1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
Require Import Program.Basics Program.Tactics.
Require Import Equations.Equations.
Require Import Coq.Vectors.VectorDef.
Require Import List.
Import ListNotations.
Set Equations Transparent.
Derive Signature NoConfusion NoConfusionHom for t.
Inductive Ty : Set :=
| unit : Ty
| bool : Ty
| arrow (t u : Ty) : Ty
| ref : Ty -> Ty.
Derive NoConfusion for Ty.
Infix "⇒" := arrow (at level 80).
Reserved Notation " x ∈ s " (at level 70, s at level 10).
#[universes(template)]
Inductive In {A} (x : A) : list A -> Type :=
| here {xs} : x ∈ (x :: xs)
| there {y xs} : x ∈ xs -> x ∈ (y :: xs)
where " x ∈ s " := (In x s).
Derive Signature NoConfusion for In.
Arguments here {A x xs}.
Arguments there {A x y xs} _.
From Equations Require Import Fin.
Section ScopeGraphs.
Context (k : nat).
Definition Scope := fin k.
Definition Graph := Scope -> (list Ty * list Scope).
Context (g : Graph).
Definition declsOf (s : Scope) := fst (g s).
Definition edgesOf (s : Scope) := snd (g s).
Inductive sedge (s : Scope) : Scope -> Set :=
| nilp : sedge s s
| consp {s' s''} : s' ∈ edgesOf s -> sedge s' s'' -> sedge s s''.
Notation "s ⟶ s'" := (sedge s s') (at level 20).
Inductive resolve (s : Scope) (t : Ty) :=
| path {s'} : s ⟶ s' -> t ∈ declsOf s' -> resolve s t.
Notation "s ↦ t" := (resolve s t) (at level 20).
End ScopeGraphs.
Arguments resolve {k g}.
Notation "s ↦ t" := (resolve s t) (at level 20).
Section Expr.
Context (k : nat).
Context (g : Graph k).
Inductive Expr (Γ : Scope k) : Ty -> Set :=
| tt : Expr Γ unit
| true : Expr Γ bool
| false : Expr Γ bool
| ite {t} : Expr Γ bool -> Expr Γ t -> Expr Γ t -> Expr Γ t
| var {t} : Γ ↦ t -> Expr Γ t
| abs {t u} : Expr (t :: Γ) u -> Expr Γ (t ⇒ u)
| app {t u} : Expr Γ (t ⇒ u) -> Expr Γ t -> Expr Γ u
| new {t} : Expr Γ t -> Expr Γ (ref t)
| deref {t} : Expr Γ (ref t) -> Expr Γ t
| assign {t} : Expr Γ (ref t) -> Expr Γ t -> Expr Γ unit.
Derive Signature NoConfusion NoConfusionHom for Expr.
#[universes(template)]
Inductive All {A} (P : A -> Type) : list A -> Type :=
| all_nil : All P []
| all_cons {x xs} : P x -> All P xs -> All P (x :: xs).
Arguments all_nil {A} {P}.
Arguments all_cons {A P x xs} _ _.
Derive Signature NoConfusion NoConfusionHom for All.
Section MapAll.
Context {A} {P Q : A -> Type} (f : forall x, P x -> Q x).
Equations map_all {l : list A} : All P l -> All Q l :=
map_all all_nil := all_nil;
map_all (all_cons p ps) := all_cons (f _ p) (map_all ps).
End MapAll.
Definition StoreTy := list Ty.
Inductive Val : Ty -> StoreTy -> Set :=
| val_unit {Σ} : Val unit Σ
| val_true {Σ} : Val bool Σ
| val_false {Σ} : Val bool Σ
| val_closure {Σ Γ t u} : Expr (t :: Γ) u -> All (fun t => Val t Σ) Γ -> Val (t ⇒ u) Σ
| val_loc {Σ t} : t ∈ Σ -> Val (ref t) Σ.
Derive Signature NoConfusion NoConfusionHom for Val.
