1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
|
From Coq Require Import List PeanoNat.
Require Import Relations RelationClasses.
Require Import ExtLib.Core.RelDec.
Require Import ExtLib.Data.SigT.
Require Import ExtLib.Data.Member.
Require Import ExtLib.Data.ListNth.
Require Import ExtLib.Data.Option.
Require Import ExtLib.Tactics.
Require Import Coq.Classes.Morphisms.
Set Implicit Arguments.
Set Strict Implicit.
Set Asymmetric Patterns.
Set Universe Polymorphism.
Set Printing Universes.
Lemma app_ass_trans@{X}
: forall {T : Type@{X} } (a b c : list T), (a ++ b) ++ c = a ++ b ++ c.
Proof.
induction a; simpl.
reflexivity.
intros. destruct (IHa b c). reflexivity.
Defined.
Lemma app_nil_r_trans : forall {T : Type} (a : list T), a ++ nil = a.
Proof.
induction a; simpl.
reflexivity.
refine match IHa in _ = X return _ = _ :: X with
| eq_refl => eq_refl
end.
Defined.
Monomorphic Universe hlist_large.
(** Core Type and Functions **)
Section hlist.
Polymorphic Universe Ui Uv.
Context {iT : Type@{Ui}}.
Variable F : iT -> Type@{Uv}.
Inductive hlist : list iT -> Type :=
| Hnil : hlist nil
| Hcons : forall l ls, F l -> hlist ls -> hlist (l :: ls).
Definition hlist_hd {a b} (hl : hlist (a :: b)) : F a :=
match hl in hlist x return match x return Type@{Uv} with
| nil => unit
| l :: _ => F l
end with
| Hnil => tt
| Hcons _ _ x _ => x
end.
Definition hlist_tl {a b} (hl : hlist (a :: b)) : hlist b :=
match hl in hlist x return match x return Type@{hlist_large} with
| nil => unit
| _ :: ls => hlist ls
end with
| Hnil => tt
| Hcons _ _ _ x => x
end.
Lemma hlist_eta : forall ls (h : hlist ls),
h = match ls as ls return hlist ls -> hlist ls with
| nil => fun _ => Hnil
| a :: b => fun h => Hcons (hlist_hd h) (hlist_tl h)
end h.
Proof.
intros. destruct h; auto.
Qed.
Fixpoint hlist_app ll lr (h : hlist ll) : hlist lr -> hlist (ll ++ lr) :=
match h in hlist ll return hlist lr -> hlist (ll ++ lr) with
| Hnil => fun x => x
| Hcons _ _ hd tl => fun r => Hcons hd (hlist_app tl r)
end.
Lemma hlist_app_nil_r
: forall ls (h : hlist ls),
hlist_app h Hnil =
match eq_sym (app_nil_r_trans ls) in _ = t return hlist t with
| eq_refl => h
end.
Proof.
induction h; simpl; intros; auto.
rewrite IHh at 1.
unfold eq_trans. unfold f_equal. unfold eq_sym.
clear. revert h.
generalize dependent (app_nil_r_trans ls).
destruct e. reflexivity.
Qed.
Fixpoint hlist_rev' ls ls' (h : hlist ls) : hlist ls' -> hlist (rev ls ++ ls') :=
match h in hlist ls return hlist ls' -> hlist (rev ls ++ ls') with
| Hnil => fun h => h
| Hcons l ls0 x h' => fun hacc =>
match app_ass_trans (rev ls0) (l :: nil) ls' in _ = t
return hlist t -> hlist _
with
| eq_refl => fun x => x
end (@hlist_rev' _ (l :: ls') h' (Hcons x hacc))
end.
Definition hlist_rev ls (h : hlist ls) : hlist (rev ls) :=
match app_nil_r_trans (rev ls) in _ = t return hlist t with
| eq_refl => hlist_rev' h Hnil
end.
Lemma hlist_rev_nil : hlist_rev Hnil = Hnil.
Proof.
reflexivity.
Qed.
(** TODO: I need hlist_rev_cons **)
(** Equivalence **)
(** TODO: This should change to relations **)
Section equiv.
Variable eqv : forall x, relation (F x).
