1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
|
(* begin hide *)
(**********************************************************************)
(* Equations *)
(* Copyright (c) 2009-2021 Matthieu Sozeau <matthieu.sozeau@inria.fr> *)
(**********************************************************************)
(* This file is distributed under the terms of the *)
(* GNU Lesser General Public License Version 2.1 *)
(**********************************************************************)
(* end hide *)
(** * Normalization of Simply Typed Lambda-Calculus through Hereditary Substitutions.
Uses extrinsic encoding of terms, with de Bruijn indices, lifting and
substitution. Derive hereditary substitution function justified by a
well-founded order on typable terms and conclude with a normalizer building
beta-short eta-long normal forms, typable in a bidirectional type system. *)
Require Program.
From Equations Require Import Equations.
Require Import Lia.
Require Import List Utf8.
Import ListNotations.
Set Keyed Unification.
Derive Signature for le CompareSpec.
Inductive term :=
| Var (n : nat)
| Lambda (t : term)
| App (t u : term)
| Pair (t u : term)
| Fst (t : term) | Snd (t : term)
| Tt.
Derive NoConfusion Subterm EqDec for term.
Coercion Var : nat >-> term.
Declare Scope term_scope.
Delimit Scope term_scope with term.
Bind Scope term_scope with term.
Notation " @( f , x ) " := (App (f%term) (x%term)).
Notation " 'λ' t " := (Lambda (t%term)) (at level 10).
Notation " << t , u >> " := (Pair (t%term) (u%term)).
Parameter atomic_type : Set.
Parameter atomic_type_eqdec : EqDec atomic_type.
#[export] Existing Instance atomic_type_eqdec.
Inductive type :=
| atom (a : atomic_type)
| product (a b : type)
| unit
| arrow (a b : type).
Derive NoConfusion Subterm EqDec for type.
Coercion atom : atomic_type >-> type.
Notation " x × y " := (product x y) (at level 90).
Notation " x ---> y " := (arrow x y) (at level 30).
Require Import Arith.
Equations lift (k n : nat) (t : term) : term :=
lift k n (Var i) with Nat.compare i k := {
| Lt := Var i ;
| _ := Var (i + n) } ;
lift k n (Lambda t) := Lambda (lift (S k) n t) ;
lift k n (App t u) := @(lift k n t, lift k n u) ;
lift k n (Pair t u) := << lift k n t, lift k n u >> ;
lift k n (Fst t) := Fst (lift k n t) ;
lift k n (Snd t) := Snd (lift k n t) ;
lift k n Tt := Tt.
Tactic Notation "absurd" tactic(tac) := exfalso; tac.
Ltac term_eq :=
match goal with
| |- Var _ = Var _ => f_equal ; lia
| |- @eq nat _ _ => lia || absurd lia
| |- lt _ _ => lia || absurd lia
| |- le _ _ => lia || absurd lia
| |- gt _ _ => lia || absurd lia
| |- ge _ _ => lia || absurd lia
end.
#[local] Hint Extern 4 => term_eq : term.
Ltac term := typeclasses eauto with term core arith.
Ltac do_rewrites :=
repeat
match goal with
H : ?lhs = ?rhs |- context [?lhs] => rewrite H; clear H
end.
Ltac crush := do_rewrites; auto; try term.
Lemma lift0 k t : lift k 0 t = t.
Proof.
funelim (lift k 0 t); term || rewrite ?H; crush.
Qed.
#[local] Hint Rewrite lift0 : lift.
Require Import Lia.
Lemma lift_k_lift_k k n m t : lift k n (lift k m t) = lift k (n + m) t.
Proof.
funelim (lift k m t); intros; simp lift; try rewrite H ; try rewrite H0; auto.
destruct (Nat.compare_spec i k); try discriminate. subst.
case_eq (Nat.compare (k + n) k); intro H; simp lift; try term.
rewrite Nat.compare_lt_iff in H; term.
rewrite Heq; simp lift; term.
rewrite Heq. rewrite Nat.compare_gt_iff in Heq. simp lift.
destruct (Nat.compare_spec (i + n) k); try discriminate; simp lift; term.
Qed.
#[local] Hint Rewrite lift_k_lift_k : lift.
Equations subst (k : nat) (t : term) (u : term) : term :=
subst k (Var i) u with Nat.compare i k := {
| Eq := lift 0 k u ;
| Lt := i ;
| Gt := Var (pred i) } ;
subst k (Lambda t) u := Lambda (subst (S k) t u) ;
subst k (App a b) u := @(subst k a u, subst k b u) ;
subst k (Pair a b) u := << subst k a u, subst k b u >> ;
subst k (Fst t) u := Fst (subst k t u) ;
subst k (Snd t) u := Snd (subst k t u) ;
subst k Tt _ := Tt.
Lemma substnn n t : subst n n t = lift 0 n t.
Proof. funelim (subst n n t) ; try rewrite H ; try rewrite H0; simp lift; auto.
rewrite Nat.compare_lt_iff in Heq; absurd lia.
rewrite Nat.compare_gt_iff in Heq; absurd lia.
Qed.
#[local] Hint Rewrite substnn : subst.
Notation ctx := (list type).
Reserved Notation " Γ |-- t : A " (at level 70, t, A at next level).
