1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
(** printing elimination %\coqdoctac{elimination}% *)
(** printing noconf %\coqdoctac{noconf}% *)
(** printing simp %\coqdoctac{simp}% *)
(** printing by %\coqdockw{by}% *)
(** printing rec %\coqdockw{rec}% *)
(** printing Coq %\Coq{}% *)
(** printing funelim %\coqdoctac{funelim}% *)
(** printing Derive %\coqdockw{Derive}% *)
(** printing Signature %\coqdocclass{Signature}% *)
(** printing Subterm %\coqdocclass{Subterm}% *)
(** printing NoConfusion %\coqdocclass{NoConfusion}% *)
(** * Polynomials
Polynomials and a reflexive tactic for solving boolean goals (using
heyting or classical boolean algebra). Original version by Rafael
Bocquet, 2016. Updated to use Equations for all definitions by M. Sozeau,
2016-2017. If running this interactively you can ignore the printing
and hide directives which are just used to instruct coqdoc. *)
(* begin hide *)
Require Import Program.Basics Program.Tactics.
From Equations Require Import Equations.
Require Import ZArith Lia.
Require Import Psatz.
Require Import Nat.
Require Import Coq.Vectors.VectorDef.
Set Keyed Unification.
Notation vector := Vector.t.
Arguments nil {A}.
Arguments cons {A} _ {n}.
Derive Signature for vector eq.
Coercion Bool.Is_true : bool >-> Sortclass.
Notation pack := Signature.signature_pack.
Lemma Is_true_irrel (b : bool) (p q : b) : p = q.
Proof.
destruct b. destruct p, q. reflexivity.
destruct p.
Defined.
#[local] Hint Resolve Is_true_irrel : core.
Check Zpos.
Check Zneg.
Check positive.
Check NoConfusion.
About Signature.
Check Signature.signature_pack.
(* end hide *)
(** We start with a simple definition deciding if some integer is equal
to [0] or not. Integers are encoded using an inductive type [Z]
with three constructors [Z0], [Zpos] and [Zneg], the latter two
taking [positive] numbers as arguments. There is a single
representant of [0] which we discriminate here. The second clause
actually captures both the [Zpos] and [Zneg] constructors. *)
Equations IsNZ (z : Z) : bool :=
IsNZ Z0 := false; IsNZ _ := true.
(** The specification of this test is that it returns true iff the variable is indeed
different from [0] w.r.t. the standard Leibniz equality. We elide a simple proof
by case analysis. Note that we use an implicit coercion from [bool] to [Prop] here,
as is usual when doing boolean reflection. *)
Lemma IsNZ_spec z : IsNZ z <-> (z <> 0)%Z.
Proof.
funelim (IsNZ z); unfold not; split; intros;
(discriminate || contradiction || constructor).
Qed.
(** *** Multivariate polynomials
Using an indexed inductive type, we ensure that polynomials of
%$\mathbb{Z}[(X_i)_{i \in \mathbb{N}}]$% have a unique
representation. The first index indicates that the polynom is
null. The second index gives the number of free variables. *)
Inductive poly : bool -> nat -> Type :=
| poly_z : poly true O
| poly_c (z : Z) : IsNZ z -> poly false O
| poly_l {n b} (Q : poly b n) : poly b (S n)
| poly_s {n b} (P : poly b n) (Q : poly false (S n)) :
poly false (S n).
(**
- [poly_z] represents the null polynomial.
- [poly_c c] represents the constant polynomial [c] where [c] is non-zero (i.e. has a proof of [IsNZ c]).
- [poly_l n Q] represents the injection of [Q], a
polynomial on [n] variables, as a polynomial on [n+1] variables.
- Finally, [poly_s P Q : poly _ (S n)] represents $P + X_n * Q$
where [P] cannot mention the variable $X_n$ but [Q] can mention
the variables up to and including $X_n$, and the multiplication is
not trivial as [Q] is non-null.
These indices enforce a canonical
representation by ordering the multiplications of the variables. A
similar encoding is actually used in the [ring] tactic of [Coq]. *)
Derive Signature NoConfusion NoConfusionHom for poly.
Derive Subterm for poly.
(** In addition to the usual eliminators of the inductive type
generated by [Coq], we automatically derive a few constructions on
this [poly] datatype, and the [mono] datatype that follows,
that will be used by the [Equations] command:
- Its [Signature]: as described earlier %(\S \ref{sec:deppat})%, this is
the packing of a polynomial with its two indices, a boolean and a
natural number in this case.
- Its [NoConfusion] property used to
simplify equalities between constructors of the [poly] type
(equation %\ref{eqn:noconf}%).
- Finally, its [Subterm] relation, to be used when performing
well-founded recursion on [poly]. *)
(** *** Monomials
Monomials represent parts of polynoms, and one can compute the
coefficient constant by which each monomial is multiplied in a given
polynom. Again the index of a [mono] gives the number of its free variables. *)
Inductive mono : nat -> Type :=
| mono_z : mono O
| mono_l : forall {n}, mono n -> mono (S n)
| mono_s : forall {n}, mono (S n) -> mono (S n).
Derive Signature NoConfusion NoConfusionHom Subterm for mono.