Inductive equiv_hlist : forall ls, hlist ls -> hlist ls -> Prop :=
| hlist_eqv_nil : equiv_hlist Hnil Hnil
| hlist_eqv_cons : forall l ls x y h1 h2, eqv x y -> equiv_hlist h1 h2 ->
@equiv_hlist (l :: ls) (Hcons x h1) (Hcons y h2).
Global Instance Reflexive_equiv_hlist (R : forall t, Reflexive (@eqv t)) ls
: Reflexive (@equiv_hlist ls).
Proof.
red. induction x; constructor; auto. reflexivity.
Qed.
Global Instance Symmetric_equiv_hlist (R : forall t, Symmetric (@eqv t)) ls
: Symmetric (@equiv_hlist ls).
Proof.
red. induction 1.
{ constructor. }
{ constructor. symmetry. assumption. auto. }
Qed.
Global Instance Transitive_equiv_hlist (R : forall t, Transitive (@eqv t)) ls
: Transitive (@equiv_hlist ls).
Proof.
red. induction 1.
{ intro; assumption. }
{ rewrite (hlist_eta z).
refine
(fun H' =>
match H' in @equiv_hlist ls X Y
return
match ls as ls return hlist ls -> hlist ls -> Prop with
| nil => fun _ _ : hlist nil => True
| l :: ls => fun (X Y : hlist (l :: ls)) =>
forall Z x xs,
eqv (hlist_hd Z) (hlist_hd X) ->
equiv_hlist xs (hlist_tl X) ->
(forall z : hlist ls,
equiv_hlist (hlist_tl X) z ->
equiv_hlist (hlist_tl Z) z) ->
@equiv_hlist (l :: ls) Z Y
end X Y
with
| hlist_eqv_nil => I
| hlist_eqv_cons l ls x y h1 h2 pf pf' => _
end (Hcons x h1) x _ H H0 (@IHequiv_hlist)).
intros. rewrite (hlist_eta Z).
constructor. simpl in *. etransitivity. eassumption. eassumption.
eapply H3. simpl in *. eassumption. }
Qed.
Lemma equiv_hlist_Hcons
: forall ls i a b (c : hlist ls) d,
equiv_hlist (Hcons a c) (@Hcons i ls b d) ->
(@eqv i a b /\ equiv_hlist c d).
Proof.
clear. intros.
refine
match H in @equiv_hlist ls' l r
return match ls' as ls' return hlist ls' -> hlist ls' -> _ with
| nil => fun _ _ => True
| l :: ls => fun l r =>
eqv (hlist_hd l) (hlist_hd r) /\
equiv_hlist (hlist_tl l) (hlist_tl r)
end l r
with
| hlist_eqv_nil => I
| hlist_eqv_cons _ _ _ _ _ _ pf pf' => conj pf pf'
end.
Defined.
Lemma equiv_hlist_app
: forall a b (c c' : hlist a) (d d' : hlist b),
(equiv_hlist c c' /\ equiv_hlist d d')
<->
equiv_hlist (hlist_app c d) (hlist_app c' d').
Proof.
clear. split.
- destruct 1.
induction H.
+ assumption.
+ simpl. constructor; auto.
- induction c.
+ rewrite (hlist_eta c').
simpl; intros; split; auto. constructor.
+ rewrite (hlist_eta c'); simpl.
specialize (IHc (hlist_tl c')).
intro.
eapply equiv_hlist_Hcons in H. intuition.
constructor; auto.
Qed.
Global Instance Injection_equiv_hlist_cons ls i a b (c : hlist ls) d
: Injective (equiv_hlist (Hcons a c) (@Hcons i ls b d)) :=
{ result := @eqv i a b /\ equiv_hlist c d
; injection := @equiv_hlist_Hcons _ _ _ _ _ _ }.
Global Instance Injection_equiv_hlist_app a b (c c' : hlist a) (d d' : hlist b)
: Injective (equiv_hlist (hlist_app c d) (hlist_app c' d')) :=
{ result := equiv_hlist c c' /\ equiv_hlist d d'
; injection := fun x => proj2 (@equiv_hlist_app _ _ _ _ _ _) x }.
End equiv.
Lemma hlist_nil_eta : forall (h : hlist nil), h = Hnil.
Proof.
intros; rewrite (hlist_eta h); reflexivity.
Qed.