Inductive types : ctx -> term -> type -> Prop :=
| axiom Γ i : i < length Γ -> (Γ |-- i : nth i Γ unit)
| abstraction Γ A B t :
A :: Γ |-- t : B -> Γ |-- λ t : A ---> B
| application Γ A B t u :
Γ |-- t : A ---> B -> Γ |-- u : A -> Γ |-- @(t, u) : B
| unit_intro Γ : Γ |-- Tt : unit
| pair_intro Γ A B t u :
Γ |-- t : A -> Γ |-- u : B ->
Γ |-- << t , u >> : (A × B)
| pair_elim_fst Γ A B t : Γ |-- t : (A × B) -> Γ |-- Fst t : A
| pair_elim_snd Γ A B t : Γ |-- t : (A × B) -> Γ |-- Snd t : B
where "Γ |-- i : A " := (types Γ i A).
Derive Signature for types.
Notation " [ t ] u " := (subst 0 u t) (at level 10).
Notation " x @ y " := (app x y) (at level 30, right associativity).
Lemma nth_length {A} x t (l l' : list A) : nth (length l) (l @ (t :: l')) x = t.
Proof. induction l; simpl; auto. Qed.
#[local] Hint Constructors types : term.
Lemma nat_compare_elim (P : nat -> nat -> comparison -> Prop)
(PEq : forall i, P i i Eq)
(PLt : forall i j, i < j -> P i j Lt)
(PGt : forall i j, i > j -> P i j Gt) :
forall i j, P i j (Nat.compare i j).
Proof. intros. case (Nat.compare_spec i j); intros; subst; auto. Qed.
Lemma nth_extend_left {A} (a : A) n (l l' : list A) : nth n l a = nth (length l' + n) (l' @ l) a.
Proof. induction l'; auto. Qed.
Lemma nth_app_l {A} (a : A) {n} (l l' : list A) : n < length l -> nth n (l @ l') a = nth n l a.
Proof.
revert l l' n; induction l; intros; auto. depelim H. destruct n; trivial.
simpl. eapply IHl. simpl in H. lia.
Qed.
Lemma nth_app_r {A} (a : A) {n} (l l' : list A) : length l <= n ->
nth n (l @ l') a = nth (n - length l) l' a.
Proof.
revert l l' n; induction l; intros; auto. simpl in H. depelim H; auto.
destruct n; simpl in H. depelim H. simpl; apply IHl; lia.
Qed.
Lemma nth_extend_middle {A} (a : A) n (l l' l'' : list A) :
match Nat.compare n (length l') with
| Lt => nth n (l' @ l) a = nth n (l' @ l'' @ l) a
| _ => nth n (l' @ l) a = nth (n + length l'') (l' @ l'' @ l) a
end.
Proof.
assert (foo:=Nat.compare_spec n (length l')).
depelim foo; fold (length l') in H;
try rewrite H0; try rewrite H. rewrite <- nth_extend_left.
replace (length l'') with (length l'' + 0) by auto with arith. rewrite <- nth_extend_left.
replace (length l') with (length l' + 0) by auto with arith.
now rewrite <- nth_extend_left.
clear H0. now rewrite !nth_app_l by trivial.
clear H0. rewrite !nth_app_r by lia. f_equal. lia.
Qed.
#[local] Hint Rewrite <- app_assoc in_app_iff in_inv : list.
Lemma type_lift Γ t T Γ' : Γ' @ Γ |-- t : T ->
forall Γ'', Γ' @ Γ'' @ Γ |-- lift (length Γ') (length Γ'') t : T.
Proof.
intros H.
depind H; intros; simp lift; eauto with term.
generalize (nth_extend_middle unit i Γ0 Γ' Γ'').
destruct Nat.compare; intros H'; rewrite H'; simp lift;
apply axiom; autorewrite with list in H |- *; lia.
apply abstraction. rewrite app_comm_cons. now apply IHtypes.
Qed.
Lemma type_lift1 Γ t T A : Γ |-- t : T -> A :: Γ |-- lift 0 1 t : T.
Proof. intros. apply (type_lift Γ t T [] H [A]). Qed.
Lemma type_liftn Γ Γ' t T : Γ |-- t : T -> Γ' @ Γ |-- lift 0 (length Γ') t : T.
Proof. intros. apply (type_lift Γ t T [] H Γ'). Qed.
#[local] Hint Resolve type_lift1 type_lift type_liftn : term.
Ltac crush ::= do_rewrites; simpl; do_rewrites; auto; try term.
Lemma app_cons_snoc_app {A} l (a : A) l' : l ++ (a :: l') = (l ++ a :: nil) ++ l'.
Proof. induction l; crush. Qed.
#[local] Hint Extern 5 => progress (simpl ; autorewrite with list) : term.
Ltac term ::= simp lift subst; try typeclasses eauto with core term.
Lemma substitutive Γ t T Γ' u U :
(Γ' @ (U :: Γ)) |-- t : T -> Γ |-- u : U ->
Γ' @ Γ |-- subst (length Γ') t u : T.
Proof with term.
intros H. depind H; term. intros.
(* Var *)
assert (spec:=Nat.compare_spec i (length Γ')).
depelim spec; try fold (length Γ') in H1; subst;
try rewrite H1; try rewrite H2 ; simp subst.
(* Eq *)
generalize (type_lift Γ0 u U [] H0 Γ'); simpl; intros.
rewrite app_cons_snoc_app, app_nth1, app_nth2; try (simpl; lia).
now rewrite Nat.sub_diag. term.
(* Lt *)
rewrite app_nth1 by lia. rewrite <- (app_nth1 _ Γ0); term.
(* Gt *)
rewrite app_nth2; term.
change (U :: Γ0) with ((cons U nil) @ Γ0). rewrite app_nth2; term.
simpl. rewrite (nth_extend_left unit _ Γ0 Γ').
replace (length Γ' + (i - length Γ' - 1)) with (pred i); term.
apply axiom. autorewrite with list in H |- *. simpl in H. lia.
