1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
From elpi_stdlib Require Import ZArith Arith List FunctionalExtensionality.
From elpi Require Import elpi.
Lemma ring_example x : x + 1 = 1 + x.
Proof. ring. Qed.
Goal forall l, map (fun x => x + 1) l = map (fun x => 1 + x) l.
Proof.
Fail replace (x + 1) with (1 + x) by ring.
replace (fun x => x + 1) with (fun x => 1 + x).
easy.
extensionality x.
ring.
Qed.
Lemma let_congr {T1 T2 : Type} (b1 b2 : T1) (F1 F2 : T1 -> T2) :
b1 = b2 -> (forall x : T1, F1 x = F2 x) ->
(let x := b1 in F1 x) = (let x := b2 in F2 x).
Proof.
intros bq fq; rewrite bq.
lazy zeta; apply fq.
Qed.
Lemma map_ext_in_equal2 [A B : Type] (f g : A -> B) (l1 l2 : list A):
(forall a : A, In a l1 -> f a = g a) -> l1 = l2 ->
map f l1 = map g l2.
Proof.
now intros exth l1l2; rewrite <- l1l2; apply map_ext_in.
Qed.
Lemma app_prf [A B : Type] (f g : A -> B) (v1 v2 : A) :
f = g -> v1 = v2 -> f v1 = g v2.
Proof. now intros fg v1v2; rewrite fg, v1v2. Qed.
Lemma app_prf1 [A : Type] [B : A -> Type] (f g : forall x, B x) (v : A) :
f = g -> f v = g v.
Proof. now intros fg; rewrite fg. Qed.
Ltac lazy_beta := lazy beta.
Elpi Tactic replace.
Elpi Accumulate lp:{{
pred preserve_bound_variables i:term o:term.
preserve_bound_variables I O :-
(((pi N T F N1 T1 F1 \
copy (fun N T F) (fun N1 T1 F1) :-
copy T T1,
fresh-name N T N1,
(@pi-decl N1 T1 x\
copy (F x) (F1 x))),
(pi B B1 N T F N1 T1 F1 \
copy (let N T B F)(let N1 T1 B1 F1) :-
copy T T1,
copy B B1,
fresh-name N T N1,
(@pi-decl N1 T1 x\ copy (F x) (F1 x))),
(pi N T F N1 T1 F1 \
copy (prod N T F) (prod N1 T1 F1) :-
copy T T1,
fresh-name N T N1,
(@pi-decl N1 T1 x\
copy (F x) (F1 x)))) => copy I O).
pred fresh-name i:name, i:term, o:name.
fresh-name N T M :-
coq.ltac.fresh-id {coq.name->id N} T Mi,
coq.id->name Mi M.
pred mk-app-prf i:list term, i:list term, i: list term, o:term.
mk-app-prf [F, _] [F, _] [{{@refl_equal _ _}}, P] {{f_equal lp:F lp:P}} :-
non-dependent-type F,!.
mk-app-prf [F, _, _] [F, _, _] [{{@refl_equal _ _}}, P1, P2]
{{f_equal2 lp:F lp:P1 lp:P2}} :-
non-dependent-type F,!.
mk-app-prf [F, _, _, _] [F, _, _, _] [{{@refl_equal _ _}}, P1, P2, P3]
{{f_equal3 lp:F lp:P1 lp:P2 lp:P3}} :-
non-dependent-type F,!.
mk-app-prf [F, _, _, _, _] [F, _, _, _, _]
[{{@refl_equal _ _}}, P1, P2, P3, P4]
{{f_equal4 lp:F lp:P1 lp:P2 lp:P3 lp:P4}} :-
non-dependent-type F,!.
% TODO use nary_congruence from ssreflect
mk-app-prf [F, _, _, _, _, _] [F, _, _, _, _, _]
[{{@refl_equal _ _}}, P1, P2, P3, P4, P5]
{{f_equal5 lp:F lp:P1 lp:P2 lp:P3 lp:P4 lp:P5}} :-
non-dependent-type F,!.
mk-app-prf [F1, A] [F2, A] [Pf, {{@refl_equal _ _}}]
{{app_prf1 lp:F1 lp:F2 lp:A lp:Pf}} :- !.
mk-app-prf [F1, A] [F2, B] [Pf, Pa]
{{app_prf lp:F1 lp:F2 lp:A lp:B lp:Pf lp:Pa}} :-
coq.typecheck F1 (prod _ _ Ft) ok,
(pi c1 c2 \ Ft c1 = Ft c2),!.