Lemma hlist_cons_eta : forall a b (h : hlist (a :: b)),
h = Hcons (hlist_hd h) (hlist_tl h).
Proof.
intros; rewrite (hlist_eta h); reflexivity.
Qed.
Lemma Hcons_inv
: forall l ls a b c d,
@eq (hlist (l :: ls)) (Hcons a b) (Hcons c d) ->
a = c /\ b = d.
Proof.
intros.
refine (
match H as K in _ = Z
return match Z in hlist LS
return match LS with
| nil => Prop
| l :: ls => F l -> hlist ls -> Prop
end
with
| Hcons X Y x y => fun a b => a = x /\ b = y
| Hnil => True
end a b
with
| eq_refl => conj eq_refl eq_refl
end).
Qed.
Global Instance Injection_hlist_cons ls t (a : F t) (b : hlist ls) c d
: Injective (Hcons a b = Hcons c d) :=
{ result := a = c /\ b = d
; injection := @Hcons_inv t ls a b c d
}.
Theorem equiv_eq_eq : forall ls (x y : hlist ls),
equiv_hlist (fun x => @eq _) x y <-> x = y.
Proof.
induction x; simpl; intros.
{ split. inversion 1. rewrite hlist_nil_eta. reflexivity.
intros; subst; constructor. }
{ split.
{ intro. rewrite (hlist_eta y).
specialize (IHx (hlist_tl y)).
refine (match H in @equiv_hlist _ LS X Y
return match X in hlist LS
return F match LS with
| nil => l
| l :: _ => l
end ->
hlist match LS with
| nil => ls
| _ :: ls => ls
end ->
Prop
with
| Hnil => fun _ _ => True
| Hcons a b c d => fun x y =>
(equiv_hlist (fun x0 : iT => eq) d y <-> d = y) ->
@Hcons a b c d = Hcons x y
end (match LS as LS return hlist LS -> F match LS with
| nil => l
| l :: _ => l
end
with
| nil => fun _ => f
| l :: ls => hlist_hd
end Y)
(match LS as LS return hlist LS -> hlist match LS with
| nil => ls
| _ :: ls => ls
end
with
| nil => fun _ => x
| l :: ls => hlist_tl
end Y)
with
| hlist_eqv_nil => I
| hlist_eqv_cons l ls x y h1 h2 pf1 pf2 => _
end IHx).
simpl.
subst. intros.
f_equal. apply H0. assumption. }
{ intros; subst. constructor; auto.
reflexivity. } }
Qed.
Fixpoint hlist_get ls a (m : member a ls) : hlist ls -> F a :=
match m in member _ ls return hlist ls -> F a with
| MZ _ => hlist_hd
| MN _ _ r => fun hl => hlist_get r (hlist_tl hl)
end.
Fixpoint hlist_nth_error {ls} (hs : hlist ls) (n : nat)
: option (match nth_error ls n with
| None => unit
| Some x => F x
end) :=
match hs in hlist ls return option (match nth_error ls n with
| None => unit
| Some x => F x
end)
with
| Hnil => None
| Hcons l ls h hs =>
match n as n return option (match nth_error (l :: ls) n with
| None => unit
| Some x => F x
end)
with
| 0 => Some h
| S n => hlist_nth_error hs n
end
end.
Polymorphic Fixpoint hlist_nth ls (h : hlist ls) (n : nat) :
match nth_error ls n return Type with
| None => unit
| Some t => F t
end :=
match h in hlist ls , n as n
return match nth_error ls n with
| None => unit
| Some t => F t
end
with
| Hnil , 0 => tt
| Hnil , S _ => tt
| Hcons _ _ x _ , 0 => x
| Hcons _ _ _ h , S n => hlist_nth h n
end.
Fixpoint nth_error_hlist_nth ls (n : nat)
: option (hlist ls -> match nth_error ls n with
| None => Empty_set
| Some x => F x
end) :=
match ls as ls
return option (hlist ls -> match nth_error ls n with
| None => Empty_set
| Some x => F x
end)
with
| nil => None
| l :: ls =>
match n as n
return option (hlist (l :: ls) -> match nth_error (l :: ls) n with
| None => Empty_set
| Some x => F x
end)
with
| 0 => Some hlist_hd
| S n =>
match nth_error_hlist_nth ls n with
| None => None
| Some f => Some (fun h => f (hlist_tl h))
end
end
end.