(* Abstraction *)
intros. apply abstraction. now eapply (IHtypes _ _ _ (A :: Γ')).
Qed.
Lemma subst1 Γ t T u U : U :: Γ |-- t : T -> Γ |-- u : U -> Γ |-- subst 0 t u : T.
Proof. intros; now apply (substitutive Γ t T [] u U). Qed.
Reserved Notation " t --> u " (at level 55, right associativity).
Inductive reduce : term -> term -> Prop :=
| red_beta t u : @((Lambda t) , u) --> subst 0 t u
| red_fst t u : Fst << t , u >> --> t
| red_snd t u : Snd << t , u >> --> u
where " t --> u " := (reduce t u).
Derive Signature for reduce.
Require Import Relations.
Definition reduces := clos_refl_trans term reduce.
Notation " t -->* u " := (reduces t u) (at level 55).
Require Import Setoid.
#[local]
Instance: Transitive reduces.
Proof. red; intros. econstructor 3; eauto. Qed.
#[local]
Instance: Reflexive reduces.
Proof. red; intros. econstructor 2; eauto. Qed.
Inductive value : term -> Prop :=
| val_var (i : nat) : value i
| val_unit : value Tt
| val_pair a b : value a -> value b -> value << a, b >>
| val_lambda t : value (λ t).
Derive Signature for value.
#[local] Hint Constructors value : term.
Inductive reduce_congr : relation term :=
| reduce1 t u : reduce t u -> reduce_congr t u
| reduce_app_l t t' u : reduce_congr t t' ->
reduce_congr (@(t, u)) (@(t', u))
| reduce_app_r t u u' : reduce_congr u u' ->
reduce_congr (@(t, u)) (@(t, u'))
| reduce_pair_l t t' u : reduce_congr t t' ->
reduce_congr (<< t, u >>) (<< t', u >>)
| reduce_pair_r t u u' : reduce_congr u u' ->
reduce_congr (<< t, u >>) (<< t, u' >>)
| reduce_fst t t' : reduce_congr t t' -> reduce_congr (Fst t) (Fst t')
| reduce_snd t t' : reduce_congr t t' -> reduce_congr (Snd t) (Snd t').
Derive Signature for reduce_congr.
Ltac find_empty :=
match goal with
[ H : _ |- _ ] => solve [ depelim H ]
end.
Lemma preserves_red1 Γ t τ : Γ |-- t : τ → forall u, t --> u → Γ |-- u : τ.
Proof.
intros H; induction H; intros t' redtt'; term; try find_empty; depelim redtt'.
apply subst1 with A. now depelim H. apply H0.
now depelim H.
now depelim H.
Qed.
Lemma preserves_redpar Γ t τ : Γ |-- t : τ → forall u, reduce_congr t u → Γ |-- u : τ.
Proof.
intros H. induction H; intros t' rtt'; depelim rtt'; term; try find_empty.
depelim H1. depelim H. eapply subst1; eauto.
depelim H0; depelim H; term.
depelim H0; depelim H; term.
Qed.
Lemma subject_reduction Γ t τ : Γ |-- t : τ → forall u, t -->* u → Γ |-- u : τ.
Proof. induction 2; eauto using preserves_red1. Qed.
#[local] Hint Constructors reduce reduce_congr : term.
Lemma progress_ t τ : nil |-- t : τ → (exists t', reduce_congr t t') \/ value t.
Proof.
intros H; depind H; auto with term.
destruct IHtypes1 as [[t' tt']|vt].
left; eauto with term.
destruct IHtypes2 as [[u' uu']|vu].
left; eauto with term.
depelim H; [depelim H|depelim vt..].
left. exists ([u]t0). eauto with term.
destruct IHtypes1 as [[t' tt']|vt]; eauto with term.
destruct IHtypes2 as [[u' uu']|vu]; eauto with term.
destruct IHtypes as [[t' tt']|vt]; eauto with term.
depelim vt; depelim H;
eauto with term. depelim H.
destruct IHtypes as [[t' tt']|vt]; eauto with term.
depelim vt; depelim H;
eauto with term. depelim H.
Qed.
Reserved Notation " Γ |-- t => A " (at level 70, t, A at next level).
Reserved Notation " Γ |-- t <= A " (at level 70, t, A at next level).
Inductive atomic : type -> Prop :=
| atomic_atom a : atomic (atom a).
Derive Signature for atomic.
#[local] Hint Constructors atomic : term.
(* FIXME bug *)
Equations? atomic_dec (t : type) : { atomic t } + { ~ atomic t } :=
atomic_dec (atom a) := left (atomic_atom a) ;
atomic_dec t := right _.
Proof. all:(intro H; depelim H). Qed.
Inductive check : ctx -> term -> type -> Prop :=
| abstraction_check Γ A B t :
A :: Γ |-- t <= B ->
Γ |-- λ t <= A ---> B
| pair_intro_check Γ A B t u :
Γ |-- t <= A -> Γ |-- u <= B ->
Γ |-- << t , u >> <= (A × B)
| unit_intro_check Γ : Γ |-- Tt <= unit
| check_synth Γ t T : atomic T -> Γ |-- t => T -> Γ |-- t <= T
with synthetize : ctx -> term -> type -> Prop :=
| axiom_synth Γ i : i < length Γ ->
Γ |-- i => nth i Γ unit
| application_synth {Γ A B t u} :
Γ |-- t => A ---> B -> Γ |-- u <= A -> Γ |-- @(t, u) => B
| pair_elim_fst_synth {Γ A B t} : Γ |-- t => (A × B) -> Γ |-- Fst t => A
| pair_elim_snd_synth {Γ A B t} : Γ |-- t => (A × B) -> Γ |-- Snd t => B
where "Γ |-- i => A " := (synthetize Γ i A)
and "Γ |-- i <= A " := (check Γ i A).