Definition Env (Γ : Ctx) (Σ : StoreTy) : Set := All (fun t => Val t Σ) Γ.
Definition Store (Σ : StoreTy) := All (fun t => Val t Σ) Σ.
Equations lookup : forall {A P xs} {x : A}, All P xs -> x ∈ xs -> P x :=
lookup (all_cons p _) here := p;
lookup (all_cons _ ps) (there ins) := lookup ps ins.
Equations update : forall {A P xs} {x : A}, All P xs -> x ∈ xs -> P x -> All P xs :=
update (all_cons p ps) here p' := all_cons p' ps;
update (all_cons p ps) (there ins) p' := all_cons p (update ps ins p').
Equations lookup_store {Σ t} : t ∈ Σ -> Store Σ -> Val t Σ :=
lookup_store l σ := lookup σ l.
Equations update_store {Σ t} : t ∈ Σ -> Val t Σ -> Store Σ -> Store Σ :=
update_store l v σ := update σ l v.
Import Sigma_Notations.
Definition store_incl (Σ Σ' : StoreTy) := &{ Σ'' : _ & Σ' = Σ'' ++ Σ }.
Infix "⊑" := store_incl (at level 10).
Lemma app_assoc {A} (x y z : list A) : x ++ y ++ z = (x ++ y) ++ z.
Proof. induction x; simpl; auto.
now rewrite IHx.
Defined.
Section StoreIncl.
Context {Σ Σ' : StoreTy} (incl : Σ ⊑ Σ').
Lemma pres_in t : t ∈ Σ -> t ∈ Σ'.
Proof. destruct incl. subst. clear. induction pr1. intros. exact H.
intros H. specialize (IHpr1 H). constructor 2. apply IHpr1.
Defined.
Equations(noind) weaken_val {t} (v : Val t Σ) : Val t Σ' := {
weaken_val val_unit := val_unit;
weaken_val val_true := val_true;
weaken_val val_false := val_false;
weaken_val (val_closure b e) := val_closure b (map_all (fun t v => weaken_val v) e); (* (weaken_vals e); *)
weaken_val (val_loc H) := val_loc (pres_in _ H) }.
(* where weaken_vals {l} (a : All (fun t => Val t Σ) l) : All (fun t => Val t Σ') l by struct a := *)
(* weaken_vals all_nil := all_nil; *)
(* weaken_vals (all_cons p ps) := all_cons (weaken_val p) (weaken_vals ps). *)
Definition weaken_env {Γ} (v : Env Γ Σ) : Env Γ Σ' :=
map_all (@weaken_val) v.
Lemma refl_incl : Σ ⊑ Σ.
Proof. exists []. reflexivity. Defined.
Lemma trans_incl {Σ''} (incl' : Σ' ⊑ Σ'') : Σ ⊑ Σ''.
Proof.
destruct incl as [? ->], incl' as [? ->].
exists (pr0 ++ pr1). now rewrite app_assoc.
Defined.
Lemma store_ext_incl {t} : Σ ⊑ (t :: Σ).
Proof. now exists [t]. Defined.
End StoreIncl.
Infix "⊚" := trans_incl (at level 10).
Equations M : forall (Γ : Ctx) (P : StoreTy -> Type) (Σ : StoreTy), Type :=
M Γ P Σ := forall (E : Env Γ Σ) (μ : Store Σ), option &{ Σ' : _ & &{ _ : Store Σ' & &{ _ : P Σ' & Σ ⊑ Σ'}}}.
Require Import Utf8.
Notation "( x , .. , y , z )" := (sigmaI _ x .. (sigmaI _ y z) ..) : core_scope.
Equations bind {Σ Γ} {P Q : StoreTy -> Type} (f : M Γ P Σ) (g : ∀ {Σ'}, P Σ' -> M Γ Q Σ') : M Γ Q Σ :=
bind f g E μ with f E μ :=
{ | None := None;
| Some (Σ', μ', x, ext) with g _ x (weaken_env ext E) μ' :=
{ | None := None;
| Some (_, μ'', y, ext') := Some (_, μ'', y, ext ⊚ ext') } }.
