1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
(* begin hide *)
(**********************************************************************)
(* Equations *)
(* Copyright (c) 2009-2021 Matthieu Sozeau <matthieu.sozeau@inria.fr> *)
(**********************************************************************)
(* This file is distributed under the terms of the *)
(* GNU Lesser General Public License Version 2.1 *)
(**********************************************************************)
(* end hide *)
(** * Definitional interpreter for STLC extended with references
This is a port of the first part of "Intrinsically-Typed Definitional
Interpreters for Imperative Languages", Poulsen, Rouvoet, Tolmach,
Krebbers and Visser. POPL'18.
It uses well-typed and well-scoped syntax and a monad indexed over an
indexed set of stores to define an interpreter for an imperative
programming language.
This showcases the use of dependent pattern-matching and
pattern-matching lambdas in Equations. We implement a variant where
store extension is resolved using type class resolution as well as the
dependent-passing style version. *)
Require Import Program.Basics Program.Tactics.
Require Import Coq.Vectors.VectorDef.
Require Import List.
Import ListNotations.
Require Import Utf8.
From Equations Require Import Equations.
Set Warnings "-notation-overridden".
(** The Σ notation of equations clashes with the Σ's used below,
so we redefine the Σ notation using ∃ instead.
*)
Notation "'∃' x .. y , P" := (sigma (fun x => .. (sigma (fun y => P)) ..))
: type_scope.
Notation "( x , .. , y , z )" :=
(@sigmaI _ _ x .. (@sigmaI _ _ y z) ..)
(right associativity, at level 0,
format "( x , .. , y , z )") : equations_scope.
Notation " x .1 " := (pr1 x) : equations_scope.
Notation " x .2 " := (pr2 x) : equations_scope.
Local Open Scope equations_scope.
Set Equations Transparent.
(** [t] is just [Vector.t] here. *)
Derive Signature NoConfusion NoConfusionHom for t.
(** Types include unit, bool, function types and references *)
Inductive Ty : Set :=
| unit : Ty
| bool : Ty
| arrow (t u : Ty) : Ty
| ref : Ty -> Ty.
Derive NoConfusion for Ty.
Infix "⇒" := arrow (at level 80).
Definition Ctx := list Ty.
Reserved Notation " x ∈ s " (at level 70, s at level 10).
#[universes(template)]
Inductive In {A} (x : A) : list A -> Type :=
| here {xs} : x ∈ (x :: xs)
| there {y xs} : x ∈ xs -> x ∈ (y :: xs)
where " x ∈ s " := (In x s).
Derive Signature NoConfusion for In.
Arguments here {A x xs}.
Arguments there {A x y xs} _.
Inductive Expr : Ctx -> Ty -> Set :=
| tt {Γ} : Expr Γ unit
| true {Γ} : Expr Γ bool
| false {Γ} : Expr Γ bool
| ite {Γ t} : Expr Γ bool -> Expr Γ t -> Expr Γ t -> Expr Γ t
| var {Γ} {t} : In t Γ -> Expr Γ t
| abs {Γ} {t u} : Expr (t :: Γ) u -> Expr Γ (t ⇒ u)
| app {Γ} {t u} : Expr Γ (t ⇒ u) -> Expr Γ t -> Expr Γ u
| new {Γ t} : Expr Γ t -> Expr Γ (ref t)
| deref {Γ t} : Expr Γ (ref t) -> Expr Γ t
| assign {Γ t} : Expr Γ (ref t) -> Expr Γ t -> Expr Γ unit.
(** We derive both [NoConfusion] and [NoConfusionHom] principles here, the later
allows to simplify pattern-matching problems on [Expr] which would otherwise
require K. It relies on an inversion analysis of every constructor, showing
that the context and type indexes in the conclusions of every constructor
are forced arguments. *)
Derive Signature NoConfusion NoConfusionHom for Expr.
#[universes(template)]
Inductive All {A} (P : A -> Type) : list A -> Type :=
| all_nil : All P []
| all_cons {x xs} : P x -> All P xs -> All P (x :: xs).