Derive Signature for check synthetize.
#[local] Hint Constructors synthetize check : term.
Scheme check_mut_ind := Induction for check Sort Prop
with synthetize_mut_ind := Induction for synthetize Sort Prop.
Combined Scheme check_synthetize from check_mut_ind, synthetize_mut_ind.
Lemma synth_arrow {Γ t T} : forall A : Prop, Γ |-- λ (t) => T -> A.
Proof. intros A H. depelim H. Qed.
Lemma synth_pair {Γ t u T} : forall A : Prop, Γ |-- << t, u >> => T -> A.
Proof. intros A H. depelim H. Qed.
Lemma synth_unit {Γ T} : forall A : Prop, Γ |-- Tt => T -> A.
Proof. intros A H. depelim H. Qed.
#[local] Hint Extern 3 =>
match goal with
| H : ?Γ |-- ?t => ?T |- _ => apply (synth_arrow _ H) || apply (synth_pair _ H) || apply (synth_unit _ H)
end : term.
Lemma check_types : (forall Γ t T, Γ |-- t <= T -> Γ |-- t : T)
with synthetizes_types : (forall Γ t T, Γ |-- t => T -> Γ |-- t : T).
Proof. intros. destruct H; try econstructor; term.
intros. destruct H; try solve [ econstructor; term ].
Qed.
#[local] Hint Resolve check_types synthetizes_types : term.
Inductive normal : term -> Prop :=
| normal_unit : normal Tt
| normal_pair a b : normal a -> normal b -> normal << a, b >>
| normal_abs t : normal t -> normal (λ t)
| normal_neutral r : neutral r -> normal r
with neutral : term -> Prop :=
| neutral_var i : neutral (Var i)
| neutral_fst t : neutral t -> neutral (Fst t)
| neutral_snd t : neutral t -> neutral (Snd t)
| neutral_app t n : neutral t -> normal n -> neutral (@(t, n)).
Derive Signature for normal neutral.
#[local] Hint Constructors normal neutral : term.
Lemma check_lift_gen Δ t T (H : Δ |-- t <= T) : forall Γ Γ', Δ = Γ' @ Γ ->
forall Γ'', Γ' @ Γ'' @ Γ |-- lift (length Γ') (length Γ'') t <= T
with synthetize_lift_gen Δ t T (H : Δ |-- t => T) : forall Γ Γ', Δ = Γ' @ Γ ->
forall Γ'', Γ' @ Γ'' @ Γ |-- lift (length Γ') (length Γ'') t => T.
Proof.
destruct H; intros; simp lift.
econstructor.
change (S (length Γ')) with (length (A :: Γ')). change (A :: Γ' @ Γ'' @ Γ0) with ((A :: Γ') @ Γ'' @ Γ0).
eapply check_lift_gen; try eassumption. subst. rewrite app_comm_cons; subst; try eassumption; trivial.
econstructor; eapply check_lift_gen; eassumption.
econstructor.
econstructor. eassumption.
eapply synthetize_lift_gen; eassumption.
destruct H; intros; simp lift; try solve [econstructor; term].
clear check_lift_gen synthetize_lift_gen. subst.
generalize (nth_extend_middle unit i Γ0 Γ' Γ'').
destruct Nat.compare; intros H'; rewrite H'; simp lift; apply axiom_synth; autorewrite with list in H |- *; lia.
Qed.
Definition check_lift Γ t T Γ' (H : Γ' @ Γ |-- t <= T) :
forall Γ'', Γ' @ Γ'' @ Γ |-- lift (length Γ') (length Γ'') t <= T :=
check_lift_gen (Γ' @ Γ) _ _ H _ _ eq_refl.
Definition synthetize_lift Γ t T Γ' (H : Γ' @ Γ |-- t => T) :
forall Γ'', Γ' @ Γ'' @ Γ |-- lift (length Γ') (length Γ'') t => T :=
synthetize_lift_gen (Γ' @ Γ) _ _ H _ _ eq_refl.
Lemma check_lift1 {Γ t T A} : Γ |-- t <= T -> A :: Γ |-- lift 0 1 t <= T.
Proof. intros. apply (check_lift Γ t T [] H [A]). Qed.
Lemma synth_lift1 {Γ t T A} : Γ |-- t => T -> A :: Γ |-- lift 0 1 t => T.
Proof. intros. apply (synthetize_lift Γ t T [] H [A]). Qed.
#[local] Hint Resolve check_lift1 synth_lift1 : term.
Lemma check_lift_ctx {Γ t T Γ'} : Γ |-- t <= T -> Γ' @ Γ |-- lift 0 (length Γ') t <= T.
Proof. intros. apply (check_lift Γ t T [] H Γ'). Qed.
Lemma synth_lift_ctx {Γ t T Γ'} : Γ |-- t => T -> Γ' @ Γ |-- lift 0 (length Γ') t => T.
Proof. intros. apply (synthetize_lift Γ t T [] H Γ'). Qed.
#[local] Hint Resolve check_lift_ctx synth_lift_ctx : term.
Equations η (a : type) (t : term) : term :=
η (atom _) t := t ;
η (product a b) t := << η a (Fst t), η b (Snd t) >> ;
η (arrow a b) t := (Lambda (η b @(lift 0 1 t, η a 0)))%term ;
η unit t := Tt.
Lemma checks_arrow Γ t A B : Γ |-- t <= A ---> B → ∃ t', t = λ t' ∧ A :: Γ |-- t' <= B.
