File: Data.v

package info (click to toggle)
coq-ext-lib 0.13.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 808 kB
  • sloc: makefile: 44; python: 31; sh: 4; lisp: 3
file content (192 lines) | stat: -rw-r--r-- 6,271 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
Require Import Coq.Lists.List.
Require Import ExtLib.Data.Member.
Require Import ExtLib.Data.HList.
Require Import ExtLib.Generic.Func.
(** This module gives a representation of inductive types **)

Set Implicit Arguments.
Set Strict Implicit.

Fixpoint hlist_to_tuple ps (h : hlist (fun x : Type => x) ps) : asTuple ps :=
  match h in hlist _ ps return asTuple ps with
    | Hnil => tt
    | Hcons x h => (x,hlist_to_tuple h)
  end.

Inductive itype (ps : list Type) : Type :=
| Inj : Type -> itype ps
| Rec : hlist (fun x => x) ps -> itype ps
| Sum : itype ps -> itype ps -> itype ps
| Prod : itype ps -> itype ps -> itype ps
| Sig : forall T : Type, (T -> itype ps) -> itype ps
| Pi : forall T : Type, (T -> itype ps) -> itype ps
| Get : forall T : Type, member T ps -> (T -> itype ps) -> itype ps
| Unf : forall T : Type, member T ps -> T -> itype ps -> itype ps.

Definition Unit {ps} := @Inj ps unit.

Section denote.
  Variable (ps : list Type).

  Fixpoint itypeD (i : itype ps) {struct i}
  : asFunc ps Type -> asFunc ps Type :=
    match i return asFunc ps Type -> asFunc ps Type with
      | Get pf f => fun F => @get ps _ _ pf (fun x => itypeD (f x) F)
      | Inj _ T => fun _ => const T
      | Rec h => fun F => const (applyF F (hlist_to_tuple h))
      | @Sig _ t f => fun F =>
                     @under _ _ (fun App => @sigT t (fun x' => App _ (itypeD (f x') F)))
      | @Pi _ t f => fun F =>
                     @under _ _ (fun App => forall x' : t, App _ (itypeD (f x') F))
      | Sum a b => fun F => combine sum ps (itypeD a F) (itypeD b F)
      | Prod a b => fun F => combine prod ps (itypeD a F) (itypeD b F)
      | @Unf _ T pf v i => fun F =>
                          @get ps _ _ pf (fun x => combine prod _ (const (x = v : Type)) (replace pf v (itypeD i F)))
    end%type.
End denote.

Section _match.
  Variable ps : list Type.
  Variable RecT : asFunc ps Type.

  (** NOTE: Non-dependent **)
  Fixpoint cases (i : itype ps) (k : asFunc ps Type -> asFunc ps Type)
           {struct i} : asFunc ps Type :=
    match i with
      | Inj _ T => k (const T)
      | Sum a b => combine prod ps (cases a k) (cases b k)
      | Prod a b =>
        cases a (fun A => cases b (fun B =>
                                       under _ _ (fun App => App _ A -> App _ (k B))))
      | Rec ps => k (const (applyF RecT (hlist_to_tuple ps)))
      | @Get _ T m f => @get _ _ _ m (fun x => cases (f x) k)
      | @Sig _ t f => @under _ _ (fun App => forall x' : t, (App _ (cases (f x') k)))
      | @Pi _ t f => @under _ _ (fun App => @sigT t (fun x' => App _ (cases (f x') k)))
      | @Unf _ T pf v i => replace pf v (cases i k)
    end.

End _match.

Fixpoint asPiE ps {struct ps}
: forall (F : _)
         (G : forall x : (forall U, asFunc ps U -> U), F x),
         asPi ps F :=
  match ps as ps
        return forall F : (forall U : Type, asFunc ps U -> U) -> Type,
                 (forall x : forall U : Type, asFunc ps U -> U, F x) -> asPi ps F
  with
    | nil => fun _ G => G _
    | p :: ps => fun _ G => fun x => asPiE _ _ (fun x' => G _)
  end.