Definition cast1 T l
: forall (l' : list T) n v,
nth_error l n = Some v -> Some v = nth_error (l ++ l') n.
Proof.
induction l. intros.
{ exfalso. destruct n; inversion H. }
{ destruct n; simpl; intros; auto. }
Defined.
Definition cast2 T l
: forall (l' : list T) n,
nth_error l n = None ->
nth_error l' (n - length l) = nth_error (l ++ l') n.
Proof.
induction l; simpl.
{ destruct n; simpl; auto. }
{ destruct n; simpl; auto.
inversion 1. }
Defined.
Theorem hlist_nth_hlist_app
: forall l l' (h : hlist l) (h' : hlist l') n,
hlist_nth (hlist_app h h') n =
match nth_error l n as k
return nth_error l n = k ->
match nth_error (l ++ l') n return Type with
| None => unit
| Some t => F t
end
with
| Some _ => fun pf =>
match
cast1 _ _ _ pf in _ = z ,
eq_sym pf in _ = w
return match w return Type with
| None => unit
| Some t => F t
end ->
match z return Type with
| None => unit
| Some t => F t
end
with
| eq_refl , eq_refl => fun x => x
end (hlist_nth h n)
| None => fun pf =>
match cast2 _ _ _ pf in _ = z
return match z with
| Some t => F t
| None => unit
end
with
| eq_refl => hlist_nth h' (n - length l)
end
end eq_refl.
Proof.
induction h; simpl; intros.
{ destruct n; simpl in *; reflexivity. }
{ destruct n; simpl.
{ reflexivity. }
{ rewrite IHh. reflexivity. } }
Qed.
Section type.
Lemma hlist_app_assoc : forall ls ls' ls''
(a : hlist ls) (b : hlist ls') (c : hlist ls''),
hlist_app (hlist_app a b) c =
match eq_sym (app_ass_trans ls ls' ls'') in _ = t return hlist t with
| eq_refl => hlist_app a (hlist_app b c)
end.
Proof.
intros ls ls' ls''.
generalize (eq_sym (app_assoc_reverse ls ls' ls'')).
induction ls; simpl; intros.
{ rewrite (hlist_eta a); simpl.
reflexivity. }
{ rewrite (hlist_eta a0). simpl.
inversion H.
erewrite (IHls H1).
unfold f_equal. unfold eq_trans. unfold eq_sym.
generalize (app_ass_trans ls ls' ls'').
rewrite <- H1.
clear. intro.
generalize dependent (hlist_app (hlist_tl a0) (hlist_app b c)).
destruct e. reflexivity. }
Qed.
Lemma hlist_app_assoc'
: forall (ls ls' ls'' : list iT)
(a : hlist ls) (b : hlist ls') (c : hlist ls''),
hlist_app a (hlist_app b c) =
match
app_ass_trans ls ls' ls'' in (_ = t) return (hlist t)
with
| eq_refl => hlist_app (hlist_app a b) c
end.
Proof.
clear. intros.
generalize (hlist_app_assoc a b c).
generalize (hlist_app (hlist_app a b) c).
generalize (hlist_app a (hlist_app b c)).
destruct (app_ass_trans ls ls' ls'').
simpl. auto.
Qed.
Fixpoint hlist_split ls ls' : hlist (ls ++ ls') -> hlist ls * hlist ls' :=
match ls as ls return hlist (ls ++ ls') -> hlist ls * hlist ls' with
| nil => fun h => (Hnil, h)
| l :: ls => fun h =>
let (a,b) := @hlist_split ls ls' (hlist_tl h) in
(Hcons (hlist_hd h) a, b)
end.
Lemma hlist_app_hlist_split : forall ls' ls (h : hlist (ls ++ ls')),
hlist_app (fst (hlist_split ls ls' h)) (snd (hlist_split ls ls' h)) = h.
Proof.
induction ls; simpl; intros; auto.
rewrite (hlist_eta h); simpl.
specialize (IHls (hlist_tl h)).
destruct (hlist_split ls ls' (hlist_tl h)); simpl in *; auto.
f_equal. auto.
Qed.
