1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Names
open Libnames
open Decl_kinds
open Term
open Sign
open Evd
open Environ
open Nametab
open Mod_subst
open Util
open Typeclasses_errors
open Libobject
(*i*)
let add_instance_hint_ref = ref (fun id local pri -> assert false)
let register_add_instance_hint =
(:=) add_instance_hint_ref
let add_instance_hint id = !add_instance_hint_ref id
let remove_instance_hint_ref = ref (fun id -> assert false)
let register_remove_instance_hint =
(:=) remove_instance_hint_ref
let remove_instance_hint id = !remove_instance_hint_ref id
let set_typeclass_transparency_ref = ref (fun id local c -> assert false)
let register_set_typeclass_transparency =
(:=) set_typeclass_transparency_ref
let set_typeclass_transparency gr local c = !set_typeclass_transparency_ref gr local c
let classes_transparent_state_ref = ref (fun () -> assert false)
let register_classes_transparent_state = (:=) classes_transparent_state_ref
let classes_transparent_state () = !classes_transparent_state_ref ()
let solve_instanciation_problem = ref (fun _ _ _ -> assert false)
let resolve_one_typeclass env evm t =
!solve_instanciation_problem env evm t
type rels = constr list
type direction = Forward | Backward
(* This module defines type-classes *)
type typeclass = {
(* The class implementation *)
cl_impl : global_reference;
(* Context in which the definitions are typed. Includes both typeclass parameters and superclasses. *)
cl_context : (global_reference * bool) option list * rel_context;
(* Context of definitions and properties on defs, will not be shared *)
cl_props : rel_context;
(* The method implementaions as projections. *)
cl_projs : (name * (direction * int option) option * constant option) list;
}
module Gmap = Fmap.Make(RefOrdered)
type typeclasses = typeclass Gmap.t
type instance = {
is_class: global_reference;
is_pri: int option;
(* Sections where the instance should be redeclared,
-1 for discard, 0 for none, mutable to avoid redeclarations
when multiple rebuild_object happen. *)
is_global: int;
is_impl: global_reference;
}
type instances = (instance Gmap.t) Gmap.t
let instance_impl is = is.is_impl
let new_instance cl pri glob impl =
let global =
if glob then Lib.sections_depth ()
else -1
in
{ is_class = cl.cl_impl;
is_pri = pri ;
is_global = global ;
is_impl = impl }
(*
* states management
*)
let classes : typeclasses ref = ref Gmap.empty
let instances : instances ref = ref Gmap.empty
let freeze () = !classes, !instances
let unfreeze (cl,is) =
classes:=cl;
instances:=is
let init () =
classes:= Gmap.empty;
instances:= Gmap.empty
let _ =
Summary.declare_summary "classes_and_instances"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
let class_info c =
try Gmap.find c !classes
with Not_found -> not_a_class (Global.env()) (constr_of_global c)
let global_class_of_constr env c =
try class_info (global_of_constr c)
with Not_found -> not_a_class env c
let dest_class_app env c =
let cl, args = decompose_app c in
global_class_of_constr env cl, args
let dest_class_arity env c =
let rels, c = Term.decompose_prod_assum c in
rels, dest_class_app env c
let class_of_constr c =
try Some (dest_class_arity (Global.env ()) c)
with e when Errors.noncritical e -> None
let rec is_class_type evd c =
match kind_of_term c with
| Prod (_, _, t) -> is_class_type evd t
| Evar (e, _) when is_defined evd e -> is_class_type evd (Evarutil.nf_evar evd c)
| _ -> class_of_constr c <> None
let is_class_evar evd evi =
is_class_type evd evi.Evd.evar_concl
(*
* classes persistent object
*)
let load_class (_, cl) =
classes := Gmap.add cl.cl_impl cl !classes
