1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
From elpi Require Import elpi.
From elpi_stdlib Require Vector.
(****** env **********************************)
Elpi Command test.
(* constant *)
Elpi Query lp:{{
coq.locate "plus" (const GR),
coq.env.const GR (some BO) TY,
coq.locate "nat" GRNat, Nat = global GRNat,
coq.locate "S" GRSucc, Succ = global GRSucc,
TY = (prod _ Nat _\ prod _ Nat _\ Nat),
BO = (fix _ 0 TY add\
fun _ Nat n\ fun _ Nat m\
match n (fun _ Nat _\ Nat)
[ m
, fun _ Nat w\ app[Succ, app[add,w,m]]]).
}}.
Axiom empty_nat : nat.
Elpi Query lp:{{
coq.locate "empty_nat" (const GR),
coq.env.const GR none TY.
}}.
Section Test.
Variable A : nat.
Elpi Query lp:{{
coq.locate "Vector.nil" GR1,
coq.locate "nat" GR2,
coq.locate "A" GR3,
coq.env.typeof GR1 _,
coq.env.typeof GR2 _,
coq.env.typeof GR3 _.
}}.
End Test.
Elpi Query lp:{{
coq.locate "plus" (const GR),
coq.env.const GR (some BO) TY,
coq.gref->id (const GR) S,
Name is S ^ "_equal",
coq.env.add-const Name BO TY @opaque! NGR,
coq.env.opaque? NGR,
coq.env.const NGR none _, coq.say {coq.gref->id (const NGR)},
coq.env.const-body NGR (some BO),
rex_match "add_equal" {coq.gref->id (const NGR)}.
}}.
About add_equal.
(* axiom *)
Elpi Query lp:{{
coq.locate "False" F,
coq.env.add-axiom "myfalse" (global F) GR,
coq.env.opaque? GR,
coq.env.const GR none _,
coq.env.const-body GR none,
coq.say GR.
}}.
Check myfalse.
(* record *)
Set Printing Universes.
Elpi Query lp:{{
DECL =
(parameter "T" _ {{Type}} t\
record "eq_class" {{Type}} "mk_eq_class" (
field [canonical ff, coercion regular] "eq_f" {{bool}} f\
field _ "eq_proof" {{lp:f = lp:f :> bool}} _\
end-record)),
coq.say DECL,
coq.env.add-indt DECL GR.
}}.
Print eq_class.
Check (fun x : eq_class nat => (x : bool)).
Axiom b : bool.
Axiom p : b = b.
Canonical xxx := mk_eq_class bool b p.
Print Canonical Projections.
Fail Check eq_refl _ : eq_f bool _ = b.
Elpi Query lp:{{
DECL =
(parameter "T" _ {{Type}} t\
record "prim_eq_class" {{Type}} "mk_prim_eq_class" (
field [canonical ff, coercion reversible] "prim_eq_f" {{bool}} f\
field _ "prim_eq_proof" {{lp:f = lp:f :> bool}} _\
end-record)),
(@primitive! => coq.env.add-indt DECL GR),
coq.env.projections GR [some _, some _].
}}.
(* primitive records have eta *)
Check fun r : prim_eq_class nat =>
eq_refl _ : r = mk_prim_eq_class _ (prim_eq_f _ r) (prim_eq_proof _ r).
Module II.
Arguments prim_eq_f : default implicits.
Elpi Query lp:{{
coq.say {{ fun r : prim_eq_class nat => r.(prim_eq_f) }}
}}.
Definition pc (r : prim_eq_class nat) := r.(prim_eq_f).
Elpi Query lp:{{
coq.locate "pc" (const C),
coq.env.const C (some (fun _ _ r\ app[primitive _, r])) _
}}.
Elpi Command primp.
Elpi Accumulate lp:{{
main [const-decl _ (some (fun _ _ r\ app[primitive _, r])) _].
}}.
Elpi primp Definition pc (r : prim_eq_class nat) := r.(prim_eq_f).
End II.
(* inductive *)
Elpi Command indtest.
Elpi Accumulate lp:{{
main _ :-
DECL =
(parameter "T" maximal {{Type}} t\
parameter "x" _ t x\
inductive "myind" _ (arity (prod `w` t _\ sort prop))
i\ [ constructor "K1"
(arity (prod `y` t y\ prod _ (app[i,y]) _\app[i,x]))
, constructor "K2"
(arity (app[i,x]))
]
),
coq.env.add-indt DECL _,
coq.rename-indt-decl rename rename rename DECL DECL1,
coq.env.add-indt DECL1 _.
pred rename i:id, o:id.
rename K S :- S is K ^ "1".