Proof. intros H; inversion H; subst.
exists t0; term.
inversion H0.
Qed.
Lemma normal_lift {t k n} : normal t → normal (lift k n t)
with neutral_lift {t k n} : neutral t -> neutral (lift k n t).
Proof. destruct 1; simp lift; constructor; term.
destruct 1; simp lift; try (constructor; term).
destruct Nat.compare; term.
Qed.
#[local] Hint Resolve normal_lift neutral_lift : term.
Lemma check_normal {Γ t T} : Γ |-- t <= T -> normal t
with synth_neutral {Γ t T} : Γ |-- t => T -> neutral t.
Proof. destruct 1; constructor; term. destruct 1; constructor; term. Qed.
#[local] Hint Resolve check_normal synth_neutral : term.
Lemma eta_expand Γ t A : neutral t → Γ |-- t => A -> Γ |-- η A t <= A.
Proof. revert Γ t; induction A; intros; simp η; constructor; term.
assert(0 < length (A1 :: Γ)) by (simpl; lia).
specialize (IHA1 (A1 :: Γ) 0 (neutral_var _) (axiom_synth (A1 :: Γ) 0 H1)).
apply (IHA2 (A1 :: Γ) @(lift 0 1 t, η A1 0)); term.
Qed.
Lemma η_normal : forall Γ A t, neutral t -> Γ |-- t => A -> normal (η A t).
Proof. intros. now apply eta_expand in H0; term. Qed.
(** Going to use the subterm order *)
Require Import Arith Wf_nat.
#[export] Instance wf_nat : Classes.WellFounded lt := lt_wf.
#[local] Hint Constructors Subterm.lexprod : subterm_relation.
Derive Signature for Acc.
Notation lexicographic R S := (Subterm.lexprod _ _ R S).
Definition her_order : relation (type * term * term) :=
lexicographic (lexicographic type_subterm term_subterm) term_subterm.
#[local] Hint Unfold her_order : subterm_relation.
Import Program.Tactics.
Local Obligation Tactic := program_simpl.
Arguments exist [A] [P].
Definition hereditary_type (t : type * term * term) :=
(term * option { u : type | u = (fst (fst t)) \/ type_subterm u (fst (fst t)) })%type.
Inductive IsLambda {t} : hereditary_type t -> Set :=
| isLambda abs a b prf : IsLambda (Lambda abs, Some (exist (arrow a b) prf)).
Equations is_lambda {t} (h : hereditary_type t) : IsLambda h + term :=
is_lambda (pair (Lambda abs) (Some (exist (arrow a b) prf))) := inl (isLambda abs a b prf) ;
is_lambda (pair t' _) := inr t'.
Arguments is_lambda : simpl never.
Lemma is_lambda_inr {t} (h : hereditary_type t) : forall t', is_lambda h = inr t' -> fst h = t'.
Proof.
let elim := constr:(fun_elim (f:=@is_lambda)) in apply elim; simpl; intros; try congruence.
Qed.
Inductive IsPair {t} : hereditary_type t -> Set :=
| isPair u v a b prf : IsPair (Pair u v, Some (exist (product a b) prf)).
Equations is_pair {t} (h : hereditary_type t) : IsPair h + term :=
is_pair (pair (Pair u v) (Some (exist (product a b) prf))) := inl (isPair u v a b prf) ;
is_pair (pair t' _) := inr t'.
Arguments is_pair : simpl never.
Lemma is_pair_inr {t} (h : hereditary_type t) : forall t', is_pair h = inr t' -> fst h = t'.
Proof.
let elim := constr:(fun_elim (f:=@is_pair)) in apply elim; simpl; intros; try congruence.
Qed.
Lemma nth_extend_right {A} (a : A) n (l l' : list A) : n < length l ->
nth n l a = nth n (l @ l') a.
Proof. revert n l'. induction l; simpl; intros; auto. depelim H. destruct n; auto.
apply IHl. auto with arith.
Qed.
Definition her_type (t : type * term * term) :=
let u' := fst (fst t) in
{ u : type | u = u' \/ type_subterm u u' }.
#[local] Remove Hints t_step : subterm_relation.
#[local] Remove Hints Subterm.clos_trans_stepr : subterm_relation.
Ltac apply_step :=
match goal with
|- clos_trans ?A ?R ?x ?y => not_evar y; eapply t_step
end.
#[local] Hint Extern 30 (clos_trans _ _ _ _) => apply_step : subterm_relation.
Lemma clos_trans_inv {A} R (x y z : A) :
clos_trans A R y z → clos_trans A R x y → clos_trans A R x z.
Proof. eauto using t_trans. Qed.
Ltac apply_transitivity :=
match goal with
|- clos_trans ?A ?R ?x ?y =>
not_evar x; not_evar y; eapply clos_trans_inv
end.
#[local] Hint Extern 31 (clos_trans _ _ _ _) => apply_transitivity : subterm_relation.
Equations? hereditary_subst (t : type * term * term) (k : nat) :
term * option (her_type t)
by wf t her_order :=
hereditary_subst (pair (pair A a) t) k with t := {
| Var i with Nat.compare i k := {
| Eq := (lift 0 k a, Some (exist A _)) ;
| Lt := (Var i, None) ;
| Gt := (Var (pred i), None) } ;
| Lambda t' := (Lambda (fst (hereditary_subst (A, a, t') (S k))), None) ;
| App f arg with hereditary_subst (A, a, f) k := {
| p with is_lambda p := {
| inl (isLambda f' A' B' prf) :=
let (f'', y) := hereditary_subst (A', fst (hereditary_subst (A, a, arg) k), f') 0 in
(f'', Some (exist B' _)) ;
| inr f' := (@(f', fst (hereditary_subst (A, a, arg) k)), None) } } ;
| Pair i j :=
(<< fst (hereditary_subst (A, a, i) k), fst (hereditary_subst (A, a, j) k) >>, None) ;
| Fst t' with hereditary_subst (A, a, t') k := {
| p with is_pair p := {
| inl (isPair u v a' b' prf) := (u, Some (exist a' _)) ;
| inr p' := (Fst p', None) } } ;
| Snd t' with hereditary_subst (A, a, t') k := {
| p with is_pair p := {
| inl (isPair u v a' b' prf) := (v, Some (exist b' _)) ;
| inr p' := (Snd p', None) } } ;
| Tt := (Tt, None) }.