let cache_class = load_class
let subst_class (subst,cl) =
let do_subst_con c = fst (Mod_subst.subst_con subst c)
and do_subst c = Mod_subst.subst_mps subst c
and do_subst_gr gr = fst (subst_global subst gr) in
let do_subst_ctx ctx = list_smartmap
(fun (na, b, t) -> (na, Option.smartmap do_subst b, do_subst t))
ctx in
let do_subst_context (grs,ctx) =
list_smartmap (Option.smartmap (fun (gr,b) -> do_subst_gr gr, b)) grs,
do_subst_ctx ctx in
let do_subst_projs projs = list_smartmap (fun (x, y, z) -> (x, y, Option.smartmap do_subst_con z)) projs in
{ cl_impl = do_subst_gr cl.cl_impl;
cl_context = do_subst_context cl.cl_context;
cl_props = do_subst_ctx cl.cl_props;
cl_projs = do_subst_projs cl.cl_projs; }
let discharge_class (_,cl) =
let repl = Lib.replacement_context () in
let rel_of_variable_context ctx = List.fold_right
( fun (n,_,b,t) (ctx', subst) ->
let decl = (Name n, Option.map (substn_vars 1 subst) b, substn_vars 1 subst t) in
(decl :: ctx', n :: subst)
) ctx ([], []) in
let discharge_rel_context subst n rel =
let rel = map_rel_context (Cooking.expmod_constr repl) rel in
let ctx, _ =
List.fold_right
(fun (id, b, t) (ctx, k) ->
(id, Option.smartmap (substn_vars k subst) b, substn_vars k subst t) :: ctx, succ k)
rel ([], n)
in ctx
in
let abs_context cl =
match cl.cl_impl with
| VarRef _ | ConstructRef _ -> assert false
| ConstRef cst -> Lib.section_segment_of_constant cst
| IndRef (ind,_) -> Lib.section_segment_of_mutual_inductive ind in
let discharge_context ctx' subst (grs, ctx) =
let grs' =
let newgrs = List.map (fun (_, _, t) ->
match class_of_constr t with
| None -> None
| Some (_, (tc, _)) -> Some (tc.cl_impl, true))
ctx'
in
list_smartmap (Option.smartmap (fun (gr, b) -> Lib.discharge_global gr, b)) grs
@ newgrs
in grs', discharge_rel_context subst 1 ctx @ ctx' in
let cl_impl' = Lib.discharge_global cl.cl_impl in
if cl_impl' == cl.cl_impl then cl else
let ctx = abs_context cl in
let ctx, subst = rel_of_variable_context ctx in
let context = discharge_context ctx subst cl.cl_context in
let props = discharge_rel_context subst (succ (List.length (fst cl.cl_context))) cl.cl_props in
{ cl_impl = cl_impl';
cl_context = context;
cl_props = props;
cl_projs = list_smartmap (fun (x, y, z) -> x, y, Option.smartmap Lib.discharge_con z) cl.cl_projs }
let rebuild_class cl =
try
let cst = Tacred.evaluable_of_global_reference (Global.env ()) cl.cl_impl in
set_typeclass_transparency cst false false; cl
with e when Errors.noncritical e -> cl
let class_input : typeclass -> obj =
declare_object
{ (default_object "type classes state") with
cache_function = cache_class;
load_function = (fun _ -> load_class);
open_function = (fun _ -> load_class);
classify_function = (fun x -> Substitute x);
discharge_function = (fun a -> Some (discharge_class a));
rebuild_function = rebuild_class;
subst_function = subst_class }
let add_class cl =
Lib.add_anonymous_leaf (class_input cl)
(** Build the subinstances hints. *)
let check_instance env sigma c =
try
let (evd, c) = resolve_one_typeclass env sigma
(Retyping.get_type_of env sigma c) in
Evd.is_empty (Evd.undefined_evars evd)
with e when Errors.noncritical e -> false
let build_subclasses ~check env sigma glob pri =
let rec aux pri c =
let ty = Evarutil.nf_evar sigma (Retyping.get_type_of env sigma c) in
match class_of_constr ty with
| None -> []
| Some (rels, (tc, args)) ->
let instapp = Reductionops.whd_beta sigma (appvectc c (Termops.extended_rel_vect 0 rels)) in
let projargs = Array.of_list (args @ [instapp]) in
let projs = list_map_filter
(fun (n, b, proj) ->
match b with
| None -> None
| Some (Backward, _) -> None