mk-app-prf [F1, A | Args1] [F2, A |Args2] [Pf, {{@refl_equal _ _}} | Ps]
P :- !,
mk-app-prf [app [F1, A] | Args1] [app [F2, A] | Args2]
[{{app_prf1 lp:F1 lp:F2 lp:A lp:Pf}} | Ps] P.
mk-app-prf [F1, A | Args1] [F2, B | Args2] [Pf, Pa | Ps] P :-
coq.typecheck F1 (prod _ _ Ft) ok,
(pi c1 c2 \ Ft c1 = Ft c2),!,
mk-app-prf [app [F1, A] | Args1] [app [F2, B] | Args2]
[{{app_prf lp:F1 lp:F2 lp:A lp:B lp:Pf lp:Pa}} | Ps] P.
pred fold-map2 i:list term i:A i:(term -> A -> term -> term -> A -> prop)
o:list term o:list term o:A.
fold-map2 [] A _ [] [] A.
fold-map2 [T | L] A F [T1 | L1] [P1 | PL] A2 :-
F T A T1 P1 A1, fold-map2 L A1 F L1 PL A2.
pred instantiate_pair i:name, i:term, i:term, i:pair argument argument,
o:pair argument argument.
pred instantiate i:name, i:term, i:term, i:argument, o:argument.
pred remove_one_unknown i:name, i:term, i:term, i:term, o:term.
% TODO : needs a fix in a rocq-elpi to detect if renaming has happened in
% in the current context.
remove_one_unknown N _T C (fun N1 _T1 F) Res :-
{coq.name->id N} = {coq.name->id N1},!,
Res = (F C),!.
remove_one_unknown N T C (fun N1 T1 F) (fun N1 T1 Res) :-
(@pi-decl N1 T1 x \
remove_one_unknown N T C (F x) (Res x)),!.
instantiate N T C (open-trm 1 F) (open-trm 0 Res) :-
remove_one_unknown N T C F Res,!.
instantiate N T C (open-trm I F) (open-trm J Res) :-
remove_one_unknown N T C F Res,!,
J is I - 1.
instantiate _N _T _C (open-trm 0 A) (open-trm 0 A):- !.
instantiate _N _T _C (open-trm _ _ as It) It :- !.
instantiate_pair N T C (pr A1 A2) (pr B1 B2) :-
std.do! [
std.assert! (instantiate N T C A1 B1) "first instantiate failed",
instantiate N T C A2 B2].
pred mk-equality i:(pair argument argument), i:term i:A, o:term, o:term, o:A.
mk-equality (pr (open-trm 0 S) (open-trm 0 T)) S A T P A :- !,
TY = {{lp:S = lp:T}},
coq.typecheck-ty TY _ ok,
coq.typecheck P TY ok.
:name "mk-equality:start"
mk-equality _RW X A Z Y A :- name X,!,
X = Z, {{@refl_equal _ lp:X}} = Y, !.
mk-equality _RW (global _ as C) A C {{@refl_equal _ lp:C}} A :- !.
mk-equality _RW (pglobal _ _ as C) A C {{@refl_equal _ lp:C}} A :- !.
mk-equality _RW (sort _ as C) A C {{@refl_equal _ lp:C}} A :- !.
mk-equality RW (fun N T F) A (fun N1 T F) Res A :-
fresh-name N T N1,
@pi-decl N T x\
(instantiate_pair N T x RW (RW1 x),
mk-equality (RW1 x) (F x) A _ {{@refl_equal _ _}} _A2,!,
Res = {{@refl_equal _ _}}).
mk-equality RW (fun N T F) A (fun N1 T F1)
{{functional_extensionality lp:{{(fun N T F)}} lp:{{(fun N T F1)}}
lp:{{(fun N1 T Prf)}}}} A1 :- !,
fresh-name N T N1,
@pi-decl N1 T x\
(std.assert! (instantiate_pair N1 T x RW (RW1 x)) "instantiate_pair failed",!,
mk-equality (RW1 x) (F x) A (F1 x) (Prf x) A1).