Proof.
all:(try match goal with |- her_order _ _ =>
unfold her_type in *; simpl in *; try (clear; constructor 2; do 2 constructor)
end).
1:(destruct prf; subst; eauto 10 with subterm_relation).
all:(clear -prf; simpl in *; destruct prf; subst; eauto 5 with subterm_relation).
Defined.
#[local] Hint Unfold her_type : subterm_relation.
#[local] Hint Unfold Program.Basics.const : subterm_relation.
Ltac autoh :=
unfold type_subterm in * ; try typeclasses eauto with hereditary_subst subterm_relation.
Ltac simph :=
try (rewrite_strat (innermost (hints hereditary_subst)));
autoh.
#[local] Hint Transparent type_subterm : subterm_relation.
Ltac invert_term :=
match goal with
| [ H : check _ (Lambda _) _ |- _ ] => depelim H
| [ H : check _ (Pair _ _) _ |- _ ] => depelim H
| [ H : check _ Tt _ |- _ ] => depelim H
| [ H : types _ ?t _ |- _ ] =>
match t with
| Var _ => depelim H
| Lambda _ => depelim H
| App _ _ => depelim H
| Pair _ _ => depelim H
| Fst _ => depelim H
| Snd _ => depelim H
| Tt => depelim H
end
end.
Lemma hereditary_subst_type Γ Γ' t T u U : Γ |-- u : U -> Γ' @ (U :: Γ) |-- t : T ->
let (t', o) := hereditary_subst (U, u, t) (length Γ') in
(Γ' @ Γ |-- t' : T /\ (forall ty prf, o = Some (exist ty prf) -> ty = T)).
Proof.
intros.
funelim (hereditary_subst (U, u, t) (length Γ')) Heqcall; cbn in Heqcall |- *;
DepElim.simpl_dep_elim; subst;
try (split; [ (intros; try discriminate) | solve [ intros; discriminate ] ]);
DepElim.simplify_dep_elim.
invert_term. simpl in *. apply abstraction.
specialize (H Γ (A0 :: Γ')). simpl in H. eqns_specialize_eqs H.
simpl in H.
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
specialize (H _ H0 H1).
apply H; auto.
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
depelim H2. constructor. now apply H. now apply H0.
depelim H0. term.
(* Var *) simpl.
apply Nat.compare_eq in Heq; subst.
depelim H0.
rewrite !nth_length. split. term. intros.
noconf H1. auto.
(* Lt *)
apply Nat.compare_lt_iff in Heq. depelim H0.
replace (nth i (Γ' @ (_ :: Γ)) unit) with (nth i (Γ' @ Γ) unit).
constructor. rewrite app_length. auto with arith.
now do 2 rewrite <- nth_extend_right by auto.
(* Gt *)
pose (substitutive _ _ _ _ _ _ H0 H).
simp subst in t. rewrite Heq in t. simp subst in t.
(* App *)
simpl in *.
- on_call (hereditary_subst (A, a, arg)) ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in * ).
dependent elimination H2 as [application _ U T f arg tyfn tyu].
specialize (H _ _ H1 tyu).
specialize (Hind _ _ H1 tyfn). cbn in Heqcall. rewrite Heq0 in Hind.
destruct Hind as [Ht' Ht''].
dependent elimination Ht' as [abstraction _ U T abs tyabs].
eqns_specialize_eqs Ht''. noconf Ht''.
destruct H as [Ht tty].
specialize (H0 _ [] _ _ _ _ Ht tyabs eq_refl Heqhsubst0). cbn in H0.
rewrite <- Heqhsubst0 in H0.
destruct H0 as [H0 H5].
split; auto.
intros ty prf0 Heq'.
noconf Heq'. auto.
(* App no redex *)
- apply is_lambda_inr in Heq. revert Heq.
intros <-. depelim H1.
specialize (H _ _ H0 H1_0).
specialize (Hind _ _ H0 H1_).
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in * ).
on_call (hereditary_subst (A, a, arg)) ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in * ).
destruct H, Hind. econstructor; eauto.
(* Fst redex *)
- simpl in *.
depelim H0. specialize (Hind _ _ H H0).
cbn in Heqcall.
rewrite Heq0 in Hind.
destruct Hind. depelim H1. intuition auto.
eqns_specialize_eqs H2. noconf H2.
now noconf H1.
(* Fst no redex *)
- apply is_pair_inr in Heq. revert Heq.
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in * ).
depelim H0. intros <-.
specialize (Hind _ _ H H0); eauto.
destruct Hind. now apply pair_elim_fst with B.
(* Snd redex *)
- simpl. depelim H0. specialize (Hind _ _ H H0).
rewrite Heq0 in Hind.
destruct Hind. depelim H1. intuition auto.
eqns_specialize_eqs H2. noconf H2.
now noconf H1.
(* Snd no redex *)
- apply is_pair_inr in Heq. revert Heq.