| Some (Forward, pri') ->
let proj = Option.get proj in
let body = it_mkLambda_or_LetIn (mkApp (mkConst proj, projargs)) rels in
if check && check_instance env sigma body then None
else
let pri =
match pri, pri' with
| Some p, Some p' -> Some (p + p')
| Some p, None -> Some (p + 1)
| _, _ -> None
in
Some (ConstRef proj, pri, body)) tc.cl_projs
in
let declare_proj hints (cref, pri, body) =
let rest = aux pri body in
hints @ (pri, body) :: rest
in List.fold_left declare_proj [] projs
in aux pri (constr_of_global glob)
(*
* instances persistent object
*)
type instance_action =
| AddInstance
| RemoveInstance
let load_instance inst =
let insts =
try Gmap.find inst.is_class !instances
with Not_found -> Gmap.empty in
let insts = Gmap.add inst.is_impl inst insts in
instances := Gmap.add inst.is_class insts !instances
let remove_instance inst =
let insts =
try Gmap.find inst.is_class !instances
with Not_found -> assert false in
let insts = Gmap.remove inst.is_impl insts in
instances := Gmap.add inst.is_class insts !instances
let cache_instance (_, (action, i)) =
match action with
| AddInstance -> load_instance i
| RemoveInstance -> remove_instance i
let subst_instance (subst, (action, inst)) = action,
{ inst with
is_class = fst (subst_global subst inst.is_class);
is_impl = fst (subst_global subst inst.is_impl) }
let discharge_instance (_, (action, inst)) =
if inst.is_global <= 0 then None
else Some (action,
{ inst with
is_global = pred inst.is_global;
is_class = Lib.discharge_global inst.is_class;
is_impl = Lib.discharge_global inst.is_impl })
let is_local i = i.is_global = -1
let add_instance check inst =
add_instance_hint (constr_of_global inst.is_impl) (is_local inst) inst.is_pri;
List.iter (fun (pri, c) -> add_instance_hint c (is_local inst) pri)
(build_subclasses ~check:(check && not (isVarRef inst.is_impl))
(Global.env ()) Evd.empty inst.is_impl inst.is_pri)
let rebuild_instance (action, inst) =
if action = AddInstance then add_instance true inst;
(action, inst)
let classify_instance (action, inst) =
if is_local inst then Dispose
else Substitute (action, inst)
let load_instance (_, (action, inst) as ai) =
cache_instance ai;
if action = AddInstance then
add_instance_hint (constr_of_global inst.is_impl) (is_local inst) inst.is_pri
let instance_input : instance_action * instance -> obj =
declare_object
{ (default_object "type classes instances state") with
cache_function = cache_instance;
load_function = (fun _ x -> cache_instance x);
open_function = (fun _ x -> cache_instance x);
classify_function = classify_instance;
discharge_function = discharge_instance;
rebuild_function = rebuild_instance;
subst_function = subst_instance }
let add_instance i =
Lib.add_anonymous_leaf (instance_input (AddInstance, i));
add_instance true i
let remove_instance i =
Lib.add_anonymous_leaf (instance_input (RemoveInstance, i));
remove_instance_hint i.is_impl
let declare_instance pri local glob =
let c = constr_of_global glob in
let ty = Retyping.get_type_of (Global.env ()) Evd.empty c in
match class_of_constr ty with
| Some (rels, (tc, args) as _cl) ->
add_instance (new_instance tc pri (not local) glob)
(* let path, hints = build_subclasses (not local) (Global.env ()) Evd.empty glob in *)
(* let entries = List.map (fun (path, pri, c) -> (pri, local, path, c)) hints in *)
(* Auto.add_hints local [typeclasses_db] (Auto.HintsResolveEntry entries); *)
(* Auto.add_hints local [typeclasses_db] *)
(* (Auto.HintsCutEntry (PathSeq (PathStar (PathAtom PathAny), path))) *)
| None -> ()
let add_class cl =
add_class cl;
List.iter (fun (n, inst, body) ->
match inst with