Fixpoint asPi_combine ps {struct ps}
: forall (F G : _),
    asPi ps (fun App => F App -> G App) ->
    asPi ps F -> asPi ps G :=
  match ps as ps
        return forall F G : (forall U : Type, asFunc ps U -> U) -> Type,
                 asPi ps (fun App : forall U : Type, asFunc ps U -> U => F App -> G App) ->
                 asPi ps F -> asPi ps G
  with
    | nil => fun _ _ a b => a b
    | p :: ps => fun _ _ a b x => asPi_combine _ _ _ (a x) (b x)
  end.

(*

Section _mmatch.
  Variable ps : list Type.
  Variable RecT : asFunc ps Type.

  Fixpoint Fmatch (i : itype ps) (Ret : asFunc ps Type)
    (brs : asPi ps (fun App => App _ (cases RecT i (fun x => combine (fun x y => x -> y) _ x Ret))))
    {struct i}
  : asPi ps (fun App => App _ (itypeD i RecT) -> App _ Ret).
  destruct i.
  { simpl in *. revert brs.
    unfold combine.
    apply asPi_combine.
    apply asPiE.
  intro. intro.
  destruct i.
  { simpl in *.
  Abort.
*)

(** Some Examples **)
(** Vectors **)
(*
Definition rfvec T : itype ((nat : Type) :: nil) :=
  @Get ((nat : Type) :: @nil Type) nat (MZ _ _)
       (fun x =>
          match x with
            | 0 => Inj _ unit
            | S n => Prod (Inj _ T) (Rec (Hcons n Hnil))
          end).

Definition rfvec' T : itype ((nat : Type) :: nil) :=
  Sum (@Get ((nat : Type) :: @nil Type) nat (MZ _ _)
            (fun x => Inj _ (x = 0)))
      (@Get ((nat : Type) :: @nil Type) nat (MZ _ _)
            (fun x => Sig (fun n : nat => Prod (Inj _ T) (Prod (Rec (Hcons n Hnil)) (Inj _ (x = S n)))))).

Definition rfvec'' T : itype ((nat : Type) :: nil) :=
  Sum (Unf (MZ _ _) 0 Unit)
      (Sig (fun n : nat =>
              (Unf (MZ _ _) (S n) (Prod (Inj _ T) (Rec (Hcons n Hnil)))))).

Eval simpl in fun T => itypeD (rfvec T).
Eval simpl in fun T => itypeD (rfvec' T).
Eval simpl in fun T => itypeD (rfvec'' T).
Eval simpl in fun T Result Rec =>
                @cases _ Rec (rfvec T) (fun x => combine (fun x y => x -> y) _ x Result).

Eval simpl in fun T Result Rec =>
                @cases _ Rec (rfvec' T) (fun x => combine (fun x y => x -> y) _ x Result).

Eval simpl in fun T Result Rec =>
                @cases _ Rec (rfvec'' T) (fun x => combine (fun x y => x -> y) _ x Result).


(** Nats **)
Definition rfnat := Sum (Inj nil unit) (Rec Hnil).

Eval simpl in fun Result Rec =>
                @Tmatch _ Rec rfnat (fun x => combine (fun x y => x -> y) _ x Result).

Definition inat :=
  Eval simpl in itypeD rfnat.

Definition i0 : inat :=
  @existT bool (fun x' => itypeD nil (if x' then Inj nil unit else Rec nil Hnil)
  nat) true tt.

Definition iS : nat -> inat :=
  @existT bool (fun x' => itypeD nil (if x' then Inj nil unit else Rec nil Hnil)
  nat) false.

Definition fold (i : nat) : inat :=
  match i with
    | 0 => i0
    | S n => iS n
  end.

Definition unfold (i : inat) : nat :=
  match i with
    | existT true _ => 0
    | existT false x => S x
  end.

Theorem fold_unfold : forall x, fold (unfold x) = x.
Proof.
  destruct x; simpl.
  destruct x; simpl.
  { simpl in *. destruct i. reflexivity. }
  { simpl in *. reflexivity. }
Qed.

Theorem unfold_fold : forall x, unfold (fold x) = x.
Proof.
  destruct x; simpl; reflexivity.
Qed.
*)