(** Our first interesting definition computes the coefficient in [Z] by which
a monomial [m] is multiplied in a polynomial [p]. *)
Equations get_coef {n} (m : mono n) {b} (p : poly b n) : Z by wf (pack m) mono_subterm :=
get_coef mono_z poly_z := 0%Z;
get_coef mono_z (poly_c z _) := z;
get_coef (mono_l m) (poly_l p) := get_coef m p;
get_coef (mono_l m) (poly_s p _) := get_coef m p;
get_coef (mono_s m) (poly_l _) := 0%Z;
get_coef (mono_s m) (poly_s p1 p2) := get_coef m p2.
(** The definition can be done using either the usual structural
recursion of [Coq] or well-founded recursion. If we use structural
recursion, the guardness check might not be able to verify the
automatically generated proof that the function respects its graph, as
it involves too much rewriting due to dependent pattern-matching. We
could prove it using a dependent induction instead of using the raw
fixpoint combinator as the recursion is on direct subterms of the
monomial, but in general it could be arbitrarily complicated, so we
present a version allowing deep pattern-matching and recursion. Note
that this means we lose the definitional behavior of [get_coef] during
proofs on open terms, but this can advantageously be replaced using
explicit [rewrite] calls, providing much more control over
simplification than the reduction tactics, especially in presence of
recursive functions. The [get_coef] function still uses no axioms,
so it can be used to compute as part of a reflexive tactic for example.
We want to do recursion on the (dependent) [m : mono n] argument,
using the derived [mono_subterm] relation, which expects an element in
the signature of [mono], [{ n : nat & mono n }], so we use [pack m] to
lift [m] into its signature type ([pack] is just an abbreviation for
the [signature_pack] overloaded constant defined in %\S
\ref{sec:deppat}%).
The rest of the definition is standard: to fetch a monomial
coefficient, we simultaneously pattern-match on the monomial and
polynomial. Note that many cases are impossible due to the invariants
enforced in [poly] and [mono]. For example [mono_z] can only match
polynomials built from [poly_z] or [poly_c], etc. *)
(** *** Two detailed proofs
The monomial decomposition is actually a complete characterization
of a polynomial: two polynomials with the same coefficients for every
monomial are the same. *)
(** To show this, we need a lemma that shows that every non-null polynomial,
has a monomial with non-null coefficient:
this proof is done by dependent induction on the polynomial [p].
Note that the index of [p] rules out the [poly_z] case. *)
Lemma poly_nz {n} (p : poly false n) : exists m, IsNZ (get_coef m p).
Proof with (autorewrite with get_coef; auto).
intros. depind p.
exists mono_z...
destruct IHp. exists (mono_l x)...
destruct IHp2. exists (mono_s x)...
Qed.
Notation " ( x ; p ) " := (existT _ x p).
Theorem get_coef_eq {n} b1 b2
(p1 : poly b1 n) (p2 : poly b2 n) :
(forall (m : mono n), get_coef m p1 = get_coef m p2) ->
(b1 ; p1) = (b2 ; p2) :> { null : _ & poly null n}.
Proof with (simp get_coef in *; auto).
(** Throughout the proof, we use the [simp] tactic defined by
%\Equations% which is a wrapper around [autorewrite] using the hint
database associated to the constant [get_coef]: the database
contains the defining equations of [get_coef] as rewrite rules
that can be used to simplify calls to [get_coef] in the goal. *)
intros Hcoef.
induction p1 as [ | z Hz | n b p1 | n b p1 IHp q1 IHq ]
in b2, p2, Hcoef |- *;
[dependent elimination p2 as [poly_z | poly_c z i] |
dependent elimination p2 as [poly_z | poly_c z' i'] |
dependent elimination p2 as
[@poly_l n b' p2 | @poly_s n b' p2 q2] ..].
all:(intros; try rename n0 into n; auto;
try (specialize (Hcoef mono_z); simp get_coef in Hcoef; subst z;
(elim i || elim Hz ||
ltac:(repeat f_equal; auto)); fail)).
- specialize (IHp1 _ p2). forward IHp1. intro m.
specialize (Hcoef (mono_l m))... clear Hcoef.
(** We first do an induction on [p1] and then eliminate (dependently)
[p2], the first two branches need to consider variable-closed [p2]s
while the next two branches have [p2 : poly _ (S n)], hence the [poly_l]
and [poly_s] patterns. The elided rest of the tactic solves simple subgoals.
We now focus on the case for [poly_l] on both sides.
After some simplifications of the induction hypothesis using
the [Hcoef] hypothesis, we get to the following goal:
[[
(b, b' : bool) (n : nat) (p1 : poly b n) (p2 : poly b' n)
IHp1 : (b; p1) = (b'; p2)
============================
(b; poly_l p1) = (b'; poly_l p2)
]]
The [IHp1] hypothesis, as a general equality between dependent
pairs can again be eliminated dependently to substitute [b'] by
[b] and [p2] by [p1] simultaneously, using
[dependent elimination IHp1 as [eq_refl]], leaving us with
a trivial subgoal. *)
(* begin hide *)
dependent elimination IHp1 as [eq_refl].
reflexivity.
- destruct (poly_nz q2) as [m HNZ].
specialize (Hcoef (mono_s m))...
rewrite <- Hcoef in HNZ; elim HNZ.