Arguments all_nil {A} {P}.
Arguments all_cons {A P x xs} _ _.
Derive Signature NoConfusion NoConfusionHom for All.
Section MapAll.
Context {A} {P Q : A -> Type} (f : forall x, P x -> Q x).
Equations map_all {l : list A} : All P l -> All Q l :=
| all_nil := all_nil
| all_cons p ps := all_cons (f _ p) (map_all ps).
Equations map_all_in {l : list A} (f : forall x, x ∈ l -> P x -> Q x) : All P l -> All Q l :=
| f, all_nil := all_nil
| f, all_cons p ps := all_cons (f _ here p) (map_all_in (fun x inl => f x (there inl)) ps).
End MapAll.
Definition StoreTy := list Ty.
Inductive Val : Ty -> StoreTy -> Set :=
| val_unit {Σ} : Val unit Σ
| val_true {Σ} : Val bool Σ
| val_false {Σ} : Val bool Σ
| val_closure {Σ Γ t u} : Expr (t :: Γ) u -> All (fun t => Val t Σ) Γ -> Val (t ⇒ u) Σ
| val_loc {Σ t} : t ∈ Σ -> Val (ref t) Σ.
Derive Signature NoConfusion NoConfusionHom for Val.
Definition Env (Γ : Ctx) (Σ : StoreTy) : Set := All (fun t => Val t Σ) Γ.
Definition Store (Σ : StoreTy) := All (fun t => Val t Σ) Σ.
Equations lookup : forall {A P xs} {x : A}, All P xs -> x ∈ xs -> P x :=
lookup (all_cons p _) here := p;
lookup (all_cons _ ps) (there ins) := lookup ps ins.
Equations update : forall {A P xs} {x : A}, All P xs -> x ∈ xs -> P x -> All P xs :=
update (all_cons p ps) here p' := all_cons p' ps;
update (all_cons p ps) (there ins) p' := all_cons p (update ps ins p').
Equations lookup_store {Σ t} : t ∈ Σ -> Store Σ -> Val t Σ :=
lookup_store l σ := lookup σ l.
Equations update_store {Σ t} : t ∈ Σ -> Val t Σ -> Store Σ -> Store Σ :=
update_store l v σ := update σ l v.
Definition store_incl (Σ Σ' : StoreTy) := sigma (fun Σ'' => Σ' = Σ'' ++ Σ).
Infix "⊑" := store_incl (at level 10).
Equations app_assoc {A} (x y z : list A) : x ++ y ++ z = (x ++ y) ++ z :=
app_assoc nil y z := eq_refl;
app_assoc (cons x xs) y z := f_equal (cons x) (app_assoc xs y z).
Section StoreIncl.
Equations pres_in {Σ Σ'} (incl : Σ ⊑ Σ') t (p : t ∈ Σ) : t ∈ Σ' :=
pres_in (Σ'', eq_refl) t p := aux Σ''
where aux Σ'' : t ∈ (Σ'' ++ Σ) :=
aux nil := p;
aux (cons ty tys) := there (aux tys).
Equations refl_incl {Σ} : Σ ⊑ Σ := refl_incl := ([], eq_refl).
Equations trans_incl {Σ Σ' Σ''} (incl : Σ ⊑ Σ') (incl' : Σ' ⊑ Σ'') : Σ ⊑ Σ'' :=
trans_incl (p, eq_refl) (q, eq_refl) := (q ++ p, app_assoc _ _ _).
Equations store_ext_incl {Σ t} : Σ ⊑ (t :: Σ) :=
store_ext_incl := ([t], eq_refl).
Context {Σ Σ'} (incl : Σ ⊑ Σ').
Equations weaken_val {t} (v : Val t Σ) : Val t Σ' := {
weaken_val (@val_unit ?(Σ)) := val_unit;
weaken_val val_true := val_true;
weaken_val val_false := val_false;
weaken_val (val_closure b e) := val_closure b (weaken_vals e);
weaken_val (val_loc H) := val_loc (pres_in incl _ H) }
where weaken_vals {l} (a : All (fun t => Val t Σ) l) : All (fun t => Val t Σ') l :=
weaken_vals all_nil := all_nil;
weaken_vals (all_cons p ps) := all_cons (weaken_val p) (weaken_vals ps).