}}.
Elpi Query indtest lp:{{ main _ }}.
Check myind true false : Prop.
Check K2 true : myind true true.
Check myind1 true false : Prop.
Check K21 true : myind1 true true.
Elpi Query lp:{{
coq.env.add-indt (parameter "X" _ {{Type}} x\
inductive "nuind" _ (parameter "n" _ {{ nat }} _\ arity {{ bool -> Type }}) i\
[constructor "k1" (parameter "n" _ {{nat}} n\ arity (app[i,n,{{true}}]))
,constructor "k2" (parameter "n" _ {{nat}} n\
arity (prod `x` (app[i,{{1}},{{false}}]) _\
(app[i,n,{{false}}])))
]) _.
}}.
Check fun x : nuind nat 3 false =>
match x in nuind _ _ b return @eq bool b b with
| k1 _ _ => (eq_refl : true = true)
| k2 _ _ x => (fun w : nuind nat 1 false => (eq_refl : false = false)) x
end.
Fail Check fun x : nuind nat 3 false =>
match x in nuind _ i_cannot_name_this b return @eq bool b b with
| k1 _ _ => (eq_refl : true = true)
| k2 _ _ x => (fun w : nuind nat 1 false => (eq_refl : false = false)) x
end.
Elpi Query lp:{{
pi x\ (decl x `x` {{ nat }} => coq.typecheck x T ok), coq.say x T.
}}.
Elpi Query lp:{{
D = (parameter "A" _ {{ Type }} a\
inductive "tx" _ (parameter "y" _ {{nat}} _\ arity {{ bool -> Type }}) t\
[ constructor "K1x" (parameter "y" _ {{nat}} y\ arity {{
forall (x : lp:a) (n : nat) (p : @eq nat (S n) lp:y) (e : lp:t n true),
lp:t lp:y true }})
, constructor "K2x" (parameter "y" _ {{nat}} y\ arity {{
lp:t lp:y false }}) ]),
coq.typecheck-indt-decl D ok,
coq.env.add-indt D _.
}}.
Module HOAS.
Inductive ind1 (A : Type) (a : A) | (B : Type) (b : B) : forall C : Type, C -> Type :=
| k1 : forall bb, ind1 (B * B)%type bb bool true -> ind1 B b unit tt
| k2 : ind1 B b nat 1.
Elpi Query lp:{{
coq.locate "ind1" (indt I),
coq.env.indt-decl I D,
D1 =
(parameter "A" explicit (sort (typ UA)) c0 \
parameter "a" explicit c0 c1 \
inductive "ind1" tt
(parameter "B" explicit (sort (typ UB1)) c2 \
parameter "b" explicit c2 c3 \
arity
(prod `C` (sort (typ UC)) c4 \ prod `_` c4 c5 \ sort (typ U)))
c2 \
[constructor "k1"
(parameter "B" explicit (sort (typ UB2)) c3 \
parameter "b" explicit c3 c4 \
arity
(prod `bb` {{ (lp:c3 * lp:c3)%type }} c5 \
prod `_` (app [c2, {{ (lp:c3 * lp:c3)%type }}, c5, {{ bool }}, {{ true }}]) c6 \
app [c2, c3, c4, {{ unit }}, {{ tt }}])),
constructor "k2"
(parameter "B" explicit (sort (typ UB3)) c3 \
parameter "b" explicit c3 c4 \
arity
(app [c2, c3, c4, {{ nat }}, {{ 1 }}]))]),
std.assert! (D = D1) "coq.env.indt-decl".
}}.
Arguments k1 A a B b [bb] _.
Elpi Query lp:{{
coq.locate "ind1" (indt I),
coq.env.indt-decl I D,
D1 =
(parameter "A" explicit (sort (typ UA)) c0 \
parameter "a" explicit c0 c1 \
inductive "ind1" tt
(parameter "B" explicit (sort (typ UB1)) c2 \
parameter "b" explicit c2 c3 \
arity
(prod `C` (sort (typ UC)) c4 \ prod `_` c4 c5 \ sort (typ U)))
c2 \
[constructor "k1"
(parameter "B" explicit (sort (typ UB2)) c3 \
parameter "b" explicit c3 c4 \
parameter "bb" implicit {{ (lp:c3 * lp:c3)%type }} c5 \
arity
(prod `_` (app [c2, {{ (lp:c3 * lp:c3)%type }}, c5, {{ bool }}, {{ true }}]) c6 \
app [c2, c3, c4, {{ unit }}, {{ tt }}])),
constructor "k2"
(parameter "B" explicit (sort (typ UB3)) c3 \
parameter "b" explicit c3 c4 \
arity
(app [c2, c3, c4, {{ nat }}, {{ 1 }}]))]),
std.assert! (D = D1) "coq.env.indt-decl + implicits".