Infix ">>=" := bind (at level 20, left associativity).
Definition transp_op {Γ Σ P} (x : Store Σ -> P Σ) : M Γ P Σ :=
fun E μ => Some (Σ, μ, x μ, refl_incl).
Equations ret : ∀ {Γ Σ P}, P Σ → M Γ P Σ :=
ret (Σ:=Σ) a E μ := Some (Σ, μ, a, refl_incl).
Equations getEnv : ∀ {Γ Σ}, M Γ (Env Γ) Σ :=
getEnv (Σ:=Σ) E μ := Some (Σ, μ, E, refl_incl).
Equations usingEnv {Γ Γ' Σ P} (E : Env Γ Σ) (m : M Γ P Σ) : M Γ' P Σ :=
usingEnv E m E' μ := m E μ.
Equations timeout : ∀ {Γ Σ P}, M Γ P Σ :=
timeout _ _ := None.
Section StoreOps.
Context {Σ : StoreTy} {Γ : Ctx} {t : Ty}.
Equations storeM (v : Val t Σ) : M Γ (Val (ref t)) Σ :=
storeM v E μ :=
let v : Val t (t :: Σ) := weaken_val store_ext_incl v in
let μ' := map_all (fun t' => weaken_val store_ext_incl) μ in
Some (t :: Σ, all_cons v μ', val_loc here, store_ext_incl).
Equations derefM (l : t ∈ Σ) : M Γ (Val t) Σ :=
derefM l := transp_op (lookup_store l).
Equations updateM (l : t ∈ Σ) (v : Val t Σ) : M Γ (Val unit) Σ :=
updateM l v E μ := Some (Σ, update_store l v μ, val_unit, refl_incl).
End StoreOps.
Reserved Notation "P ⊛ Q" (at level 10).
Inductive storepred_prod (P Q : StoreTy -> Type) : StoreTy -> Type :=
| storepred_pair {Σ} : P Σ -> Q Σ -> (P ⊛ Q) Σ
where "P ⊛ Q" := (storepred_prod P Q).
Arguments storepred_pair {P Q Σ}.
Class Weakenable (P : StoreTy -> Type) : Type :=
weaken : forall {Σ Σ'}, Σ ⊑ Σ' -> P Σ -> P Σ'.
Instance val_weaken {t} : Weakenable (Val t).
Proof. intros Σ Σ' incl. apply (weaken_val incl). Defined.
Instance env_weaken {Γ} : Weakenable (Env Γ).
Proof. intros Σ Σ' incl. apply (weaken_env incl). Defined.
Instance loc_weaken (t : Ty) : Weakenable (In t).
Proof. intros Σ Σ' incl. apply (pres_in incl). Defined.
Class IsIncludedOnce (Σ Σ' : StoreTy) : Type := is_included_once : Σ ⊑ Σ'.
Hint Mode IsIncludedOnce + + : typeclass_instances.
Instance IsIncludedOnce_ext {T} Σ : IsIncludedOnce Σ (T :: Σ).
Proof. apply store_ext_incl. Defined.
Class IsIncluded (Σ Σ' : StoreTy) : Type := is_included : Σ ⊑ Σ'.
Hint Mode IsIncluded + + : typeclass_instances.
Instance IsIncluded_refl Σ : IsIncluded Σ Σ := refl_incl.
Instance IsIncluded_trans Σ Σ' Σ'' : IsIncludedOnce Σ Σ' -> IsIncluded Σ' Σ'' -> IsIncluded Σ Σ''.
Proof. intros H H'. exact (trans_incl H H'). Defined.
Equations wk {Σ Σ' P} {W : Weakenable P} (p : P Σ) {incl : IsIncluded Σ Σ'} : P Σ' :=
wk p := weaken incl p.