Equations weakenv_vals {l} a : @weaken_vals l a = map_all (fun t v => weaken_val v) a :=
weakenv_vals all_nil := eq_refl;
weakenv_vals (all_cons p ps) := f_equal (all_cons (weaken_val p)) (weakenv_vals ps).
Definition weaken_env {Γ} (v : Env Γ Σ) : Env Γ Σ' := map_all (@weaken_val) v.
End StoreIncl.
Infix "⊚" := trans_incl (at level 10).
Equations M : forall (Γ : Ctx) (P : StoreTy -> Type) (Σ : StoreTy), Type :=
M Γ P Σ := forall (E : Env Γ Σ) (μ : Store Σ), option (∃ Σ' (μ' : Store Σ') (_ : P Σ'), Σ ⊑ Σ').
Equations bind {Σ Γ} {P Q : StoreTy -> Type} (f : M Γ P Σ) (g : ∀ {Σ'}, P Σ' -> M Γ Q Σ') : M Γ Q Σ :=
bind f g E μ with f E μ :=
| None := None
| Some (Σ', μ', x, ext) with g _ x (weaken_env ext E) μ' :=
| None := None;
| Some (_, μ'', y, ext') := Some (_, μ'', y, ext ⊚ ext').
Infix ">>=" := bind (at level 20, left associativity).
Definition transp_op {Γ Σ P} (x : Store Σ -> P Σ) : M Γ P Σ :=
fun E μ => Some (Σ, μ, x μ, refl_incl).
Equations ret : ∀ {Γ Σ P}, P Σ → M Γ P Σ :=
ret (Σ:=Σ) a E μ := Some (Σ, μ, a, refl_incl).
Equations getEnv : ∀ {Γ Σ}, M Γ (Env Γ) Σ :=
getEnv (Σ:=Σ) E μ := Some (Σ, μ, E, refl_incl).
Equations usingEnv {Γ Γ' Σ P} (E : Env Γ Σ) (m : M Γ P Σ) : M Γ' P Σ :=
usingEnv E m E' μ := m E μ.
Equations timeout : ∀ {Γ Σ P}, M Γ P Σ :=
timeout _ _ := None.
Section StoreOps.
Context {Σ : StoreTy} {Γ : Ctx} {t : Ty}.
Equations storeM (v : Val t Σ) : M Γ (Val (ref t)) Σ :=
storeM v E μ :=
let v : Val t (t :: Σ) := weaken_val store_ext_incl v in
let μ' := map_all (fun t' => weaken_val store_ext_incl) μ in
Some (t :: Σ, all_cons v μ', val_loc here, store_ext_incl).
Equations derefM (l : t ∈ Σ) : M Γ (Val t) Σ :=
derefM l := transp_op (lookup_store l).
Equations updateM (l : t ∈ Σ) (v : Val t Σ) : M Γ (Val unit) Σ :=
updateM l v E μ := Some (Σ, update_store l v μ, val_unit, refl_incl).
End StoreOps.
Reserved Notation "P ⊛ Q" (at level 10).
Inductive storepred_prod (P Q : StoreTy -> Type) : StoreTy -> Type :=
| storepred_pair {Σ} : P Σ -> Q Σ -> (P ⊛ Q) Σ
where "P ⊛ Q" := (storepred_prod P Q).
Arguments storepred_pair {P Q Σ}.
Class Weakenable (P : StoreTy -> Type) : Type :=
weaken : forall {Σ Σ'}, Σ ⊑ Σ' -> P Σ -> P Σ'.
#[local] Instance val_weaken {t} : Weakenable (Val t) := fun Σ Σ' incl => weaken_val incl.