- destruct (poly_nz q1) as [m HNZ].
specialize (Hcoef (mono_s m))...
rewrite Hcoef in HNZ; elim HNZ.
- forward (IHq _ q2).
intro m. specialize (Hcoef (mono_s m))...
apply f_equal.
forward (IHp _ p2).
intro. specialize (Hcoef (mono_l m))...
depelim IHp.
now depelim IHq.
Qed.
(* end hide *)
(** The next step is to give an evaluation semantics to polynomials.
We program [eval p v] where [v] is a valuation in [Z] for all the
variables in [p : poly _ n]. *)
Equations eval {n} {b} (p : poly b n) (v : Vector.t Z n) : Z :=
eval poly_z nil := 0%Z;
eval (poly_c z _) nil := z;
eval (poly_l p) (cons _ xs) := eval p xs;
eval (poly_s p1 p2) (cons y ys) :=
(eval p1 ys + y * eval p2 (cons y ys))%Z.
(** It is quite clear that two equal polynomials should have the
same value for any valuation. To show this, we first need to prove
that evaluating a null polynomial always computes to [0], whichever
valuation is used. *)
(* begin hide *)
Check eval.
Lemma poly_nz_eval' : forall {n},
(forall (p : poly false n), exists v, IsNZ (eval p v)) ->
(forall (p : poly false (S n)),
exists v, forall m, exists x,
IsNZ x /\
(Z.abs (x * eval p (Vector.cons x v)) > Z.abs m)%Z).
Proof with (simp eval).
depind p.
- destruct (H p) as [v Hv].
exists v; intros; exists (1 + Z.abs m)%Z...
rewrite IsNZ_spec in Hv |- *. nia.
- destruct (IHp2 H) as [v Hv]; exists v; intros.
destruct (Hv (Z.abs (eval p1 v) + Z.abs m)%Z) as [x [Hx0 Hx1]]; exists x...
split; auto. rewrite IsNZ_spec in Hx0.
nia.
Qed.
Lemma poly_nz_eval : forall {n},
(forall (p : poly false n), exists v, IsNZ (eval p v))
/\ (forall (p : poly false (S n)),
exists v, forall m, exists x,
IsNZ x /\
(Z.abs (x * eval p (Vector.cons x v)) > Z.abs m)%Z).
Proof with (autorewrite with eval; auto using poly_nz_eval').
depind n; match goal with
| [ |- ?P /\ ?Q ] => assert (HP : P); [|split;[auto|]]
end...
depelim p; exists Vector.nil...
- destruct IHn as [IHn1 IHn2]; depelim p.
+ destruct (IHn1 p) as [v Hv]; exists (Vector.cons 0%Z v)...
+ destruct (IHn2 p2) as [v Hv].
destruct (Hv (eval p1 v)) as [x [_ Hx]].
exists (Vector.cons x v)...
rewrite IsNZ_spec; nia.
Qed.
(* end hide *)
(** This is a typical case where the proof directly follows the definition
of [eval]. Instead of redoing the same case splits and induction that
the function performs, we can directly appeal to its elimination
principle using the [funelim] tactic. *)
Lemma poly_z_eval {n} (p : poly true n) v : eval p v = 0%Z.
Proof.
funelim (eval p v); [ reflexivity | assumption ].
Qed.
(** This leaves us with two goals as the [true] index in [p] implies
that the [poly_c] and [poly_s] clauses do not need to be considered.
We have to show [0 = 0] for the case [p = poly_z] and [eval q v = 0]
for the [poly_l] recursive constructor, in which case the conclusion
directly follows from the induction hypothesis correspondinng to the
recursive call. The second subgoal is hence discharged with an
[assumption] call.
Addition is defined on two polynomials with the same number of variables and returns
a (possibly null) polynomial with the same number of variables.
We define an injection function to constructs objects in the dependent pair type
[{b : bool & poly b n}]. *)
Definition apoly {n b} := existT (fun b => poly b n) b.
(** The definition shows the [with] feature of Equations, allowing to
add a nested pattern-matching while defining the function, here in
one case to inject an integer into a polynomial and in the
[poly_s], [poly_s] case to inspect a recursive call. *)
Notation " x .1 " := (projT1 x).
Notation " x .2 " := (projT2 x).
Equations plus {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n) : { b : bool & poly b n } :=
plus poly_z poly_z := apoly poly_z;
plus poly_z (poly_c y ny) := apoly (poly_c y ny);
plus (poly_c x nx) poly_z := apoly (poly_c x nx);
plus (poly_c x nx) (poly_c y ny) with (x + y)%Z => {
| Z0 => apoly poly_z ;
| Zpos z' => apoly (poly_c (Zpos z') I) ;
| Zneg z' => apoly (poly_c (Zneg z') I) };
plus (poly_l p1) (poly_l p2) := apoly (poly_l (plus p1 p2).2);
plus (poly_l p1) (poly_s p2 q2) := apoly (poly_s (plus p1 p2).2 q2);
plus (poly_s p1 q1) (poly_l p2) := apoly (poly_s (plus p1 p2).2 q1);
plus (poly_s p1 q1) (poly_s p2 q2) with plus q1 q2 => {
| (false ; q3) => apoly (poly_s (plus p1 p2).2 q3);
| (true ; _) => apoly (poly_l (plus p1 p2).2) }.