Lemma hlist_split_hlist_app : forall ls' ls (h : hlist ls) (h' : hlist ls'),
hlist_split _ _ (hlist_app h h') = (h,h').
Proof.
induction ls; simpl; intros.
{ rewrite (hlist_eta h); simpl; auto. }
{ rewrite (hlist_eta h); simpl.
rewrite IHls. reflexivity. }
Qed.
End type.
Lemma hlist_hd_fst_hlist_split
: forall t (xs ys : list _) (h : hlist (t :: xs ++ ys)),
hlist_hd (fst (hlist_split (t :: xs) ys h)) = hlist_hd h.
Proof.
simpl. intros.
match goal with
| |- context [ match ?X with _ => _ end ] =>
destruct X
end. reflexivity.
Qed.
Lemma hlist_tl_fst_hlist_split
: forall t (xs ys : list _) (h : hlist (t :: xs ++ ys)),
hlist_tl (fst (hlist_split (t :: xs) ys h)) =
fst (hlist_split xs ys (hlist_tl h)).
Proof.
simpl. intros.
match goal with
| |- context [ match ?X with _ => _ end ] =>
remember X
end. destruct p. simpl.
change h0 with (fst (h0, h1)).
f_equal; trivial.
Qed.
Lemma hlist_tl_snd_hlist_split
: forall t (xs ys : list _) (h : hlist (t :: xs ++ ys)),
snd (hlist_split xs ys (hlist_tl h)) =
snd (hlist_split (t :: xs) ys h).
Proof.
simpl. intros.
match goal with
| |- context [ match ?X with _ => _ end ] =>
remember X
end. destruct p.
simpl.
change h1 with (snd (h0, h1)).
rewrite Heqp. reflexivity.
Qed.
Polymorphic Fixpoint nth_error_get_hlist_nth (ls : list iT) (n : nat) {struct ls} :
option {t : iT & hlist ls -> F t} :=
match
ls as ls0
return option {t : iT & hlist ls0 -> F t}
with
| nil => None
| l :: ls0 =>
match
n as n0
return option {t : iT & hlist (l :: ls0) -> F t}
with
| 0 =>
Some (@existT _ (fun t => hlist (l :: ls0) -> F t)
l (@hlist_hd _ _))
| S n0 =>
match nth_error_get_hlist_nth ls0 n0 with
| Some (existT x f) =>
Some (@existT _ (fun t => hlist _ -> F t)
x (fun h : hlist (l :: ls0) => f (hlist_tl h)))
| None => None
end
end
end.
Theorem nth_error_get_hlist_nth_Some
: forall ls n s,
nth_error_get_hlist_nth ls n = Some s ->
exists pf : nth_error ls n = Some (projT1 s),
forall h, projT2 s h = match pf in _ = t
return match t return Type with
| Some t => F t
| None => unit
end
with
| eq_refl => hlist_nth h n
end.
Proof.
induction ls; simpl; intros; try congruence.
{ destruct n.
{ inv_all; subst; simpl.
exists (eq_refl).
intros. rewrite (hlist_eta h). reflexivity. }
{ forward. inv_all; subst.
destruct (IHls _ _ H0); clear IHls.
simpl in *. exists x0.
intros.
rewrite (hlist_eta h). simpl. auto. } }
Qed.
Theorem nth_error_get_hlist_nth_None
: forall ls n,
nth_error_get_hlist_nth ls n = None <->
nth_error ls n = None.
Proof.
induction ls; simpl; intros; try congruence.
{ destruct n; intuition. }
{ destruct n; simpl; try solve [ intuition congruence ].
specialize (IHls n). forward. }
Qed.
Lemma nth_error_get_hlist_nth_weaken
: forall ls ls' n x,
nth_error_get_hlist_nth ls n = Some x ->
exists z,
nth_error_get_hlist_nth (ls ++ ls') n =
Some (@existT iT (fun t => hlist (ls ++ ls') -> F t) (projT1 x) z)
/\ forall h h', projT2 x h = z (hlist_app h h').
Proof.
intros ls ls'. revert ls.
induction ls; simpl; intros; try congruence.
{ destruct n; inv_all; subst.