Equations bind_ext {Σ Γ} {P Q : StoreTy -> Type} (f : M Γ P Σ) (g : ∀ {Σ'} `{IsIncluded Σ Σ'}, P Σ' -> M Γ Q Σ') : M Γ Q Σ :=
bind_ext f g E μ with f E μ :=
{ | None := None;
| Some (Σ', μ', x, ext) with g _ ext x (weaken_env ext E) μ' :=
{ | None := None;
| Some (_, μ'', y, ext') := Some (_, μ'', y, ext ⊚ ext') } }.
Infix ">>='" := bind_ext (at level 20, left associativity).
Equations eval_ext (n : nat) {Γ Σ t} (e : Expr Γ t) : M Γ (Val t) Σ :=
eval_ext 0 _ := timeout;
eval_ext (S k) tt := ret val_unit;
eval_ext (S k) true := ret val_true;
eval_ext (S k) false := ret val_false;
eval_ext (S k) (ite b t f) := eval_ext k b >>=' λ{ | _ | ext | val_true => eval_ext k t;
| _ | ext | val_false => eval_ext k f };
eval_ext (S k) (var x) := getEnv >>=' fun {Σ ext} E => ret (lookup E x);
eval_ext (S k) (abs x) := getEnv >>=' fun {Σ ext} E => ret (val_closure x E);
eval_ext (S k) (app (Γ:=Γ) e1 e2) :=
eval_ext k e1 >>=' λ{ | _ | ext | val_closure e' E =>
eval_ext k e2 >>=' fun {Σ' ext'} v => usingEnv (all_cons v (wk E)) (eval_ext k e')};
eval_ext (S k) (new e) := eval_ext k e >>=' fun {Σ ext} v => storeM v;
eval_ext (S k) (deref l) := eval_ext k l >>=' λ{ | _ | ext | val_loc l => derefM l };
eval_ext (S k) (assign l e) := eval_ext k l >>=' λ{ | _ | ext | val_loc l =>
eval_ext k e >>=' λ{ | _ | ext | v => updateM (wk l) (wk v) }}.
Equations strength {Σ Γ} {P Q : StoreTy -> Type} {w : Weakenable Q} (m : M Γ P Σ) (q : Q Σ) : M Γ (P ⊛ Q) Σ :=
strength m q E μ with m E μ => {
| None => None;
| Some (Σ, μ', p, ext) => Some (Σ, μ', storepred_pair p (weaken ext q), ext) }.
Infix "^" := strength.
(* TODO improve pattern matching lambda to have implicit arguments implicit.
Hard because Coq does not keep the implicit status of bind's [g] argument. *)
Equations eval (n : nat) {Γ Σ t} (e : Expr Γ t) : M Γ (Val t) Σ :=
eval 0 _ := timeout;
eval (S k) tt := ret val_unit;
eval (S k) true := ret val_true;
eval (S k) false := ret val_false;
eval (S k) (ite b t f) := eval k b >>= λ{ | _ | val_true => eval k t;
| _ | val_false => eval k f };
eval (S k) (var x) := getEnv >>= fun Σ E => ret (lookup E x);
eval (S k) (abs x) := getEnv >>= fun Σ E => ret (val_closure x E);
eval (S k) (app (Γ:=Γ) e1 e2) :=
eval k e1 >>= λ{ | _ | val_closure e' E =>
(eval k e2 ^ E) >>= fun Σ' '(storepred_pair v E) => usingEnv (all_cons v E) (eval k e')};
eval (S k) (new e) := eval k e >>= fun Σ v => storeM v;
eval (S k) (deref l) := eval k l >>= λ{ | _ | val_loc l => derefM l };
eval (S k) (assign l e) := eval k l >>= λ{ | _ | val_loc l =>
(eval k e ^ l) >>= λ{ | _ | storepred_pair v l => updateM l v }}.