(** The functional elimination principle can be derived all the same
for [plus], allowing us to make quick work of the proof that it
is a morphism for evaluation: *)
Lemma plus_eval : forall {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n) v,
(eval p1 v + eval p2 v)%Z = eval (plus p1 p2).2 v.
Proof with (simp plus eval; auto with zarith).
Ltac X := (simp plus eval; auto with zarith).
intros until p2.
let f := constr:(fun_elim (f:=@plus)) in apply f; intros; depelim v; X; try rewrite <- H; X.
- rewrite Heq in Hind.
specialize (Hind (Vector.cons h v)).
rewrite poly_z_eval in Hind. nia.
- rewrite Heq in Hind. rewrite <- Hind. nia.
Qed.
#[local] Hint Rewrite <- @plus_eval : eval.
(** We skip the rest of the operations definition, [poly_mult], [poly_neg] and
[poly_substract]. *)
Equations poly_neg {n} {b} (p : poly b n) : poly b n :=
poly_neg poly_z := poly_z;
poly_neg (poly_c (Z.pos a) p) := poly_c (Z.neg a) p;
poly_neg (poly_c (Z.neg a) p) := poly_c (Z.pos a) p;
poly_neg (poly_l p) := poly_l (poly_neg p);
poly_neg (poly_s p q) := poly_s (poly_neg p) (poly_neg q).
Lemma neg_eval : forall {n} {b1} (p1 : poly b1 n) v,
(- eval p1 v)%Z = eval (poly_neg p1) v.
Proof.
Ltac XX := (autorewrite with poly_neg plus eval; auto with zarith).
depind p1; depelim v; XX. destruct z; depelim i; XX.
rewrite <- IHp1_1; rewrite <- IHp1_2; nia.
Qed.
#[local] Hint Rewrite <- @neg_eval : eval.
(** Equality can be decided using the difference of polynoms *)
Lemma poly_diff_z_eq : forall {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n),
(plus p1 (poly_neg p2)).1 = true ->
(_ ; p1) = (_; p2) :> { null : bool & poly null n }.
Proof.
intros.
depind p1; depelim p2; auto;
try (autorewrite with poly_neg plus in H; discriminate; fail).
- destruct z; destruct i; autorewrite with poly_neg plus in *; discriminate.
- f_equal; destruct z as [ | z | z], z0 as [ | z0 | z0 ]; depelim i; depelim i0; autorewrite with poly_neg plus in H.
assert (z = z0).
remember (Z.pos z + Z.neg z0)%Z as z1; destruct z1; try discriminate; simpl in H; nia.
subst; auto.
remember (Z.pos z + Z.pos z0)%Z as z1; destruct z1; try discriminate.
remember (Z.neg z + Z.neg z0)%Z as z1; destruct z1; try discriminate.
assert (z = z0).
remember (Z.neg z + Z.pos z0)%Z as z1; destruct z1; try discriminate; simpl in H; nia.
subst; auto.
- autorewrite with poly_neg plus in H.
specialize (IHp1 _ p2 H).
depelim IHp1. auto.
- autorewrite with poly_neg plus in H.
specialize (IHp1_1 _ p2_1); specialize (IHp1_2 _ p2_2).
remember (plus p1_2 (poly_neg p2_2)) as P; remember (plus p1_1 (poly_neg p2_1)) as Q.
destruct P as [bP P]; destruct Q as [bQ Q].
destruct bP; destruct bQ; simpl in H; try rewrite <- HeqQ in H; try discriminate.
specialize (IHp1_1 eq_refl); specialize (IHp1_2 eq_refl).
depelim IHp1_1; try depelim IHp1_2; auto.
Qed.
(**
*** Two polynomials with the same values are syntacically equal.
This is shown using [poly_nz_eval]: the difference of two polynomials with the same values is null.
Then use [poly_diff_z_eq]
*)
Theorem poly_eval_eq : forall {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n),
(forall v, eval p1 v = eval p2 v) ->
(b1 ; p1) = (b2; p2) :> { b : bool & poly b n}.
Proof.
intros.
remember (plus p1 (poly_neg p2)) as P; destruct P as [b P]; destruct b.
- apply poly_diff_z_eq; inversion HeqP; auto.
- exfalso.
destruct (@poly_nz_eval n) as [H0 _]; destruct (H0 P) as [v H1].
assert (eval P v = eval (plus p1 (poly_neg p2)).2 v); [inversion HeqP; auto|].
rewrite H2 in H1; autorewrite with eval in H1; rewrite (H v) in H1.
rewrite IsNZ_spec in H1.
nia.
Qed.
(**
*** Multiplication of polynomials
This definition is a bit more laborious as there are inductive cases to treat on the second argument:
it is not a simple structurally recursive definition.
*)
(** The [poly_l_or_s] definition is a smart constructor to construct
[p + X * q] when [q] can be null. *)
Equations poly_l_or_s {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 (S n)) :
{b : bool & poly b (S n)} :=
poly_l_or_s p1 (b2 := true) p2 := apoly (poly_l p1);
poly_l_or_s p1 (b2 := false) p2 := apoly (poly_s p1 p2).
