq pat =
let pat = Opt.reduce pat in
let eq_pat = eq_pat eq () in
let eq_dpat = under_prod (empty_ctx (pat_of_constr eq_pat)) in
snd (fold_pattern_up
(fun dn up acc ->
search_pat pat (pat_of_constr pat) dn up @ acc
) [] eq_dpat eq_pat dn init)
let search_head_concl dn pat =
let pat = Opt.reduce pat in
possibly_under app_pat (search_pat pat (pat_of_constr pat)) dn init
let find_all dn = Idset.elements (TDnet.find_all dn)
let map f dn = TDnet.map f (fun x -> x) dn
end
module type S =
sig
type t
type ident
type result = ident * (constr*existential_key) * Termops.subst
val empty : t
val add : constr -> ident -> t -> t
val union : t -> t -> t
val subst : substitution -> t -> t
val search_pattern : t -> constr -> result list
val search_concl : t -> constr -> result list
val search_head_concl : t -> constr -> result list
val search_eq_concl : t -> constr -> constr -> result list
val find_all : t -> ident list
val map : (ident -> ident) -> t -> t
end
|