#[local] Instance env_weaken {Γ} : Weakenable (Env Γ) := fun Σ Σ' incl => weaken_env incl.
#[local] Instance loc_weaken (t : Ty) : Weakenable (In t) := fun Σ Σ' incl => pres_in incl t.
Class IsIncludedOnce (Σ Σ' : StoreTy) : Type := is_included_once : Σ ⊑ Σ'.
#[local] Hint Mode IsIncludedOnce + + : typeclass_instances.
#[local] Instance IsIncludedOnce_ext {T} Σ : IsIncludedOnce Σ (T :: Σ) := store_ext_incl.
Class IsIncluded (Σ Σ' : StoreTy) : Type := is_included : Σ ⊑ Σ'.
#[local] Hint Mode IsIncluded + + : typeclass_instances.
#[local] Instance IsIncluded_refl Σ : IsIncluded Σ Σ := refl_incl.
#[local] Instance IsIncluded_trans Σ Σ' Σ'' : IsIncludedOnce Σ Σ' -> IsIncluded Σ' Σ'' -> IsIncluded Σ Σ'' :=
fun H H' => trans_incl H H'.
Equations wk {Σ Σ' P} {W : Weakenable P} (p : P Σ) {incl : IsIncluded Σ Σ'} : P Σ' :=
wk p := weaken incl p.
Equations bind_ext {Σ Γ} {P Q : StoreTy -> Type} (f : M Γ P Σ) (g : ∀ {Σ'} `{IsIncluded Σ Σ'}, P Σ' -> M Γ Q Σ') : M Γ Q Σ :=
bind_ext f g E μ with f E μ :=
{ | None := None;
| Some (Σ', μ', x, ext) with g _ ext x (weaken_env ext E) μ' :=
{ | None := None;
| Some (_, μ'', y, ext') := Some (_, μ'', y, ext ⊚ ext') } }.
Infix ">>='" := bind_ext (at level 20, left associativity).
Equations eval_ext (n : nat) {Γ Σ t} (e : Expr Γ t) : M Γ (Val t) Σ :=
| 0, _ := timeout
| S k, tt := ret val_unit
| S k, true := ret val_true
| S k, false := ret val_false
| S k, ite b tr fa := eval_ext k b >>=' λ{ | _ | ext | val_true => eval_ext k tr;
| _ | ext | val_false => eval_ext k fa }
| S k, var x := getEnv >>=' fun {Σ ext} E => ret (lookup E x)
| S k, abs x := getEnv >>=' fun {Σ ext} E => ret (val_closure x E)
| S k, @app Γ A B e1 e2 :=
eval_ext k e1 >>=' λ{ | _ | ext | val_closure e' E =>
eval_ext k e2 >>=' fun {Σ' ext'} v => usingEnv (all_cons v (wk (P:=Env _) E)) (eval_ext k e')}
| S k, new e := eval_ext k e >>=' fun {Σ ext} v => storeM v
| S k, deref l := eval_ext k l >>=' λ{ | _ | ext | val_loc l' => derefM l' }
| S k, assign l e := eval_ext k l >>=' λ{ | _ | ext | val_loc l' =>
eval_ext k e >>=' λ{ | _ | ext' | v => updateM (wk l') (wk v) }}.
Equations strength {Σ Γ} {P Q : StoreTy -> Type} {w : Weakenable Q} (m : M Γ P Σ) (q : Q Σ) : M Γ (P ⊛ Q) Σ :=
strength m q E μ with m E μ => {
| None => None
| Some (Σ', μ', p, ext) => Some (Σ', μ', storepred_pair p (weaken ext q), ext) }.
Infix "^" := strength.
(* Issue: improve pattern matching lambda to have implicit arguments implicit.