% TODO: write unit tests for the following clauses
mk-equality RW (let N T B F as C) A (let N1 T B F) {{@refl_equal _ lp:C}} A :-
mk-equality RW B A _ {{@refl_equal _ _}} A2,
fresh-name N T N1,
(@pi-decl N1 T x\
(std.assert! (instantiate_pair N1 T x RW (RW1 x)) "instantiate_pair failed",!,
mk-equality (RW1 x) (F x) A2 _ {{@refl_equal _ _}} _A3)),!.
mk-equality RW (let N T B F) A (let N1 T B1 F1)
{{let_congr lp:B lp:B1 lp:{{fun N1 T F}} lp:{{fun N1 T F1}}
lp:PB lp:PF}} A3:- !,
fresh-name N T N1,
mk-equality RW B A B1 PB A2,
@pi-decl N1 T x\
(instantiate_pair N1 T x RW (RW1 x),!,
mk-equality (RW1 x) (F x) A2 (F1 x) PF A3).
mk-equality RW (prod N T F) A (prod N1 T F1) (fun N1 T P1) A2 :- !,
fresh-name N T N1,
(@pi-decl N1 T x\
(instantiate_pair N1 T x RW (RW1 x),!,
mk-equality (RW1 x) (F x) A (F1 x) (P1 x) A2)),!.
mk-equality RW (app L as C) A C {{@refl_equal _ lp:C}} A :-
fold-map2 L A (mk-equality RW) _ L1 _A1,
std.forall L1 (c \ (sigma A B \ c = {{@refl_equal lp:A lp:B}})),!.
mk-equality RW {{@map lp:T1 lp:T2 lp:{{fun N _ F}} lp:L}}
A
{{@map lp:T1 lp:T2 lp:{{fun N1 T1 F1}} lp:L1}}
R A2 :- !,
fresh-name N T1 N1,
@pi-decl N1 T1 x\
(instantiate_pair N1 T1 x RW (RW1 x),!,
@pi-decl `H` (Ext_Hyp x) h\
mk-equality (RW1 x) (F x) A (F1 x) (Pf x h) A1),
mk-equality RW L A1 L1 Pl A2,
R = {{map_ext_in_equal2 lp:{{fun N1 _ F}} lp:{{fun N1 _ F1}} lp:L lp:L1
lp:{{fun N1 T1 x\
(fun `H` (Ext_Hyp x) h\ Pf x h)}} lp:Pl }}.
mk-equality RW (app L) A (app L1) Prf A1 :-
fold-map2 L A (mk-equality RW) L1 P1 A1,
mk-app-prf L L1 P1 Prf.
pred non-dependent-type i:term.
non-dependent-type F :-
coq.typecheck F Ty ok,
ndpt Ty.
pred ndpt i:term.
ndpt (prod _N _T F) :-
pi c1 c2\ F c1 = F c2,!,
pi c\ ndpt (F c).
ndpt (prod _ _ _) :- !, fail.
ndpt _ :- !.
pred equal-app i:list term, i:list term, i:list term, o:term.
equal-app [F, A] [F1, A1] [Pf, Pa]
{{app_prf lp:F lp:F1 lp:A lp:A1 lp:Pf lp:Pa}} :- !.
equal-app [F, A | Args] [F1, A1 | Args1] [Pf, Pa | Ps]
R :-
equal-app [app [F, A] | Args] [app [F1, A1] | Args1]
[{{app_prf lp:F lp:F1 lp:A lp:A1 lp:Pf lp:Pa}} | Ps] R.
mk-equality _RW (fix _N _Rno _Ty _F as C) A C {{@refl_equal _ lp:C}} A :- !.
mk-equality _RW (match _T _Rty _B as C) A C {{@refl_equal _ lp:C}} A :- !.
mk-equality _RW (primitive _ as C) A C {{@refl_equal _ lp:C}} A :- !.
mk-equality _RW (uvar _M _L as C) A C {{@refl_equal _ lp:C}} A :- !.
% when used in CHR rules
mk-equality _RW (uvar _X _L as C) A C {{@refl_equal _ lp:C}} A :- !.
solve (goal _ _ {{lp:X = lp:Y }} _ [Arg1, Arg2] as G) GL1 :-
%coq.say Arg1 Arg2,
mk-equality (pr Arg1 Arg2) Y [] Y2 P _,
std.assert-ok! (coq.typecheck P {{lp:Y = lp:Y2}}) "proof incorrect",!,
preserve_bound_variables X X1,
refine {{@eq_trans _ lp:X1 lp:Y2 _ _ (eq_sym lp:P)}} G GL,
if (GL = [Ng, Ng2])
(coq.ltac.open (coq.ltac.call "lazy_beta" []) Ng2 GL_aux,
GL1 = [Ng | GL_aux])
(GL1 = GL).
% refine {{eq_sym (@eq_trans lp:Y lp:Y2 lp:X lp:P (eq_sym _))}} G GL.
solve (goal _ _ _ _ [Arg1, Arg2]) _ :-
coq.say Arg1,
coq.say Arg2,
fail.
solve (goal _ _ _ _ [] as _G) _GL :-
coq.say "failed".
}}.
Tactic Notation (at level 0) "repl" uconstr(x) uconstr(y) :=
(elpi replace ltac_open_term:(x) ltac_open_term:(y)).
