1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
Require Import ExtLib.Data.Fin.
Set Implicit Arguments.
Set Strict Implicit.
Set Asymmetric Patterns.
Inductive vector T : nat -> Type :=
| Vnil : vector T 0
| Vcons : forall {n}, T -> vector T n -> vector T (S n).
Section parametric.
Variable T : Type.
Definition vector_hd n (v : vector T (S n)) : T :=
match v in vector _ n' return match n' with
| 0 => unit
| S _ => T
end with
| Vnil => tt
| Vcons _ x _ => x
end.
Definition vector_tl n (v : vector T (S n)) : vector T n :=
match v in vector _ n' return match n' with
| 0 => unit
| S n => vector T n
end with
| Vnil => tt
| Vcons _ _ x => x
end.
Theorem vector_eta : forall n (v : vector T n),
v = match n as n return vector T n -> vector T n with
| 0 => fun _ => Vnil _
| S n => fun v => Vcons (vector_hd v) (vector_tl v)
end v.
Proof.
destruct v; auto.
Qed.
Fixpoint get {n : nat} (f : fin n) : vector T n -> T :=
match f in fin n return vector T n -> T with
| F0 n => @vector_hd _
| FS n f => fun v => get f (vector_tl v)
end.
Fixpoint put {n : nat} (f : fin n) (t : T) : vector T n -> vector T n :=
match f in fin n return vector T n -> vector T n with
| F0 _ => fun v => Vcons t (vector_tl v)
| FS _ f => fun v => Vcons (vector_hd v) (put f t (vector_tl v))
end.
Theorem get_put_eq : forall {n} (v : vector T n) (f : fin n) val,
get f (put f val v) = val.
Proof.
induction n.
{ inversion f. }
{ remember (S n). destruct f.
inversion Heqn0; subst; intros; reflexivity.
inversion Heqn0; subst; simpl; auto. }
Qed.
Theorem get_put_neq : forall {n} (v : vector T n) (f f' : fin n) val,
f <> f' ->
get f (put f' val v) = get f v.
Proof.
induction n.
{ inversion f. }
{ remember (S n); destruct f.
{ inversion Heqn0; clear Heqn0; subst; intros.
destruct (fin_case f'); try congruence.
destruct H0; subst. auto. }
{ inversion Heqn0; clear Heqn0; subst; intros.
destruct (fin_case f').
subst; auto.
destruct H0; subst. simpl.
eapply IHn. congruence. } }
Qed.
Section ForallV.
Variable P : T -> Prop.
Inductive ForallV : forall n, vector T n -> Prop :=
| ForallV_nil : ForallV (Vnil _)
| ForallV_cons : forall n e es, P e -> @ForallV n es -> ForallV (Vcons e es).
Definition ForallV_vector_hd n (v : vector T (S n)) (f : ForallV v) : P (vector_hd v) :=
match f in @ForallV n v return match n as n return vector T n -> Prop with
| 0 => fun _ => True
| S _ => fun v => P (vector_hd v)
end v
with
| ForallV_nil => I
| ForallV_cons _ _ _ pf _ => pf
end.
Definition ForallV_vector_tl n (v : vector T (S n)) (f : ForallV v) : ForallV (vector_tl v) :=
match f in @ForallV n v return match n as n return vector T n -> Prop with
| 0 => fun _ => True
| S _ => fun v => ForallV (vector_tl v)
end v
with
| ForallV_nil => I
| ForallV_cons _ _ _ _ pf => pf
end.
End ForallV.
Section vector_dec.
Variable Tdec : forall a b : T, {a = b} + {a <> b}.
Fixpoint vector_dec {n} (a : vector T n)
: forall b : vector T n, {a = b} + {a <> b} :=
match a in vector _ n
return forall b : vector T n, {a = b} + {a <> b}
with
| Vnil => fun b => left match b in vector _ 0 with
| Vnil => eq_refl
end
| Vcons _ a a' => fun b =>
match b as b in vector _ (S n)
return forall a',
(forall a : vector T n, {a' = a} + {a' <> a}) ->
{Vcons a a' = b} + {Vcons a a' <> b}
with
| Vcons _ b b' => fun a' rec =>
match Tdec a b , rec b' with
| left pf , left pf' =>
left match pf , pf' with
| eq_refl , eq_refl => eq_refl
end
| right pf , _ =>
right (fun x : Vcons a a' = Vcons b b' =>
pf match x in _ = z
return a = vector_hd z
with
| eq_refl => eq_refl
end)
| left _ , right pf =>
right (fun x : Vcons a a' = Vcons b b' =>
pf match x in _ = z
return a' = vector_tl z
with
| eq_refl => eq_refl
end)
end
end a' (@vector_dec _ a')
end.
End vector_dec.
Section vector_in.
Variable a : T.
Inductive vector_In : forall {n}, vector T n -> Prop :=
| vHere : forall n rst, @vector_In (S n) (Vcons a rst)
| vNext : forall n rst b, @vector_In n rst ->
@vector_In (S n) (Vcons b rst).
End vector_in.
Lemma ForallV_vector_In : forall {n} t (vs : vector T n) P,
ForallV P vs ->
vector_In t vs -> P t.
Proof.
induction 2.
- eapply (ForallV_vector_hd H).
- eapply IHvector_In. eapply (ForallV_vector_tl H).
Qed.
End parametric.
Section vector_map.
Context {T U : Type}.
Variable f : T -> U.
Fixpoint vector_map {n} (v : vector T n) : vector U n :=
match v with
| Vnil => Vnil _
| Vcons _ v vs => Vcons (f v) (vector_map vs)
end.
End vector_map.
Arguments vector T n.
Arguments vector_hd {T n} _.
Arguments vector_tl {T n} _.
|