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in * ).
intros Ht2; subst t. simpl in *. depelim H0.
specialize (Hind _ _ H H0); eauto. now apply pair_elim_snd with A0.
Qed.
Print Assumptions hereditary_subst_type.
Import Program.Basics.
#[export] Instance: subrelation eq (flip impl).
Proof. reduce. subst; auto. Qed.
Lemma nth_pred Γ' Γ U n : n > length Γ' -> nth (pred n) (Γ' @ Γ) unit = nth n (Γ' @ (U :: Γ)) unit.
Proof.
revert_until Γ'. induction Γ'; intros.
destruct n; auto. depelim H.
destruct n; auto. simpl pred. simpl.
rewrite <- IHΓ'. destruct n; auto. simpl in H. depelim H. depelim H.
simpl in *; lia.
Qed.
Lemma hereditary_subst_subst U u t Γ' :
(forall Γ T, Γ |-- u <= U ->
match hereditary_subst (U, u, t) (length Γ') with
| (t', Some (exist ty _)) =>
((Γ' @ (U :: Γ) |-- t <= T -> Γ' @ Γ |-- t' <= T /\ ty = T) /\
(Γ' @ (U :: Γ) |-- t => T -> Γ' @ Γ |-- t' <= T /\ ty = T))
| (t', None) =>
(Γ' @ (U :: Γ) |-- t <= T -> Γ' @ Γ |-- t' <= T) /\
(Γ' @ (U :: Γ) |-- t => T -> Γ' @ Γ |-- t' => T)
end).
Proof.
funelim (hereditary_subst (U, u, t) (length Γ')); simpl in *.
let Hind := fresh "Hind" in rename H into Hind; intros ?? Hu.
simpl. simpl in *.
(** Lambda *)
- cbn in *.
on_call hereditary_subst
ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
split; intros Hsyn; [| elim (synth_arrow False Hsyn)].
invert_term. constructor.
specialize (Hind _ _ _ (A0 :: Γ') eq_refl). simpl in *.
specialize (Hind Heqhsubst _ B Hu).
rewrite <- Heqhsubst in Hind.
destruct o as [[ty prf]|], Hind as [Hind0 Hind1].
apply Hind0; eauto. eauto.
elim (synth_arrow False H0).
(** Pairs *)
- do 2 on_call hereditary_subst
ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
split; intros Hsyn; [|elim (synth_pair False Hsyn)].
invert_term.
specialize (H0 _ B H1). specialize (H _ A0 H1).
destruct o as [[ty prf]|], o0 as [[ty' prf']|], H, H0;
destruct_conjs; constructor; eauto.
now apply H. now apply H0. now apply H. now apply H0.
elim (synth_pair False H3).
(* Unit *)
- split; intros Hsyn; [|elim (synth_unit False Hsyn)].
depelim Hsyn. term.
elim (synth_unit False H1).
(* Var: eq *)
- apply Nat.compare_eq in Heq; subst i.
split; intros Hsyn; depelim Hsyn; rewrite ?nth_length.
depelim H1; rewrite !nth_length.
now split; term. split; term.
(* Lt *)
- apply Nat.compare_lt_iff in Heq.
split; intros Hsyn; depelim Hsyn;
[depelim H1;constructor;auto|];
(rewrite nth_app_l by lia; rewrite <- nth_app_l with (l':=Γ) by lia;
constructor; rewrite app_length; auto with arith).
(* Gt *)
- apply Nat.compare_gt_iff in Heq.
split; intros Hsyn; depelim Hsyn.
depelim H1. constructor. auto.
replace (nth i (Γ' @ (A :: Γ)) unit) with (nth (pred i) (Γ' @ Γ) unit).
constructor. rewrite app_length in *. simpl in H1. lia.
now apply nth_pred.
replace (nth _ (Γ' @ (_ :: _)) unit) with (nth (pred i) (Γ' @ Γ) unit).
constructor. rewrite app_length in *. simpl in H0. lia.
now apply nth_pred.
(* App *)
- cbn. on_call (hereditary_subst (A,a,arg))
ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
specialize (H0 _ _ _ [] eq_refl).
rewrite Heq0 in Hind.
revert H0.
on_call hereditary_subst
ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
intros.
(* Redex *)
assert((Γ' @ (A :: Γ) |-- @(f, arg) => T → Γ' @ Γ |-- t0 <= T ∧ B' = T)).
intros Ht; depelim Ht.
destruct (Hind Γ (A0 ---> T) H1).
specialize (H _ A' H1).
destruct (H4 Ht). noconf H6.
depelim H5. split; auto.
destruct o; try destruct h; destruct H.
destruct (H H2). subst x.
specialize (H0 Heqhsubst0 _ B' H7).
rewrite <- Heqhsubst0 in H0.
destruct o0 as [[ty typrf]|]; destruct H0 as [Hcheck Hinf].
now apply Hcheck. now apply Hcheck.
specialize (H0 Heqhsubst0 _ B' (H H2)).
rewrite <- Heqhsubst0 in H0.
destruct o0 as [[ty typrf]|]; destruct H0 as [Hcheck Hinf].
now apply Hcheck. now apply Hcheck.
split; auto.
depelim H6.
split; eauto.
intros Ht3u; apply H2.
now depelim Ht3u.
(* No redex *)
- intros Γ T Hu.
assert(Γ' @ (A :: Γ) |-- @( f, arg) => T
→ Γ' @ Γ |-- @( f', fst (hereditary_subst (A, a, arg) (length Γ'))) => T).
intros Ht; depelim Ht.
on_call hereditary_subst
ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
revert Heq.
on_call hereditary_subst
ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
intros.
pose (Hind _ (A0 ---> T) Hu).
destruct o0 as [[ty prf']|].