Hard because Coq does not keep the implicit status of bind's [g] argument. *)
Equations eval (n : nat) {Γ Σ t} (e : Expr Γ t) : M Γ (Val t) Σ :=
eval 0 _ := timeout;
eval (S k) tt := ret val_unit;
eval (S k) true := ret val_true;
eval (S k) false := ret val_false;
eval (S k) (ite b tr fa) := eval k b >>= λ{ | _ | val_true => eval k tr;
| _ | val_false => eval k fa };
eval (S k) (var x) := getEnv >>= fun Σ E => ret (lookup E x);
eval (S k) (abs x) := getEnv >>= fun Σ E => ret (val_closure x E);
eval (S k) (app e1 e2) :=
eval k e1 >>= λ{ | _ | val_closure e' E =>
(eval k e2 ^ E) >>= fun Σ' '(storepred_pair v E) => usingEnv (all_cons v E) (eval k e')};
eval (S k) (new e) := eval k e >>= fun Σ v => storeM v;
eval (S k) (deref l) := eval k l >>= λ{ | _ | val_loc l' => derefM l' };
eval (S k) (assign l e) := eval k l >>= λ{ | _ | val_loc l' =>
(eval k e ^ l') >>= λ{ | _ | storepred_pair v l'' => updateM l'' v }}.
Definition idu : Expr [] (unit ⇒ unit) :=
abs (var here).
Definition idapp : Expr [] unit := app idu tt.
(** All definitions are axiom-free (and actually not even dependent on a provable UIP instance), so
everything computes. *)
Eval vm_compute in eval 100 idapp all_nil all_nil.
Definition neg : Expr [] (bool ⇒ bool) :=
abs (ite (var here) false true).
Definition letref {t u} (v : Expr [] t) (b : Expr [ref t] u) : Expr [] u :=
app (abs b) (new v).
Obligation Tactic := idtac.
Equations in_app_weaken {Σ Σ' Σ'' : StoreTy} {t} (p : t ∈ (Σ ++ Σ'')) : t ∈ (Σ ++ Σ' ++ Σ'') by struct Σ :=
in_app_weaken (Σ:=nil) p := pres_in (Σ', eq_refl) t p;
in_app_weaken (Σ:=cons _ tys) here := here;
in_app_weaken (Σ:=cons _ tys) (there p) := there (in_app_weaken p).
Equations pres_in_prefix {Σ Σ' Σ''} (incl : Σ' ⊑ Σ'') {t} (p : t ∈ (Σ ++ Σ')) : t ∈ (Σ ++ Σ'') :=
pres_in_prefix (Σ'', eq_refl) p := in_app_weaken p.
(** [Equations?] enters refinement mode, which can be used to solve the case of variables in proof mode. *)
Equations? weaken_expr {Γ Γ' t u} (e1 : Expr (Γ ++ Γ') t) : Expr (Γ ++ u :: Γ') t :=
weaken_expr tt := tt;
weaken_expr true := true;
weaken_expr false := false;
weaken_expr (ite b tr fa) := ite (weaken_expr b) (weaken_expr tr) (weaken_expr fa);
weaken_expr (var (t:=ty) x) := var _;
weaken_expr (abs (t:=t) x) := abs (weaken_expr (Γ := t :: Γ) x);
weaken_expr (app e1 e2) := app (weaken_expr e1) (weaken_expr e2);
weaken_expr (new e) := new (weaken_expr e);
weaken_expr (deref l) := deref (weaken_expr l);
weaken_expr (assign l e) := assign (weaken_expr l) (weaken_expr e).
Proof.
clear weaken_expr. apply (pres_in_prefix (Σ' := Γ') ([u], eq_refl) x).
Defined.
Definition seq {Γ u} (e1 : Expr Γ unit) (e2 : Expr Γ u) : Expr Γ u :=
app (abs (weaken_expr (Γ := []) e2)) e1.
(* let x = ref true in
x := false; !x *)
Definition letupdate : Expr [] bool :=
letref true (seq (assign (var here) false) (deref (var here))).
Eval vm_compute in eval 100 letupdate all_nil all_nil.
(** [[
= Some ([bool], all_cons val_false all_nil, val_false, [bool], eq_refl)
: option (∃ (Σ' : StoreTy) (_ : Store Σ') (_ : Val bool Σ'), [] ⊑ Σ')
]]
*)
|