{ simpl. eexists; split; eauto.
intros. rewrite (hlist_eta h). reflexivity. }
{ forward. inv_all; subst. simpl.
apply IHls in H0. forward_reason.
rewrite H. eexists; split; eauto.
intros. rewrite (hlist_eta h). simpl in *.
auto. } }
Qed.
Lemma nth_error_get_hlist_nth_appL
: forall tvs' tvs n,
n < length tvs ->
exists x,
nth_error_get_hlist_nth (tvs ++ tvs') n = Some x /\
exists y,
nth_error_get_hlist_nth tvs n = Some (@existT _ _ (projT1 x) y) /\
forall vs vs',
(projT2 x) (hlist_app vs vs') = y vs.
Proof.
clear. induction tvs; simpl; intros.
{ exfalso; inversion H. }
{ destruct n.
{ clear H IHtvs.
eexists; split; eauto. eexists; split; eauto.
simpl. intros. rewrite (hlist_eta vs). reflexivity. }
{ apply Nat.succ_lt_mono in H.
{ specialize (IHtvs _ H).
forward_reason.
rewrite H0. rewrite H1.
forward. subst. simpl in *.
eexists; split; eauto.
eexists; split; eauto. simpl.
intros. rewrite (hlist_eta vs). simpl. auto. } } }
Qed.
Lemma nth_error_get_hlist_nth_appR
: forall tvs' tvs n x,
n >= length tvs ->
nth_error_get_hlist_nth (tvs ++ tvs') n = Some x ->
exists y,
nth_error_get_hlist_nth tvs' (n - length tvs) = Some (@existT _ _ (projT1 x) y) /\
forall vs vs',
(projT2 x) (hlist_app vs vs') = y vs'.
Proof.
clear. induction tvs; simpl; intros.
{ rewrite PeanoNat.Nat.sub_0_r.
rewrite H0. destruct x. simpl.
eexists; split; eauto. intros.
rewrite (hlist_eta vs). reflexivity. }
{ destruct n.
{ inversion H. }
{ assert (n >= length tvs) by (eapply le_S_n; eassumption). clear H.
{ forward. inv_all; subst. simpl in *.
specialize (IHtvs _ _ H1 H0).
simpl in *.
forward_reason.
rewrite H.
eexists; split; eauto.
intros. rewrite (hlist_eta vs). simpl. auto. } } }
Qed.
End hlist.
Arguments Hnil {_ _}.
Arguments Hcons {_ _ _ _} _ _.
Arguments equiv_hlist {_ F} R {_} _ _ : rename.
(** Weak Map
This is weak because it does not change the key type
**)
Section hlist_map.
Variable A : Type.
Variables F G : A -> Type.
Variable ff : forall x, F x -> G x.
Fixpoint hlist_map (ls : list A) (hl : hlist F ls) {struct hl} : hlist G ls :=
match hl in @hlist _ _ ls return hlist G ls with
| Hnil => Hnil
| Hcons _ _ hd tl =>
Hcons (ff hd) (hlist_map tl)
end.
Theorem hlist_app_hlist_map
: forall ls ls' (a : hlist F ls) (b : hlist F ls'),
hlist_map (hlist_app a b) =
hlist_app (hlist_map a) (hlist_map b).
Proof.
induction a. simpl; auto.
simpl. intros. f_equal. auto.
Qed.
End hlist_map.
Arguments hlist_map {_ _ _} _ {_} _.
Section hlist_map_rules.
Variable A : Type.
Variables F G G' : A -> Type.
Variable ff : forall x, F x -> G x.
Variable gg : forall x, G x -> G' x.
Theorem hlist_map_hlist_map : forall ls (hl : hlist F ls),
hlist_map gg (hlist_map ff hl) = hlist_map (fun _ x => gg (ff x)) hl.
Proof.
induction hl; simpl; f_equal. assumption.
Defined.
Theorem hlist_get_hlist_map : forall ls t (hl : hlist F ls) (m : member t ls),
hlist_get m (hlist_map ff hl) = ff (hlist_get m hl).
Proof.
induction m; simpl.
{ rewrite (hlist_eta hl). reflexivity. }
{ rewrite (hlist_eta hl). simpl. auto. }
Defined.
Lemma hlist_map_ext : forall (ff gg : forall x, F x -> G x),
(forall x t, ff x t = gg x t) ->
forall ls (hl : hlist F ls),
hlist_map ff hl = hlist_map gg hl.