Open Scope Z_scope. (* Otherwise ring fails. *)
(* The tactic repl only handles goals that have the shape of an
equality, and only attempts to perform rewrites in the right-hand-side of
that equality. In this example, we replace a formula containing a variable
that is not well defined outside the map expression with a formula that also
contains the such a variable. But a variable with the same name is
actually bound in the goal, and the expression to be replaced occurs inside
the lambda-expression.
The number of variables occuring in the replacement formulas that
are unknown at the root of the goals conclusion can be arbitrary big,
but they all have to be fillable with bound variables where the binding
happens in the goal, in a nested fashion. *)
(* This test illustrates the case where there is no unknown. *)
Goal forall x, x = 1 -> 2 = x + 1.
intros x x1.
repl x 1;[ | assumption].
ring.
Qed.
(* This test illustrates the case where there is one unknown in
both the expression-to-be-replaced and the replacing expression. *)
Goal forall l, map (fun x => x + 1) l = map (fun x => x + (1 + 0)) l.
Proof.
intros l.
repl (x + (1 + 0)) (x + 1); cycle 1.
ring.
easy.
Qed.
(* This test illustrates the case where there are two unknowns in
both the expression-to-be-replaced and the replacing expression. *)
Goal forall n,
map (fun i => map (fun j => (i + j)) (map Z.of_nat (seq 1 n)))
(map Z.of_nat (seq 1 n)) =
map (fun i => map (fun j => (j + i)) (map Z.of_nat (seq 1 n)))
(map Z.of_nat (seq 1 n)).
intros n.
repl (j + i) (i + j).
easy.
ring.
Qed.
(* This is a typical bigop theorem. The proof does not use our new
tactic. *)
Lemma fold_neutral {A B : Type}(f : A -> A -> A) (a0 : A) :
(forall x, f x a0 = x) ->
forall (l : list B), fold_right f a0 (map (fun x => a0) l) = a0.
Proof.
intros neutral; induction l as [ | b l Ih]; simpl; try rewrite Ih; auto.
Qed.
(* The next two tests illustrate the fact that the whole formula may contain
polymorphic functions. *)
(* This test illustrates the case where the formula to be replaced contains
an instance of the variable bound in a lambda expression occuring in the
right-hand-side of the equality, but the replacing formula does not. *)
Goal forall l, fold_right Z.add 0 (map (fun x => x - x) l) = 0.
Proof.
intros l.
symmetry.
(* TODO: this should not fail. *)
repl (x - x) 0; cycle 1.
ring.
symmetry.
apply (fold_neutral Z.add 0 Z.add_0_r).
Qed.
(* This test illustrates the case where the formula to be replaced contains
no instance of a bound variable, but the replacing formula does. *)
Goal forall (l : list Z), 0 = fold_right Z.add 0 (map (fun x => x - x + 0) l).
intros l.
repl 0 (x - x); cycle 1.
ring.
repl (x - x + (x - x)) 0; cycle 1.
ring.
symmetry.
apply fold_neutral.
intros x; ring.
Qed.
(* this illustrates the case where a bound variable is clashing with another
existing variable in the context, with the same name. *)
Goal forall (x : Z) l y, map (fun x => x + y) l = map (fun x => x + (y + 0)) l.
Proof.
intros x l y.
(* This illustrates that the names seen by the user are recognized properly
by the tactic.*)
repl (x0 + (y + 0)) (x0 + y).
progress repl (x0 + y) (y + x0).
repl (y + x0) (x0 + y).
easy.
all:ring.
Qed.
(* If there are several lambda expressions, one of which is not concerned
with the rewrite rule, it should not fail. *)
Goal forall l, l = map (fun x => x + 1) (map (fun y => y - 1) l).
Proof.
intros l.
repl(x + 1) (1 + x); cycle 1.
ring.
repl (y - 1) ((-1) + y); cycle 1.
ring.
rewrite map_map.
repl (1 + ((-1) + x)) x; cycle 1.
ring.
rewrite map_id.
easy.
Qed.
Section sandbox.
Variable x : Z.
(* This goal illustrates the case where a bound variable clashes with
a section variable. *)
Goal forall l y, map (fun x => x + y) l = map (fun x => x + (y + 0)) l.
Proof.
intros l y.
repl (x0 + (y + 0)) (x0 + y); cycle 1.
ring.
(* TODO: elpi generates an ugly name in a subterm of the goal that we did not
modify, when it could avoid it. *)
now apply map_ext_in; intros a _; ring.
Qed.
End sandbox.
|