Lemma poly_l_or_s_eval : forall {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 (S n)) h v,
eval (poly_l_or_s p1 p2).2 (Vector.cons h v) =
(eval p1 v + h * eval p2 (Vector.cons h v))%Z.
Proof.
intros.
funelim (poly_l_or_s p1 p2); simp eval; trivial. rewrite poly_z_eval. nia.
Qed.
#[local] Hint Rewrite @poly_l_or_s_eval : eval.
(* [mult (poly_l p) q = mult_l q (mult p)] *)
Equations mult_l {n} {b2} (p2 : poly b2 (S n)) (m : forall {b2} (p2 : poly b2 n), { b : bool & poly b n }) :
{ b : bool & poly b (S n) } :=
mult_l (poly_l p2) m := apoly (poly_l (m _ p2).2);
mult_l (poly_s p1 p2) m := poly_l_or_s (m _ p1).2 (mult_l p2 m).2.
(* [mult (poly_s p1 p2) q = mult_s q (mult p1) (mult p2)] *)
Equations mult_s {n} {b2} (p2 : poly b2 (S n))
(m1 : forall {b2} (p2 : poly b2 n), { b : bool & poly b n })
(m2 : forall {b2} (p2 : poly b2 (S n)), { b : bool & poly b (S n) }) :
{ b : bool & poly b (S n) } :=
mult_s (poly_l p1) m1 m2 := poly_l_or_s (m1 _ p1).2 (m2 _ (poly_l p1)).2;
mult_s (poly_s p2 q2) m1 m2 :=
poly_l_or_s (m1 _ p2).2
(plus (m2 _ (poly_l p2)).2 (mult_s q2 m1 m2).2).2.
(** Finally, the multiplication definition. This relies on the
guard condition being able to unfold the definitions of [mult_l] and [mult_s] to
see that multiplication is well-guarded. *)
Equations mult n b1 (p1 : poly b1 n) b2 (p2 : poly b2 n) : { b : bool & poly b n } :=
mult ?(0) ?(true) poly_z b2 _ := apoly poly_z;
mult ?(0) ?(false) (poly_c x nx) ?(true) poly_z := apoly poly_z;
mult ?(0) ?(false) (poly_c x nx) ?(false) (poly_c y ny) :=
match (x * y)%Z with
| Z0 => apoly poly_z
| Zpos z' => apoly (poly_c (Zpos z') I)
| Zneg z' => apoly (poly_c (Zneg z') I)
end;
mult ?(S n) ?(b) (@poly_l n b p1) b2 q := mult_l q (mult _ _ p1);
mult ?(S n) ?(false) (@poly_s n b p1 q1) b2 q := mult_s q (mult _ _ p1) (mult _ _ q1).
Arguments mult {n} {b1} p1 {b2} p2.
(** The proof that multiplication is a morphism for evaluation works as usual by induction,
using previously proved lemma to get equations in [Z] that the [nia] tactic can handle. *)
Lemma mult_eval : forall {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 n) v,
(eval p1 v * eval p2 v)%Z = eval (mult p1 p2).2 v.
Proof with (autorewrite with mult mult_l mult_s eval; auto with zarith).
Ltac Y := (autorewrite with mult mult_l mult_s eval; auto with zarith).
depind p1; try (depind p2; intros; depelim v; Y; simpl; Y; fail).
depind p2; intros; depelim v; Y; simpl; Y; destruct (z * z0)%Z; simpl...
- assert (mult_l_eval : forall {b2} (q : poly b2 (S n)) v h,
eval (mult_l q (@mult _ _ p1)).2 (Vector.cons h v) =
(eval q (Vector.cons h v) * eval p1 v)%Z).
+ depind q; intros; Y;
rewrite <- IHp1...
rewrite IHq2; auto; nia.
+ intros; depelim v; Y; simpl; Y; rewrite mult_l_eval...
- assert (mult_s_eval :
forall {b2} (q : poly b2 (S n)) v h,
let mp := mult_s q (@mult _ _ p1_1) (@mult _ _ p1_2) in
eval mp.2 (Vector.cons h v) =
(eval q (Vector.cons h v) * (eval p1_1 v + h * eval p1_2 (Vector.cons h v)))%Z).
+ depind q; intros; Y; simpl; Y.
rewrite <- IHp1_1, <- IHp1_2; Y; nia.
rewrite <- IHp1_1. rewrite IHq2, <- IHp1_2; auto; Y; nia.
+ intros; depelim v; Y; simpl; Y; rewrite mult_s_eval...
Qed.
#[local] Hint Rewrite <- @mult_eval : eval.
(** ** Boolean formulas
Armed with these definitions, we can define a reflexive tactic that
solves boolean tautologies using a translation into polynomials on [Z].
We start with the syntax of our formulas, including variables of some type
[A], constants, conjunction disjunction and negation: *)
Inductive formula {A} :=
| f_var : A -> formula
| f_const : bool -> formula
| f_and : formula -> formula -> formula
| f_or : formula -> formula -> formula
| f_not : formula -> formula.