Proof.
induction hl; simpl; auto.
intros. f_equal; auto.
Defined.
End hlist_map_rules.
Lemma equiv_hlist_map
: forall T U (F : T -> Type) (R : forall t, F t -> F t -> Prop)
(R' : forall t, U t -> U t -> Prop)
(f g : forall t, F t -> U t),
(forall t (x y : F t), R t x y -> R' t (f t x) (g t y)) ->
forall ls (a b : hlist F ls),
equiv_hlist R a b ->
equiv_hlist R' (hlist_map f a) (hlist_map g b).
Proof.
clear. induction 2; simpl; intros.
- constructor.
- constructor; eauto.
Qed.
(** Linking Heterogeneous Lists and Lists **)
Section hlist_gen.
Variable A : Type.
Variable F : A -> Type.
Variable f : forall a, F a.
Fixpoint hlist_gen ls : hlist F ls :=
match ls with
| nil => Hnil
| cons x ls' => Hcons (f x) (hlist_gen ls')
end.
Lemma hlist_get_hlist_gen : forall ls t (m : member t ls),
hlist_get m (hlist_gen ls) = f t.
Proof.
induction m; simpl; auto.
Qed.
(** This function is a generalisation of [hlist_gen] in which the function [f]
takes the additional parameter [member a ls]. **)
Fixpoint hlist_gen_member ls : (forall a, member a ls -> F a) -> hlist F ls :=
match ls as ls return ((forall a : A, member a ls -> F a) -> hlist F ls) with
| nil => fun _ => Hnil
| a :: ls' => fun fm =>
Hcons (fm a (MZ a ls'))
(hlist_gen_member (fun a' (M : member a' ls') => fm a' (MN a M)))
end.
Lemma hlist_gen_member_hlist_gen : forall ls,
hlist_gen_member (fun a _ => f a) = hlist_gen ls.
Proof.
induction ls; simpl; f_equal; auto.
Qed.
Lemma hlist_gen_member_ext : forall ls (f g : forall a, member a ls -> F a),
(forall x M, f x M = g x M) ->
hlist_gen_member f = hlist_gen_member g.
Proof.
intros. induction ls; simpl; f_equal; auto.
Qed.
End hlist_gen.
Arguments hlist_gen {A F} f ls.
Lemma hlist_gen_member_hlist_map : forall A (F G : A -> Type) (ff : forall t, F t -> G t) ls f,
hlist_map ff (hlist_gen_member F (ls := ls) f) = hlist_gen_member G (fun a M => ff _ (f _ M)).
Proof.
intros. induction ls; simpl; f_equal; auto.
Qed.
Lemma hlist_gen_hlist_map : forall A (F G : A -> Type) (ff : forall t, F t -> G t) f ls,
hlist_map ff (hlist_gen f ls) = hlist_gen (fun a => ff _ (f a)) ls.
Proof.
intros. do 2 rewrite <- hlist_gen_member_hlist_gen. apply hlist_gen_member_hlist_map.
Qed.
Lemma hlist_gen_ext : forall A F (f g : forall a, F a),
(forall x, f x = g x) ->
forall ls : list A, hlist_gen f ls = hlist_gen g ls.
Proof.
intros. do 2 rewrite <- hlist_gen_member_hlist_gen. apply hlist_gen_member_ext. auto.
Qed.
Global Instance Proper_hlist_gen : forall A F,
Proper (forall_relation (fun _ => eq) ==> forall_relation (fun _ => eq))
(@hlist_gen A F).
Proof.
repeat intro. apply hlist_gen_ext. auto.
Qed.
Lemma equiv_hlist_gen : forall T (F : T -> Type) (f : forall t, F t) f'
(R : forall t, F t -> F t -> Prop),
(forall t, R t (f t) (f' t)) ->
forall ls,
equiv_hlist R (hlist_gen f ls) (hlist_gen f' ls).
Proof.
induction ls; simpl; constructor; auto.
Qed.
Global Instance Proper_equiv_hlist_gen : forall A (F : A -> Type) R,
Proper (forall_relation R ==> forall_relation (@equiv_hlist _ _ R))
(@hlist_gen A F).