| Some (Backward, pri) ->
declare_instance pri false (ConstRef (Option.get body))
| _ -> ())
cl.cl_projs
open Declarations
let add_constant_class cst =
let ty = Typeops.type_of_constant (Global.env ()) cst in
let ctx, arity = decompose_prod_assum ty in
let tc =
{ cl_impl = ConstRef cst;
cl_context = (List.map (const None) ctx, ctx);
cl_props = [(Anonymous, None, arity)];
cl_projs = []
}
in add_class tc;
set_typeclass_transparency (EvalConstRef cst) false false
let add_inductive_class ind =
let mind, oneind = Global.lookup_inductive ind in
let k =
let ctx = oneind.mind_arity_ctxt in
let ty = Inductive.type_of_inductive_knowing_parameters
(push_rel_context ctx (Global.env ()))
oneind (Termops.extended_rel_vect 0 ctx)
in
{ cl_impl = IndRef ind;
cl_context = List.map (const None) ctx, ctx;
cl_props = [Anonymous, None, ty];
cl_projs = [] }
in add_class k
(*
* interface functions
*)
let instance_constructor cl args =
let lenpars = List.length (List.filter (fun (na, b, t) -> b = None) (snd cl.cl_context)) in
let pars = fst (list_chop lenpars args) in
match cl.cl_impl with
| IndRef ind -> Some (applistc (mkConstruct (ind, 1)) args),
applistc (mkInd ind) pars
| ConstRef cst ->
let term = if args = [] then None else Some (list_last args) in
term, applistc (mkConst cst) pars
| _ -> assert false
let typeclasses () = Gmap.fold (fun _ l c -> l :: c) !classes []
let cmap_elements c = Gmap.fold (fun k v acc -> v :: acc) c []
let instances_of c =
try cmap_elements (Gmap.find c.cl_impl !instances) with Not_found -> []
let all_instances () =
Gmap.fold (fun k v acc ->
Gmap.fold (fun k v acc -> v :: acc) v acc)
!instances []
let instances r =
let cl = class_info r in instances_of cl
let is_class gr =
Gmap.fold (fun k v acc -> acc || v.cl_impl = gr) !classes false
let is_instance = function
| ConstRef c ->
(match Decls.constant_kind c with
| IsDefinition Instance -> true
| _ -> false)
| VarRef v ->
(match Decls.variable_kind v with
| IsDefinition Instance -> true
| _ -> false)
| ConstructRef (ind,_) ->
is_class (IndRef ind)
| _ -> false
(* To embed a boolean for resolvability status.
This is essentially a hack to mark which evars correspond to
goals and do not need to be resolved when we have nested [resolve_all_evars]
calls (e.g. when doing apply in an External hint in typeclass_instances).
Would be solved by having real evars-as-goals.
Nota: we will only check the resolvability status of undefined evars.
*)
let resolvable = Store.field ()
open Store.Field
let is_resolvable evi =
assert (evi.evar_body = Evar_empty);
Option.default true (resolvable.get evi.evar_extra)
let mark_resolvability_undef b evi =
let t = resolvable.set b evi.evar_extra in
{ evi with evar_extra = t }
let mark_resolvability b evi =
assert (evi.evar_body = Evar_empty);
mark_resolvability_undef b evi
let mark_unresolvable evi = mark_resolvability false evi
let mark_resolvable evi = mark_resolvability true evi
let mark_resolvability b sigma =
Evd.fold_undefined (fun ev evi evs ->
Evd.add evs ev (mark_resolvability_undef b evi))
sigma (Evd.defined_evars sigma)
let mark_unresolvables sigma = mark_resolvability false sigma
let has_typeclasses evd =
Evd.fold_undefined (fun ev evi has -> has ||
(is_resolvable evi && is_class_evar evd evi))
evd false
let solve_instanciations_problem = ref (fun _ _ _ _ _ -> assert false)
type evar_filter = hole_kind -> bool
let no_goals = function GoalEvar -> false | _ -> true
let all_evars _ = true
let resolve_typeclasses ?(filter=no_goals) ?(split=true) ?(fail=true) env evd =
if not (has_typeclasses evd) then evd
else !solve_instanciations_problem env evd filter split fail
|