(** The have a straightforward evaluation semantics to booleans, assuming
an interpretation of the variables into booleans. *)
Equations eval_formula {A} (v : A -> bool) (f : @formula A) : bool :=
eval_formula f (f_var v) := f v;
eval_formula f (f_const b) := b;
eval_formula f (f_and a b) := andb (eval_formula f a) (eval_formula f b);
eval_formula f (f_or a b) := orb (eval_formula f a) (eval_formula f b);
eval_formula f (f_not v) := negb (eval_formula f v).
(** [close_formula] allows to obtain a formula with a fixed finite number of free variables from
a formula with with variables in [nat]. *)
Definition close_formula : @formula nat -> { n : nat & forall m, m >= n -> @formula (Fin.t m) }.
Proof.
intro f; depind f.
- unshelve eapply (S a ; _); intros m p; apply f_var.
apply @Fin.of_nat_lt with (p := a). lia.
- exact (O ; (fun _ _ => f_const b)).
- destruct IHf1 as [n1 e1]; destruct IHf2 as [n2 e2].
apply (existT _ (max n1 n2)); intros m p; apply f_and; [apply e1|apply e2]; nia.
- destruct IHf1 as [n1 e1]; destruct IHf2 as [n2 e2].
apply (existT _ (max n1 n2)); intros m p; apply f_or; [apply e1|apply e2]; nia.
- destruct IHf as [n e].
apply (existT _ n); intros m p; apply f_not; apply e; nia.
Defined.
Definition close_formulas (f1 f2 : @formula nat) :
{ n : nat & (@formula (Fin.t n) * @formula (Fin.t n))%type }.
Proof.
destruct (close_formula f1) as [n1 e1]; destruct (close_formula f2) as [n2 e2].
apply (existT _ (max n1 n2)); apply pair; [apply e1|apply e2]; nia.
Defined.
(** Definitions of constant 0 [poly_zero] and 1 [poly_one] polynomials along with variable polynomials
[poly_var] and corresponding evaluation lemmas *)
Fixpoint poly_zero {n} : poly true n :=
match n with
| O => poly_z
| S m => poly_l poly_zero
end.
Lemma zero_eval : forall n v, 0%Z = eval (@poly_zero n) v.
Proof. intros; rewrite poly_z_eval; auto. Qed.
#[local] Hint Rewrite <- @zero_eval : eval.
Fixpoint poly_one {n} : poly false n :=
match n with
| O => poly_c 1%Z I
| S m => poly_l poly_one
end.
Lemma one_eval : forall n v, 1%Z = eval (@poly_one n) v.
Proof. depind n; depelim v; intros; simpl; autorewrite with eval; auto. Qed.
#[local] Hint Rewrite <- @one_eval : eval.
(** We define an injection of variables represented as indices in [Fin.t n] into
non-null polynoms of [n] variables: *)
Equations poly_var {n} (f : Fin.t n) : poly false n :=
poly_var Fin.F1 := poly_s poly_zero poly_one;
poly_var (Fin.FS f) := poly_l (poly_var f).
(** We can show that evaluation of the corresponding polynomial corresponds to
simply fetching the value at the index in the valuation. *)
Lemma var_eval : forall n f v, Vector.nth v f = eval (@poly_var n f) v.
Proof with autorewrite with poly_var eval in *; simpl; auto with zarith.
induction f; depelim v; intros...
Qed.
#[local] Hint Rewrite <- @var_eval : eval.
(** Finally, we explain our interpretation of formulas as polynomials: *)
Equations poly_of_formula {n} (f : @formula (Fin.t n)) : { b : bool & poly b n } :=
poly_of_formula (f_var v) := apoly (poly_var v);
poly_of_formula (f_const false) := apoly poly_zero;
poly_of_formula (f_const true) := apoly poly_one;
poly_of_formula (f_not a) := plus poly_one (poly_neg (poly_of_formula a).2);
poly_of_formula (f_and a b) := mult (poly_of_formula a).2 (poly_of_formula b).2;
poly_of_formula (f_or a b) := plus (poly_of_formula a).2
(plus (poly_of_formula b).2
(poly_neg (mult (poly_of_formula a).2 (poly_of_formula b).2).2)).2.
(** The central theorem is that evaluating the formula in some valuation
is the same as evaluating the translated polynomial. *)
Theorem poly_of_formula_eval :
forall {n} (f : @formula (Fin.t n)) (v : Vector.t bool n),
(if eval_formula (Vector.nth v) f then 1%Z else 0%Z) =
eval (poly_of_formula f).2 (Vector.map (fun x : bool => if x then 1%Z else 0%Z) v).
(* begin hide *)
Proof.
intros. funelim (poly_of_formula f); intros;
autorewrite with eval_formula poly_of_formula eval in *; trivial.
- erewrite Vector.nth_map; auto.
- rewrite <- H, <- H0; destruct (eval_formula (Vector.nth v) a); destruct (eval_formula (Vector.nth v) b); auto.
- rewrite <- H, <- H0; destruct (eval_formula (Vector.nth v) a); destruct (eval_formula (Vector.nth v) b); auto.
- rewrite <- H; destruct (eval_formula (Vector.nth v) a); auto.
Qed.
