1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
N: 20 "Equivalence_PER" [body=yes, kind=cnst, prop=yes, path="RelationClasses", ];
N: 33 "Equivalence_Symmetric" [body=yes, kind=cnst, prop=yes, path="RelationClasses", ];
N: 32 "Equivalence_Transitive" [body=yes, kind=cnst, prop=yes, path="RelationClasses", ];
N: 18 "F" [body=no, kind=cnst, prop=no, path="Morph", ];
N: 21 "Fequiv" [body=no, kind=cnst, prop=no, path="Morph", ];
N: 22 "FequivR" [body=yes, kind=cnst, prop=yes, path="Morph", ];
N: 24 "Fequiv_refl" [body=no, kind=cnst, prop=yes, path="Morph", ];
N: 25 "Fequiv_sym" [body=no, kind=cnst, prop=yes, path="Morph", ];
N: 23 "Fequiv_trans" [body=no, kind=cnst, prop=yes, path="Morph", ];
N: 19 "Fsmp" [body=no, kind=cnst, prop=no, path="Morph", ];
N: 17 "FsmpM_Proper" [body=no, kind=cnst, prop=yes, path="Morph", ];
N: 41 "PER_Symmetric" [body=yes, kind=cnst, prop=yes, path="RelationClasses", ];
N: 43 "PER_Transitive" [body=yes, kind=cnst, prop=yes, path="RelationClasses", ];
N: 36 "Proper" [body=yes, kind=cnst, prop=no, path="Morphisms", ];
N: 29 "Reflexive" [body=yes, kind=cnst, prop=no, path="RelationClasses", ];
N: 28 "Symmetric" [body=yes, kind=cnst, prop=no, path="RelationClasses", ];
N: 31 "Transitive" [body=yes, kind=cnst, prop=no, path="RelationClasses", ];
N: 38 "flip" [body=yes, kind=cnst, prop=no, path="Basics", ];
N: 39 "impl" [body=yes, kind=cnst, prop=no, path="Basics", ];
N: 30 "relation" [body=yes, kind=cnst, prop=no, path="Relation_Definitions", ];
N: 37 "respectful" [body=yes, kind=cnst, prop=no, path="Morphisms", ];
N: 15 "rw" [body=yes, kind=cnst, prop=yes, path="Morph", ];
N: 42 "symmetry" [body=yes, kind=cnst, prop=yes, path="RelationClasses", ];
N: 16 "trans_sym_co_inv_impl_morphism" [body=yes, kind=cnst, prop=yes, path="Morphisms", ];
N: 40 "trans_sym_co_inv_impl_morphism_obligation_1" [body=yes, kind=cnst, prop=yes, path="Morphisms", ];
N: 44 "transitivity" [body=yes, kind=cnst, prop=yes, path="RelationClasses", ];
N: 26 "Equivalence" [kind=inductive, prop=no, path="RelationClasses", ];
N: 34 "PER" [kind=inductive, prop=no, path="RelationClasses", ];
N: 27 "Build_Equivalence" [kind=construct, prop=yes, path="RelationClasses", ];
N: 35 "Build_PER" [kind=construct, prop=yes, path="RelationClasses", ];
E: 15 16 [weight=1, ];
E: 15 17 [weight=1, ];
E: 15 18 [weight=6, ];
E: 15 19 [weight=5, ];
E: 15 20 [weight=1, ];
E: 15 21 [weight=8, ];
E: 15 22 [weight=1, ];
E: 16 30 [weight=3, ];
E: 16 34 [weight=3, ];
E: 16 36 [weight=1, ];
E: 16 37 [weight=1, ];
E: 16 38 [weight=1, ];
E: 16 39 [weight=1, ];
E: 16 40 [weight=1, ];
E: 17 18 [weight=4, ];
E: 17 19 [weight=1, ];
E: 17 21 [weight=2, ];
E: 17 36 [weight=1, ];
E: 17 37 [weight=1, ];
E: 19 18 [weight=2, ];
E: 20 26 [weight=2, ];
E: 20 30 [weight=2, ];
E: 20 32 [weight=1, ];
E: 20 33 [weight=1, ];
E: 20 34 [weight=1, ];
E: 20 35 [weight=1, ];
E: 21 18 [weight=2, ];
E: 22 18 [weight=2, ];
E: 22 21 [weight=2, ];
E: 22 23 [weight=1, ];
E: 22 24 [weight=1, ];
E: 22 25 [weight=1, ];
E: 22 26 [weight=1, ];
E: 22 27 [weight=1, ];
E: 23 18 [weight=3, ];
E: 23 21 [weight=3, ];
E: 24 18 [weight=1, ];
E: 24 21 [weight=1, ];
E: 25 18 [weight=2, ];
E: 25 21 [weight=2, ];
E: 26 28 [weight=1, ];
E: 26 29 [weight=1, ];
E: 26 30 [weight=1, ];
E: 26 31 [weight=1, ];
E: 27 28 [weight=1, ];
E: 27 29 [weight=1, ];
E: 27 30 [weight=1, ];
E: 27 31 [weight=1, ];
E: 28 30 [weight=2, ];
E: 29 30 [weight=2, ];
E: 31 30 [weight=2, ];
E: 32 26 [weight=3, ];
E: 32 30 [weight=2, ];
E: 32 31 [weight=2, ];
E: 33 26 [weight=3, ];
E: 33 28 [weight=2, ];
E: 33 30 [weight=2, ];
E: 34 28 [weight=1, ];
E: 34 30 [weight=1, ];
E: 34 31 [weight=1, ];
E: 35 28 [weight=1, ];
E: 35 30 [weight=1, ];
E: 35 31 [weight=1, ];
E: 36 30 [weight=2, ];
E: 37 30 [weight=5, ];
E: 40 30 [weight=2, ];
E: 40 34 [weight=2, ];
E: 40 37 [weight=1, ];
E: 40 38 [weight=1, ];
E: 40 39 [weight=1, ];
E: 40 41 [weight=1, ];
E: 40 42 [weight=1, ];
E: 40 43 [weight=1, ];
E: 40 44 [weight=1, ];
E: 41 28 [weight=2, ];
E: 41 30 [weight=2, ];
E: 41 34 [weight=3, ];
E: 42 28 [weight=2, ];
E: 42 30 [weight=2, ];
E: 43 30 [weight=2, ];
E: 43 31 [weight=2, ];
E: 43 34 [weight=3, ];
E: 44 30 [weight=2, ];
E: 44 31 [weight=2, ];
|