}}.
Record r1 (P : Type) (p : P) : Type := mk_r1 {
f1 :> P -> P;
#[canonical=no] f2 : p = f1 p;
}.
Elpi Query lp:{{
coq.locate "r1" (indt I),
coq.env.indt-decl I D,
D1 =
(parameter "P" explicit (sort (typ UP)) c0 \
parameter "p" explicit c0 c1 \
record "r1" (sort (typ UR)) "mk_r1"
(field [coercion reversible, canonical tt] "f1" {{ lp:c0 -> lp:c0 }} c2\
field [coercion off, canonical ff] "f2" {{ @eq lp:c0 lp:c1 (lp:c2 lp:c1) }} c3\
end-record)
),
std.assert! (D = D1) "coq.env.indt-decl + record".
}}.
#[warning="-uniform-inheritance"] Coercion f2 : r1 >-> eq.
Elpi Query lp:{{
coq.locate "r1" (indt I),
coq.env.indt-decl I D,
D1 =
(parameter "P" explicit (sort (typ UP)) c0 \
parameter "p" explicit c0 c1 \
record "r1" (sort (typ UR)) "mk_r1"
(field [coercion reversible, canonical tt] "f1" {{ lp:c0 -> lp:c0 }} c2\
field [coercion regular, canonical ff] "f2" {{ @eq lp:c0 lp:c1 (lp:c2 lp:c1) }} c3\
end-record)
),
std.assert! (D = D1) "coq.env.indt-decl + record".
}}.
Elpi Query lp:{{
coq.locate "plus" GR,
coq.env.dependencies GR _ L,
coq.say L,
coq.env.transitive-dependencies GR _ S,
coq.say S,
std.assert! (S = L) "plus wrong deps"
}}.
Module X.
Definition a := 0.
Definition b := a + a.
End X.
Elpi Query lp:{{
coq.locate "X.b" GR,
coq.locate-module "X" M,
coq.env.dependencies GR M L,
coq.env.dependencies GR _ AllL,
coq.say L AllL,
std.assert! (coq.gref.set.subset L AllL) "??",
std.assert! (coq.gref.set.elements L [{coq.locate "X.a"}]) "??",
coq.env.transitive-dependencies GR M S,
coq.env.transitive-dependencies GR _ AllS,
coq.say S AllS,
std.assert! (coq.gref.set.subset S AllS) "??"
}}.
End HOAS.
From elpi_stdlib Require Ranalysis5.
Elpi Query lp:{{
coq.locate "Ranalysis5.derivable_pt_lim_CVU" GR,
std.time (coq.env.transitive-dependencies GR _ S) T,
std.assert! ({coq.gref.set.cardinal S} > 3000) "too few",
std.assert! (T < 25.0) "too slow" % 0.5 here
}}.
Elpi Query lp:{{
T = {{ forall x : nat, x + 0 = x }},
coq.env.term-dependencies T S,
std.assert! ({coq.gref.set.cardinal S} = 4) "wrong",
not (coq.gref.set.mem {{:gref S }} S),
(coq.gref.set.mem {{:gref O }} S),
(coq.gref.set.mem {{:gref nat }} S),
(coq.gref.set.mem {{:gref Nat.add }} S),
(coq.gref.set.mem {{:gref eq }} S)
}}.
Set Universe Polymorphism.
Elpi Query lp:{{
coq.env.begin-module "Test" none,
coq.env.end-module _.
}} lp:{{
coq.env.begin-module "Test" _,
Decl = record "Rec" {{ Type }} "BuildRec" (field [] "f" {{ Type }} (_\ end-record)),
(@univpoly! => coq.env.add-indt Decl _),
coq.env.end-module _.
}}.
Set Printing Universes. Print Module Test.
Check Test.f.
From elpi_stdlib Require Import ZArith.
Elpi Query lp:{{
coq.locate-module "N2Z" MP,
coq.locate-module "Znat" LP,
coq.modpath->library MP LP
}}.
|