(* end hide *)
(** From this, we can derive that two boolean formulas are equivalent if
the translated polynomials are themselves _syntactically_ equal,
thanks to their canonical representation. *)
Lemma correctness_heyting : forall {n} (f1 f2 : @formula (Fin.t n)),
poly_of_formula f1 = poly_of_formula f2 ->
forall v, eval_formula (Vector.nth v) f1 = eval_formula (Vector.nth v) f2.
Proof.
intros n f1 f2 H v.
assert (H1 := poly_of_formula_eval f1 v); assert (H2 := poly_of_formula_eval f2 v).
remember (eval_formula (Vector.nth v) f1) as b1; remember (eval_formula (Vector.nth v) f2) as b2.
rewrite H in H1; rewrite <- H1 in H2.
destruct b1; destruct b2; simpl in *; (discriminate || auto).
Qed.
(** *** Completeness
For which theory do we have completeness? If you were attentive you might
have guessed that the encodings of disjunction and conjunction are only
complete for heyting boolean algebras but not classical boolean algebra,
where negation is involutive.
One can avoid this problem by doing a reduction transformation on polynomials.
The interested reader can look at the development for that part.
Completeness can be derived for the reducing version of the translation.
*)
Equations reduce_aux {n} {b1} (p1 : poly b1 n) {b2} (p2 : poly b2 (S n)) : { b : bool & poly b (S n) } :=
reduce_aux p1 (poly_l p2) := poly_l_or_s p1 (poly_l p2);
reduce_aux p1 (poly_s p2_1 p2_2) := poly_l_or_s p1 (plus (poly_l p2_1) p2_2).2.
Equations reduce {n} {b} (p : poly b n) : { b : bool & poly b n } :=
reduce poly_z := apoly poly_z;
reduce (poly_c x y) := apoly (poly_c x y);
reduce (poly_l p) := apoly (poly_l (reduce p).2);
reduce (poly_s p q) := reduce_aux (reduce p).2 (reduce q).2.
Theorem reduce_eval :
forall {n} {b} (p : poly b n) (v : Vector.t bool n),
eval p (Vector.map (fun x : bool => if x then 1%Z else 0%Z) v) =
eval (reduce p).2 (Vector.map (fun x : bool => if x then 1%Z else 0%Z) v).
Proof.
Ltac YY := autorewrite with reduce reduce_aux eval; auto.
depind p; intros; depelim v; YY.
- rewrite IHp1, (IHp2 (Vector.cons h v)).
remember (reduce p2) as P.
destruct P as [bP P]. simpl. depelim P; simpl; YY.
destruct h; nia.
Qed.
Inductive is_reduced : forall {b} {n}, poly b n -> Prop :=
| is_reduced_z : is_reduced poly_z
| is_reduced_c : forall {z} {i}, is_reduced (poly_c z i)
| is_reduced_l : forall {b} {n} (p : poly b n), is_reduced p -> is_reduced (poly_l p)
| is_reduced_s : forall {b1} {n} (p : poly b1 n) (q : poly false n),
is_reduced p -> is_reduced q -> is_reduced (poly_s p (poly_l q))
.
Derive Signature for is_reduced.
Lemma is_reduced_compat_plus : forall {n} {b1} (p1 : poly b1 n) (Hp1 : is_reduced p1)
{b2} (p2 : poly b2 n) (Hp2 : is_reduced p2),
is_reduced (plus p1 p2).2.
Proof.
intros.
depind Hp1; depelim Hp2; autorewrite with plus; unfold apoly; cbn; try constructor; auto.
remember (z+z0)%Z as Z; destruct Z; constructor.
specialize (IHHp1_2 _ q0 Hp2_2).
remember (plus q q0) as Q; destruct Q as [bQ Q].
destruct bQ; simpl. constructor; auto. constructor; auto.
Qed.
Lemma is_reduced_compat_neg : forall {n} {b1} (p1 : poly b1 n) (Hp1 : is_reduced p1),
is_reduced (poly_neg p1).
Proof.
intros. depind Hp1; try destruct z, i; autorewrite with poly_neg; try constructor; auto.
Qed.
Lemma is_reduced_ok : forall {b} {n} (p : poly b n), is_reduced (reduce p).2.
Proof.
depind p; try constructor; auto.
autorewrite with reduce reduce_aux.
remember (reduce p2) as P2; destruct P2 as [bP2 P2]; depelim P2.
destruct bP2; simpl. constructor. auto. constructor; auto. depelim IHp2. auto.
depelim IHp2. autorewrite with reduce_aux plus. unfold apoly. simpl.
assert (R := is_reduced_compat_plus _ IHp2_1 _ IHp2_2).
remember (plus P2_1 q) as P3; destruct P3 as [bP3 P3]. simpl.
simpl in *.
destruct bP3; simpl; constructor; auto.
Qed.
Lemma red_ok : forall {n} {b} (p : poly b n),
is_reduced p ->
(forall v, eval p (Vector.map (fun x : bool => if x then 1%Z else 0%Z) v) = 0%Z) ->
b = true.
Proof.
intros n b p Hp H; depind Hp.
- auto.
- specialize (H Vector.nil); autorewrite with eval in H; destruct z, i; discriminate.
- apply IHHp. intro v. specialize (H (Vector.cons false v)). autorewrite with eval in H. auto.
- assert (b1 = true).