+ destruct y as [Hind' Hind''].
specialize (Hind'' Ht). destruct Hind''; subst ty.
specialize (H _ A0 Hu).
destruct o as [[ty' prf'']|].
++ destruct H as [Hind0 Hind0'].
specialize (Hind0 H0). destruct Hind0. subst ty'.
eapply application_synth; eauto. simpl in *.
depelim H1. simp is_lambda in Heq. noconf Heq.
depelim H1.
++ depelim H1. simp is_lambda in Heq. noconf Heq. depelim H1.
+ clear y. specialize (H _ A0 Hu).
destruct (Hind _ (A0 ---> T) Hu).
apply is_lambda_inr in Heq. cbn in Heq; subst t0. simpl.
destruct o as [[ty prf]|]; destruct H as [Hindt0 Hindt0'].
eapply application_synth; eauto.
now apply Hindt0.
eapply application_synth; eauto.
+ split; auto. intros H2.
depelim H2.
constructor; auto.
(* Pair *)
- simpl in Heq0. autorewrite with is_pair in Heq. simpl in prf.
intros Γ T Hu.
assert( (Γ' @ (A :: Γ) |-- Fst t' => T → Γ' @ Γ |-- u <= T ∧ a' = T)).
intros Ht; depelim Ht. specialize (Hind _ (T × B) Hu). revert Hind.
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
noconf Heq0. cbn in Heqcall.
intros [Hind Hind'].
specialize (Hind' Ht). destruct Hind' as [H0 H1]. noconf H1.
depelim H0. split; auto.
depelim H0.
split; auto.
intros H1. depelim H1. intuition.
- intros Γ T Hu.
assert (Γ' @ (A :: Γ) |-- Fst t' => T → Γ' @ Γ |-- Fst p' => T).
intros Ht; depelim Ht.
specialize (Hind _ (T × B) Hu). revert Hind.
on_call hereditary_subst ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
destruct o as [[ty prf]|]. intros [Hind Hind'].
destruct (Hind' Ht). subst ty.
depelim H. simp is_pair in Heq. discriminate.
depelim H.
apply is_pair_inr in Heq. simpl in Heq ; subst p'.
intros [Hind Hind']. eapply pair_elim_fst_synth. now apply Hind'.
split; auto. intros H2. depelim H2. intuition auto with term.
(* Snd *)
- intros Γ T Hu.
assert((Γ' @ (A :: Γ) |-- Snd t' => T → Γ' @ Γ |-- v <= T ∧ b' = T)).
intros Ht; depelim Ht. specialize (Hind _ (A0 × T) Hu). revert Hind.
on_call hereditary_subst
ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
noconf Heq0.
intros [Hind Hind'].
specialize (Hind' Ht). destruct Hind' as [H0 H1]. noconf H1.
depelim H0. split; auto. depelim H0.
split; auto.
intros H1. depelim H1. intuition auto with term.
- intros Γ T Hu.
assert (Γ' @ (A :: Γ) |-- Snd t' => T → Γ' @ Γ |-- Snd p' => T).
intros Ht; depelim Ht.
specialize (Hind _ (A0 × T) Hu). revert Hind.
on_call hereditary_subst
ltac:(fun c => remember c as hsubst; destruct hsubst; simpl in *).
destruct o as [[ty prf]|]. intros [Hind Hind'].
destruct (Hind' Ht). subst ty.
depelim H. simp is_pair in Heq. discriminate.
depelim H.
intros [Hind Hind'].
apply is_pair_inr in Heq. subst p'. simpl in *.
specialize (Hind' Ht). econstructor; eauto.
split; auto. intros H1. depelim H1. term.
Qed.
Print Assumptions hereditary_subst_subst.
Lemma check_liftn {Γ Γ' t T} : Γ |-- t <= T -> Γ' @ Γ |-- lift 0 (length Γ') t <= T.
Proof. intros. apply (check_lift Γ t T [] H Γ'). Qed.
Lemma synth_liftn {Γ Γ' t T} : Γ |-- t => T -> Γ' @ Γ |-- lift 0 (length Γ') t => T.
Proof. intros. apply (synthetize_lift Γ t T [] H Γ'). Qed.
#[local] Hint Resolve check_liftn synth_liftn : term.
(* Write normalization function *)
Lemma types_normalizes Γ t T : Γ |-- t : T → ∃ u, Γ |-- u <= T.
Proof. induction 1. (* eta-exp *)
exists (η (nth i Γ unit) i).
apply (eta_expand Γ i (nth i Γ unit) (neutral_var _)); term.
destruct IHtypes as [t' tt'].
exists (λ t'); term.
destruct IHtypes1 as [t' tt'].
destruct IHtypes2 as [u' uu'].
(* Hereditary substitution *)
apply checks_arrow in tt'. destruct tt' as [t'' [t't'' t'B]]. subst.
generalize (hereditary_subst_subst _ _ t'' [] Γ B uu').
destruct_call hereditary_subst. destruct o. destruct h.
simpl in *. intros. destruct H1. exists t0; intuition.
simpl in *. intros. destruct H1. exists t0; intuition.
(* Unit *)
exists Tt; term.
(* Pair *)
destruct IHtypes1 as [t' tt'].
destruct IHtypes2 as [u' uu'].
exists << t' , u' >>. term.
(* Fst *)
destruct IHtypes as [t' tt'].
depelim tt'. exists t0; term.
depelim H0.
(* Snd *)
destruct IHtypes as [t' tt'].
depelim tt'. exists u; term.
depelim H0.
Qed.
Print Assumptions types_normalizes.
|