Proof.
repeat intro. apply equiv_hlist_gen. auto.
Qed.
Fixpoint hlist_erase {A B} {ls : list A} (hs : hlist (fun _ => B) ls) : list B :=
match hs with
| Hnil => nil
| Hcons _ _ x hs' => cons x (hlist_erase hs')
end.
Lemma hlist_erase_hlist_gen : forall A B ls (f : A -> B),
hlist_erase (hlist_gen f ls) = map f ls.
Proof.
induction ls; simpl; intros; f_equal; auto.
Qed.
(** Linking Heterogeneous Lists and Predicates **)
Section hlist_Forall.
Variable A : Type.
Variable P : A -> Prop.
Fixpoint hlist_Forall ls (hs : hlist P ls) : Forall P ls :=
match hs with
| Hnil => Forall_nil _
| Hcons _ _ H hs' => Forall_cons _ H (hlist_Forall hs')
end.
End hlist_Forall.
(** Heterogeneous Relations **)
Section hlist_rel.
Variable A : Type.
Variables F G : A -> Type.
Variable R : forall x : A, F x -> G x -> Prop.
Inductive hlist_hrel : forall ls, hlist F ls -> hlist G ls -> Prop :=
| hrel_Hnil : hlist_hrel Hnil Hnil
| hrel_Hcons : forall t ts x y xs ys, @R t x y -> @hlist_hrel ts xs ys ->
@hlist_hrel (t :: ts) (Hcons x xs) (Hcons y ys).
End hlist_rel.
Section hlist_rel_map.
Variable A : Type.
Variables F G F' G' : A -> Type.
Variable R : forall x : A, F x -> G x -> Prop.
Variable R' : forall x : A, F' x -> G' x -> Prop.
Variable ff : forall x : A, F x -> F' x.
Variable gg : forall x : A, G x -> G' x.
Hypothesis R_ff_R' :
forall t x y, @R t x y ->
@R' t (ff x) (gg y).
Theorem hlist_hrel_map
: forall ls xs ys,
@hlist_hrel A F G R ls xs ys ->
@hlist_hrel A F' G' R' ls (hlist_map ff xs) (hlist_map gg ys).
Proof.
induction 1; simpl; constructor; eauto.
Qed.
Theorem hlist_hrel_cons
: forall l ls x xs y ys,
@hlist_hrel A F G R (l :: ls) (Hcons x xs) (Hcons y ys) ->
@R l x y /\ @hlist_hrel A F G R ls xs ys.
Proof.
intros.
refine
match H in @hlist_hrel _ _ _ _ ls' xs' ys'
return
match ls' as ls' return hlist F ls' -> hlist G ls' -> Prop with
| nil => fun _ _ => True
| l' :: ls' => fun x y =>
R (hlist_hd x) (hlist_hd y)
/\ hlist_hrel R (hlist_tl x) (hlist_tl y)
end xs' ys'
with
| hrel_Hnil => I
| hrel_Hcons _ _ _ _ _ _ pf pf' => conj pf pf'
end.
Qed.
Theorem hlist_hrel_app
: forall l ls x xs y ys,
@hlist_hrel A F G R (l ++ ls) (hlist_app x xs) (hlist_app y ys) ->
@hlist_hrel A F G R l x y /\ @hlist_hrel A F G R ls xs ys.
Proof.
induction x.
+ intros xs y ys. rewrite (hlist_eta y).
simpl; intros; split; auto. constructor.
+ intros xs y ys. rewrite (hlist_eta y).
intros. eapply hlist_hrel_cons in H.
destruct H.
apply IHx in H0.
intuition. constructor; auto.
Qed.
End hlist_rel_map.
Theorem hlist_hrel_equiv
: forall T (F : T -> Type) (R : forall t, F t -> F t -> Prop) ls (h h' : hlist F ls),
hlist_hrel R h h' ->
equiv_hlist R h h'.
Proof.
induction 1; constructor; auto.
Qed.
Theorem hlist_hrel_flip
: forall T (F G : T -> Type) (R : forall t, F t -> G t -> Prop) ls
(h : hlist F ls) (h' : hlist G ls),
hlist_hrel R h h' ->
hlist_hrel (fun t a b => R t b a) h' h.
Proof.
induction 1; constructor; auto.
Qed.
|