+ apply IHHp1. intro v. specialize (H (Vector.cons false v)). autorewrite with eval in H. simpl in H. rewrite Z.add_0_r in H. auto.
+ subst. apply IHHp2.
intro v. specialize (H (Vector.cons true v)). simpl in H. autorewrite with eval in H. rewrite poly_z_eval in H. nia.
Qed.
(** We have completeness for this form: *)
Lemma correctness_classical : forall {n} (f1 f2 : @formula (Fin.t n)),
reduce (poly_of_formula f1).2 = reduce (poly_of_formula f2).2 <->
forall v, eval_formula (Vector.nth v) f1 = eval_formula (Vector.nth v) f2.
Proof.
intros n f1 f2; split.
- intros H v.
assert (H1 := poly_of_formula_eval f1 v); assert (H2 := poly_of_formula_eval f2 v).
rewrite reduce_eval in H1; rewrite reduce_eval in H2.
remember (eval_formula (Vector.nth v) f1) as b1; remember (eval_formula (Vector.nth v) f2) as b2.
rewrite H in H1; rewrite <- H1 in H2.
destruct b1; destruct b2; simpl in *; (discriminate || auto).
- intros.
assert ((plus (reduce (poly_of_formula f1).2).2
(poly_neg (reduce (poly_of_formula f2).2).2)).1 = true).
+ apply red_ok with (p := (plus (reduce (poly_of_formula f1).2).2
(poly_neg (reduce (poly_of_formula f2).2).2)).2).
* auto using is_reduced_compat_plus, is_reduced_ok, is_reduced_compat_neg.
* intro; autorewrite with eval.
assert (H1 := poly_of_formula_eval f1 v); assert (H2 := poly_of_formula_eval f2 v).
rewrite <- !reduce_eval, <- H1, <- H2, (H v); nia.
+ apply poly_diff_z_eq in H0.
remember (reduce (poly_of_formula f1).2) as P1; destruct P1 as [bP1 P1].
remember (reduce (poly_of_formula f2).2) as P2; destruct P2 as [bP2 P2].
destruct bP1; destruct bP2; auto; simpl in H0; depelim H0; auto.
Qed.
(** One can check that all definitions here are axiom free, and only the proofs
which depend on unfolding lemmas use the [functional_extensionality_dep] axiom. *)
(** *** Reflexive tactic
From this it is possible to derive a tactic for checking equivalence of boolean
formulas. We skip the standard reification machinery and check on a few examples
that indeed our tactic computes. *)
Ltac list_add a l :=
let rec aux a l n :=
match l with
| nil => constr:((n, cons a l))
| cons a _ => constr:((n, l))
| cons ?x ?l =>
match aux a l (S n) with (?n, ?l) => constr:((n, cons x l)) end
end in
aux a l 0.
Ltac vector_of_list l :=
match l with
| nil => constr:(Vector.nil)
| cons ?x ?xs => constr:(Vector.cons x xs)
end.
(** Reify boolean formulas with variables in [nat] *)
Ltac read_formula f l :=
match f with
| true => constr:((@f_const nat true, l))
| false => constr:((@f_const nat false, l))
| orb ?x ?y => match read_formula x l with (?x', ?l') =>
match read_formula y l' with (?y', ?l'') => constr:((f_or x' y', l''))
end end
| andb ?x ?y => match read_formula x l with (?x', ?l') =>
match read_formula y l' with (?y', ?l'') => constr:((f_and x' y', l''))
end end
| negb ?x => match read_formula x l with (?x', ?l') => constr:((f_not x', l')) end
| _ => match list_add f l with (?n, ?l') => constr:((f_var n, l')) end
end.
Ltac read_formulas x y :=
match read_formula x (@nil bool) with (?x', ?l) =>
match read_formula y l with (?y', ?l') => constr:(((x', y'), l'))
end end.
(** The final reflexive tactic, taking either of the correctness lemmas as argument. *)
Ltac bool_tauto_with f :=
intros;
match goal with
| [ |- ?x = ?y ] =>
match read_formulas x y with
| ((?x', ?y'), ?l) =>
let ln := fresh "l" in
let xyn := fresh "xy" in
let nn := fresh "n" in
let xn := fresh "x" in
let yn := fresh "y" in
match vector_of_list l with ?lv => pose (ln := lv) end;
pose (xyn := close_formulas x' y');
pose (n := xyn.1); pose (xn := fst xyn.2); pose (yn := snd xyn.2);
cbv in xyn, n, xn, yn;
assert (H : eval_formula (Vector.nth ln) xn = eval_formula (Vector.nth ln) yn);
[ apply f; vm_compute; reflexivity
| exact H
]
end
end.
(** Examples *)
Goal forall a b, andb a b = andb b a.
bool_tauto_with @correctness_heyting.
Qed.
Goal forall a b, andb (negb a) (negb b) = negb (orb a b).
bool_tauto_with @correctness_heyting.
Qed.
Goal forall a b, orb (negb a) (negb b) = negb (andb a b).
bool_tauto_with @correctness_heyting.
Qed.
Example neg_involutive: forall a, orb (negb a) a = true.
Fail bool_tauto_with @correctness_heyting.
bool_tauto_with @correctness_classical.
Qed.
|