Definition idu : Expr [] (unit ⇒ unit) :=
abs (var here).
Definition idapp : Expr [] unit := app idu tt.
Eval vm_compute in eval 100 idapp all_nil all_nil.
Definition neg : Expr [] (bool ⇒ bool) :=
abs (ite (var here) false true).
Definition letref {t u} (v : Expr [] t) (b : Expr [ref t] u) : Expr [] u :=
app (abs b) (new v).
Equations weaken_expr {Γ Γ' t u} (e1 : Expr (Γ ++ Γ') t) : Expr (Γ ++ u :: Γ') t :=
weaken_expr tt := tt;
weaken_expr true := true;
weaken_expr false := false;
weaken_expr (ite b t f) := ite (weaken_expr b) (weaken_expr t) (weaken_expr f);
weaken_expr (var x) := var _;
weaken_expr (abs (t:=t) x) := abs (weaken_expr (Γ := t :: Γ) x);
weaken_expr (app e1 e2) := app (weaken_expr e1) (weaken_expr e2);
weaken_expr (new e) := new (weaken_expr e);
weaken_expr (deref l) := deref (weaken_expr l);
weaken_expr (assign l e) := assign (weaken_expr l) (weaken_expr e).
Next Obligation.
clear weaken_expr.
induction Γ in Γ', u, x |- *. now apply there. simpl.
depelim x. constructor. apply there. apply IHΓ. apply x.
Defined.
Definition seq {Γ u} (e1 : Expr Γ unit) (e2 : Expr Γ u) : Expr Γ u :=
app (abs (weaken_expr (Γ := []) e2)) e1.
(* let x = ref true in
x := false; !x *)
Definition letupdate : Expr [] bool :=
letref true (seq (assign (var here) false) (deref (var here))).
Eval vm_compute in eval 100 letupdate all_nil all_nil.
(*
Inductive eval_sem {Γ : Ctx} {Σ} {env : Env Γ Σ} : forall {t : Ty}, Expr Γ t -> Val t Σ -> Prop :=
| eval_tt (e : Expr Γ unit) : eval_sem e val_unit
| eval_var t (i : t ∈ Γ) : eval_sem (var i) (lookup env i)
| eval_abs {t u} (b : Expr (t :: Γ) u) : eval_sem (abs b) (val_closure b env)
| eval_app {t u} (f : Expr Γ (t ⇒ u)) b' (a : Expr Γ t) v :
eval_sem f (val_closure b' env) ->
eval_sem a v ->
forall u, @eval_sem (t :: Γ) _ (all_cons v env) _ b' u ->
eval_sem (app f a) u.
Lemma eval_correct {n} Γ Σ (μ : Store Σ) t (e : Expr Γ t) env v : eval n e env μ = Some v ->
@eval_sem _ _ (weaken v.2.2.2 env) _ e (v.2.2.1).
Proof.
induction n. intros; discriminate.
destruct e; simp eval; try intros [= <-]; simpl; try constructor.
admit. admit.
pose proof (fun_elim (f:=eval)).
specialize (H (fun n Γ Σ t e m => forall env v μ, m env μ = Some v -> @eval_sem _ _ (weaken v.2.2.2 env) _ e v.2.2.1)
(fun n Γ Σ t u f a v m => forall env v',
@eval_sem _ _ env _ f v.2.2.1 -> m env = Some v' -> @eval_sem _ env _ (app f a) v')).
rapply H; clear; intros.
discriminate.
noconf H. constructor.
noconf H. constructor.
noconf H. constructor.
unfold bind in H1.
destruct (eval n e0 env) eqn:Heq.
specialize (H _ _ Heq).
specialize (H0 v0 _ _ H H1). apply H0.
discriminate.
unfold bind in H2.
destruct (eval k arg env) eqn:Heq.
specialize (H _ _ Heq).
unfold usingEnv in H2. specialize (H0 v (all_cons v a) v').
econstructor; eauto.
Admitted.*)
|